
Map Visualizations for Graphs with Group Restrictions
Md Iqbal Hossain
University of Arizona
Tucson, Arizona, USA
hossain@arizona.edu

Ehsan Moradi∗
University of Saskatchewan

Saskatoon, Saskatchewan, Canada
e.moradi@usask.ca

Debajyoti Mondal
University of Saskatchewan

Saskatoon, Saskatchewan, Canada
d.mondal@usask.ca

Stephen Kobourov
Technical University Munich
Munich, Bavaria, Germany
stephen.kobourov@tum.de

Figure 1: Left: A map-like visualization created by our algorithm for a co-authorship network with 26,325 nodes and 120,879
edges. Each conference is shown using a distinct country-like polygon with area proportional to its group size. The connections
within group and between groups are in black and gray, respectively. Middle: A zoomed in view. Two dense subgraphs came
close together due to their high connectivity. Sometimes nodes moved closer to polygon boundaries due to external connections,
but remained inside their designated polygons. Right: A further zoomed-in view and a magnified view of a small subgraph.

ABSTRACT
A map visualization of a graph consists of a node-link diagram
in which groups of nodes are enclosed in one or more polygonal
regions, similar to countries in a geographic map. Many real-world
graphs have naturally defined groups, e.g., a graph that represents
collaborations between faculty members within a university, where
the departments are the groups. A good visualization of such a
graph should place departments that collaborate frequently as ad-
jacent or nearby groups. While some set visualization methods can
be used to create map visualizations for graphs with groups, the
results can be poor and difficult to read due to fragmented groups

∗The author made substantial contributions to both algorithm development and exper-
imental analysis as part of his PhD research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GI’25, May 26–29, 2025, Kelowna, BC, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

or complicated polygonal shapes of the enclosing regions. With this
in mind, we propose a new approach that constructs the polygons
first and then renders the graph to obtain better control over the
drawing properties. We design two methods based on this new ap-
proach and compare them with three prior techniques using seven
quantitative metrics on several real-world datasets. Our experimen-
tal results demonstrate the proposed methods to outperform prior
techniques in capturing the intended drawing features and have
good performance in most of the metrics.

CCS CONCEPTS
• Human-centered computing → Graph drawings; Visualiza-
tion design and evaluation methods.

KEYWORDS
Network Visualization, Force-Layout, Geographic Map Metaphor

ACM Reference Format:
Md Iqbal Hossain, Ehsan Moradi, Debajyoti Mondal, and Stephen Kobourov.
2025. Map Visualizations for Graphs with Group Restrictions. In Proceedings
of Graphics Interface 2025 (GI’25). ACM, New York, NY, USA, 12 pages.

https://orcid.org/0000-0001-6212-7638
https://orcid.org/0000-0001-6689-4711
https://orcid.org/0000-0002-7370-8697
https://orcid.org/0000-0002-0477-2724

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

Figure 2: Left: A GMap visualization of the graph Book-
land [21] with 499 nodes and 408 edges. Although there are
15 groups, but the visualization has over 25 polygons that
represent these groups. Right: A MapSet visualization of the
same graph.

1 INTRODUCTION
The popularity of geographic maps and our familiarity with them
have made map-based visualization an attractive option even for
visualizing non-geographic datasets [13]. In this paper we focus on
the node-link visualization of graph data, which models relation-
ships among a set of entities. GMap [15] is widely recognized for
popularizing the use of geographic metaphors to visualize clusters
in graphs. It creates a map-like representation, where the node-link
layout is overlaid on a map, and the nodes of each cluster in the
graph are enclosed with country-like polygonal regions.

To improve readability, a desirable property of such visualiza-
tions is the use of almost convex polygonal shapes. At the same
time, their boundaries should remain irregular to align with the
original design philosophy of resembling the boundaries of coun-
tries. However, since the algorithms that detect clusters [10] operate
independently of the algorithm that generates the node-link layout,
some nodes within a cluster may be positioned far apart in the
visualization. Consequently, enclosing the nodes of each cluster
using convex polygons may require multiple polygons per cluster,
leading to a country-like representation with many fragmented
regions per cluster (Figure 2 (Left)).

The representation with multiple polygons per cluster makes it
harder for users to identify individual clusters and compare cluster
sizes. The desire to keep clusters or groups of nodes (e.g., created
from category-based partitions) together in the visualization gave
rise to the concept of a group-in-a-box (GIB) layout [32, 35]. It
first creates a treemap visualization with cells corresponding to
the group sizes, and then places the subgraphs inside their cor-
responding cells. Although the rectangular cells of the treemap
could be thought of as countries, this does not provide a geographic
map-like aesthetic. To create a GIB layout using the geographic
map metaphor, one may think of first creating a GMap visualization
and then enclosing the nodes of each cluster in a single polygonal
region. This problem is similar to a set visualization problem that
given a collection of sets over some points (i.e., nodes in our setting)
in the plane, seeks a way to create corresponding polygonal regions
such that each region encloses the points of the set it represents.
There are techniques to create such polygonal regions that either

keep the polygons disjoint or allow for overlaps, e.g., MapSet [7],
BubbleSets [4], LineSets [1] and other variants [23, 38, 41]. How-
ever, since the nodes in a group may spread across the whole layout,
such polygonal regions are likely to be meandering polygons with
high complexity and thus likely to deviate significantly from a
natural-looking country shape (Figure 2(Right)).

1.1 Motivation
While much effort has gone into creating map visualizations that
enclose each cluster within a single polygonal region, little focus
has been placed on creating such visualizations to capture cluster
sizes and the relationships between clusters. In this paper we are
interested in creating map visualization for graphs with predefined
groups where groups must be represented by disjoint polygonal
regions1 with one polygon per group (Figure 1). Throughout the
paper we will refer to such a visualization asMVG (map visualiza-
tion with group restriction). Some desired properties for MVG
are as follows. The polygons should have a natural country-like
shape (e.g., a blob-like interior that is not too narrow or spiraling)
and the area of each polygon should be proportional to the group
size. This helps estimate cluster sizes while adhering to country-
like appeal. Both the relations among the nodes within each group
and the relations between groups should be reflected by the rela-
tive proximity of their representative geometric elements (points
or polygons) as much as possible, which helps understand graph
structure. Additionally, the nodes should be distributed inside each
polygon to utilize the space available, which enhances readability.

Consider the faculty collaboration graph at a university as a
motivating example for the use of an MVG. In this graph, edges rep-
resent co-authorships or shared grants, and groups are defined by
faculty members within individual departments. An MVG for such
a graph provides Deans, Department Heads, and research admin-
istrators an understanding of the university’s research ecosystem.
It can reveal the impact of a department within the university and
highlight the potential for forming interdisciplinary teams to apply
for funding. This can be an effective approach to visualize graph
data as the funding agencies worldwide are increasingly encourag-
ing interdisciplinary projects. Furthermore, an MVG can identify
individuals whose collaborations extend more widely outside their
department than within. This insight can help faculty members
establish new connections or reach out to colleagues across the
university by exploring common collaborators.

Existing techniques, such as GMap [15] and set visualization
methods [1, 4, 7], are not suitable for constructing MVGs. These
approaches depend on the overall graph layout and fail to explicitly
account for relationships among predefined groups. Closest to our
work is CBA [21] which ensures that predefined groups must be
enclosed inside disjoint polygonal regions. This approach first lays
out the graph, next allocates disjoint square regions for each group
based on the barycenter of the nodes in the group, then fits the
drawing of each group into the allocated square, and finally, creates
polygons and deforms them using a force-based layout [36] allow-
ing nodes to be pulled towards their original location. Although
this approach addresses the MVG drawing problem, it relies more

1Here two regions can be adjacent, i.e., share part of their boundaries, but the interior
of the polygons must be non-overlapping.

Map Visualizations for Graphs with Group Restrictions GI’25, May 26–29, 2025, Kelowna, BC, Canada

Figure 3: Left: KMap, an MVG to visualize faculty collaborations. Middle-Right: Two views when a person has been selected.

heavily on the whole graph layout than the prescribed group infor-
mation and the deformation of the polygons changes the polygon
area. The lack of research on whether one could use the group in-
formation to first create the polygons and then distribute the nodes
inside them motivates the technical contribution of this paper.

1.2 Contributions
Our primary contribution is to present two novel approaches for
constructing MVGs, develop metrics to evaluate their structural
properties, and demonstrate the superiority of our methods over
prior techniques through an empirical analysis. In contrast to pre-
vious methods, we build MVG by first creating polygons for the
groups and then distributing the nodes of each group into its polyg-
onal region. Since the polygons are computed beforehand, this gives
us better control over the polygon shapes. Our secondary contri-
bution is to build a running system, where an MVG is being used
within the University of Arizona as the ‘Institutional Knowledge
Map’ (KMap) [19]. Figure 3 shows a snapshot of the MVG showing
the departments and two views where a person has been selected.
In this paper we focus on the algorithms that we developed for
creating MVG, and compare and contrast these algorithms with
the existing methods in the literature using quantitative evaluation.
However, we envision a full-fledged evaluation of the KMap system
with end users and domain experts in the future.

We evaluate our proposedmethodswith three existing approaches
from the literature using benchmark datasets [21], as well as using
real-life datasets from DBLP [5] and university collaboration. We
use seven quantitative metrics to compare the desired structural
properties (five new metrics and two existing ones, i.e., stress and
edge crossing). The experimental results show our methods are the
first of their kind to produce visually appealing layouts for large
graphs, outperforming existing methods that often result in unread-
able designs. Both approaches perform well across most metrics.
While the first method is conceptually straightforward, the second
method delivers better layouts with fewer edge crossings.

2 RELATEDWORK
In this section we discuss the research related to cluster visualiza-
tion and techniques that draw graphs as geographic maps.

Spatial metaphor is often used to visualize non-geometric data. A
classic example of this is self-organizing maps (SOMs) to visualize
documents [37]. The spatializations of documents present them

metaphorically as points where similar documents lie in a homoge-
neous thematic region. The popularity of using spatial metaphors
stems from our intuitive understanding of geographic space [3, 40].
Such visualization of maps can be found to display similarities
among scientific disciplines [2], topics in conferences [11], soft-
ware data [25], and so on. Our approach to designing MVG follows
the same design principle of employing a spatial metaphor.

There is a rich body of literature on visualizing group structures
in graphs [39]. GMap is one of the earliest works for representing
graphs as geographic maps. GMap was originally proposed to vi-
sualize recommendations where the visualization creates a layout
of graphs and encloses graph clusters inside colored polygonal re-
gions. A number of usages of GMap have appeared in the literature
since then for producing visualizations for more general data [14].
We will use GMap as a subroutine to generate country-like shapes,
while our contribution will focus on improved organization of the
countries and better design of the node-link diagram within the
countries to reveal graph structure.

Past user studies show GMap to be faster for search and explo-
ration tasks compared to other counterparts such as BubbleSets
and LineSets [17]. However, GMap sometimes creates fragmented
polygons for a single cluster which makes it slow for group-based
tasks. Visualization of point sets on a geographic map is another
line of work that relates to our context. Given several sets of points
on a geographic map, a common way to represent them so that they
are easier to identify or separate visually is to enclose or connect the
members of each set using geometric objects (e.g., polygon or line).
Such representations are commonly known as set visualizations.
These objects are generally allowed to intersect. Examples of such
visualizations are BubbleSets [4], LineSets [1], Euler diagrams [34],
etc. These methods can be adapted to create MVGs but they may
create overlapping and meandering polygonal regions as these algo-
rithms do not consider the underlying graph relation into account.
The user preferences to have a single polygon per cluster motivated
the study of creating contiguous map visualizations where poly-
gons are non-overlapping and each cluster corresponds to a single
polygon [21]. Our algorithm also ensures single polygon per group.
Unlike previous algorithms that generate polygons based on node-
link diagrams, our approach constructs node-link diagrams based
on polygon organization. This methodology provides enhanced
control for achieving the desired MVG properties.

There are several techniques for visualizing large graphs, either
through hierarchical layouts or using map-like zoomable inter-
faces [24, 29, 30]. GraphMaps [26, 30] proposes to reduce clutter

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

by distributing nodes to different zoom levels and routing edges
on shared curves. Cornac is another system that uses such lay-
ered techniques to visualize graphs with millions of nodes and
edges [33]. Although these techniques are for creating scalable
node-link diagrams and do not leverage the country-like metaphor,
we draw inspiration from these studies when implementing MVG
for practical applications [19] that involve large graphs.

3 EXISTING VISUALIZATION METHODS
We first discuss GMap [15] and MapSet [7]. Next, we review the
method CBA [21] to create MVG. Finally, we describe our methods
for creating MVG in Section 4.

3.1 GMap
The GMap approach [15] creates a layout of the whole graph created
using force-based layout [12], then creates polygons to enclose the
nodes of a group, and finally, attempts to enclose the nodes of a
group in a polygonal region. However, this method may generate
more polygons per group. Given a graph 𝐺 , GMap first creates a
drawing 𝐷 with an existing layout algorithm such as force-based
layouts [20] which starts with a random placement for the nodes
and iteratively moves them by simulating repulsion and attraction
forces to avoid node overlap and bring adjacent nodes closer to each
other. GMap then generates the countries by partitioning the plane.
Specifically, the region corresponding to a country is computed
based on a Voronoi diagram where the cells for the nodes that
belong to the same cluster are merged. When constructing Voronoi
diagram sites, GMap adds some random points in the unbounded
space of the layout and some points on the bounding box of the
nodes to avoid sharp corners in the polygons and to give the outer
boundary of the drawing a natural-looking shape.

3.2 MapSet
MapSet [7] also starts with a layout of the whole graph but guaran-
tees that the nodes of a group are enclosed inside a single polygon.
Here the polygons may have narrow extensions.
GMap and MapSet both have two major problems. First, since a
force-based layout does not use the input group information, nodes
can move freely and thus enclosing the nodes for each group inside
a polygon often creates narrow and curved polygons. Second, the
area of a polygon does not correspond to the size of the group
it represents. To overcome this problem, CBA [21] proposes the
scale-and-fit approach.

3.3 Scale-And-Fit Approach (SF-CBA)
CBA [21] starts with a force-based layout, and then computes the
average coordinate of the nodes in each cluster. These coordinates
are used to place a square for each cluster where the size of the
square is set proportional to the size of each country. These squares
may create overlaps. Therefore, the next step is to remove the edge
overlaps using existing overlap removal algorithms [6]. Now that
each country has a non-overlapping square-region reserved for
its nodes, the nodes for each group are repositioned inside the
corresponding square by scaling so that it fits the square. Finally,
the polygons are created using the GMap approach and the nodes
are pulled toward their original positions ensuring they remain

Figure 4: A conceptual representation for the steps of Scale
and Fit Approach (SF-CBA). The initial square centers are
marked in cross. The squares are moved to avoid overlap and
the subgraph for each square is scaled to fit within it. Finally,
GMap is used to create countries.

inside the polygon boundaries whereas the polygon also deforms
during this process. This last step is done leveraging the force-based
algorithm ImPrEd [36] that allows for specifying edges that must
not be crossed (i.e., the polygon edges). Furthermore, the edges
can be marked as flexible so that they can expand or contract (by
adding bend points) to accommodate the moving nodes.

CBA attempts to attain low stress (see Section 5.3) by moving the
nodes to the original position and thus deforming the polygon. An
implementation of ImPrEd is not available to replicate the results on
CBA. However, the authors in CBA [21] observed the quantitative
performance of CBA is very similar to GMap, specifically when
the underlying graph is dense. This indicates the polygons do not
have much space to have significant deformation. In general such
polygon deformation does not control the polygon area, and thus
loses one of the key aspects (i.e., polygons are proportitional to
the group sizes) that we want to preserve when building MVG.
Consequently, we compare our methods with GMap and a version
of CBA without the last step that uses ImPrEd. Specifically, we
create a square for each group in a similar way as that of CBA, then
the drawing of each group is scaled to fit its square, and finally, the
polygons are created using the GMap approach. Figure 4 illustrates
the process. Throughout the paper we refer to this method as SF-
CBA.

4 OUR METHODS FOR CREATING MVGS
We propose two methods to create MVG. The first method — KMap
— creates aweighted supergraphwhere each supernode corresponds
to a square of size proportional to its group size and edges corre-
spond to the edges between groups. Then a force-layout is used to
place the squares [18]. Next, the subgraph of each group is drawn
with a force-based layout and fit into its corresponding square. The
final polygons are then created using the GMap approach. The sec-
ond method — polygon constraint layout (PCL) — replaces the scale
and fit approach with a force layout based node distribution inside
each polygon created in KMap, where the nodes are constrained
to be inside their corresponding polygons. Here we design novel
force equations to optimize layout properties, which we consider
to be a significant contribution for embedding graphs within com-
plex polygonal shapes while accounting for their between-polygon
relationships.

4.1 Method 1 (KMap)
Thismethod is currently being used in our KMap system [19], which
combines the following straightforward steps (Figure 5(left)).

Map Visualizations for Graphs with Group Restrictions GI’25, May 26–29, 2025, Kelowna, BC, Canada

Step 1: Given a graph, construct a weighted supergraph or group-
group network𝐺𝑐 , where each supernode represents a group from
the original graph 𝐺 , and each edge represents a connection be-
tween two groups. The supernode weight in𝐺𝑐 reflects the number
of nodes in the corresponding group of 𝐺 , while the edge weight
indicates the strength of the connection between two groups. We
then use a force layout to create an embedding of the rectangles
such that supernodes are drawn as squares with sizes proportional
to their weights and the squares do not overlap.
Step 2: The subgraph induced by a group is drawn separately using
a force layout and scaled to fit within its square.
Step 3: Use the node coordinates, group information and a GMap
function to draw the final boundaries of the polygons.
Properties of Generated MVGs: KMap ensures that each group
is represented by a single polygon, containing only the nodes as-
sociated with that group. Since we create polygons based on the
embedding of a group-group network, the proximity between poly-
gons more accurately reflects the relationships among the groups.
The independent layout of each subgraph captures the subgraph
structures, but compromises the representation of between-group
relationships. Since each subgraph fits into its square, the node dis-
tribution within each polygon may take an artificial square shape.
The final polygons, created by partitioning the plane through GMap,
may deviate from the proportional area property that was initially
realized by the squares. However, each polygon should still approx-
imate the area of its initial square as GMap places random points
in the unbounded space when partitioning the plane to avoid large
deviation (see Section 3.1). In extreme cases, the node distribution
within each polygon will still provide an indication of its group size.
Due to the independent layouts of subgraphs, the between-group
edges may create a large number of edge crossings.

4.2 Method 2 — Polygon Constrained Layouts
(PCL)

Method 2 takes the final polygons generated by KMap and dis-
tributes the nodes of the graph using a force-based layout with the
constraint that they must remain inside their polygons and move
according to the relationships within and outside of the polygons
(Figure 5(right)). The challenge of drawing a graph within a poly-
gon has been studied theoretically in the literature [22], though the
focus has been on planar graphs without accounting for external
influences beyond the polygon.

There are several challenges to tackle. (𝐶1) The nodes in the
group must be distributed properly to fit and utilize the polygon
area. (𝐶2) Each node should position itself based on both the neigh-
bors within the polygon and outside the polygon without crossing
the polygon boundary. (𝐶3) The polygon gives a constrained space
for the nodes to move and hence the edges may turn out to be
small. Therefore, we need force models that would ensure the edge
lengths are not too small.

Our method will modify the force-based layout approach [16].
A typical force-based layout algorithm exerts a central gravity to
keep the nodes close to the center of the display, defines a repulsion
force between every pair of nodes, and an attraction force between
adjacent vertices. To tackle the challenge (𝐶1), wemodify the central
gravitational force and create corner gravity that would stretch the

group to fit its polygon. We also increase the repulsion gradually
so that the convex hull of the group nodes covers at least 70% of
the polygon area. For (𝐶2), we pull nodes towards the center of
the external polygon, where the strength of the pull on a node is
determined by its mass and the proportion of the external to internal
neighbors. For (𝐶3), i.e., to ensure that the edges are sufficiently
large, we control the displacement of the nodes based on aminimum
edge length threshold. We now describe the details.
Gravitational Force. Let (𝑥𝐶 , 𝑦𝐶) be the center 𝐶 of the layout.
The gravitational force ®𝐹𝑔 acting on a node 𝑣 with mass (degree)
𝑚𝑣 positioned at (𝑥𝑣, 𝑦𝑣) is typically defined as

®𝐹𝑔 = 𝑘𝑔 ·𝑚𝑣 ·
®𝑟
∥®𝑟 ∥ , (1)

where 𝑘𝑔 represents a gravitational constant and ®𝑟 = (𝑥𝐶 −𝑥𝑣, 𝑦𝐶 −
𝑦𝑣) is the vector from 𝑣 to the center 𝐶 . We apply a gravitational
force at the center of each polygon. The center is obtained by taking
the average of the coordinates of the corners of the polygon, and
the force acts on all the nodes that lie inside the polygon. Let 𝑣 be
a node inside a polygon 𝑃 . Let 𝐶 (𝑃) be the center of 𝑃 and let 𝑂
be the closest point of intersection between the ray

−−−−→
𝑣𝐶 (𝑃) and the

boundary of 𝑃 . Then we modify the gravitational force as

®𝐹𝑔 = 𝑘𝑔 ·𝑚𝑣 ·
®𝑟

𝑑 (𝑣,𝑂)®𝑟 , (2)

where 𝑑 (𝑣,𝑂) is the Euclidean distance between 𝑣 and𝑂 . This modi-
fication ensures that nodes that are closer to the boundary, i.e., with
small 𝑑 (𝑣,𝑂), are pulled strongly towards the center, whereas the
nodes that are closer to the center are not influenced much by grav-
ity. In cases where a node is initially pushed outside the polygon
due to repulsion, 𝑑 (𝑣,𝑂) remains small and gravity pulls the node
back toward the polygon center. Figure 6(Left) and (middle) illus-
trates the difference between using and not using our gravity force,
highlighting the impact of this force in shaping the visualization
within the polygon.
Corner Gravity. We design the corner gravity so that the node
distribution stretches further toward the polygon’s corners. Let 𝑣
be a node inside polygon 𝑃 and let 𝑐1, . . . , 𝑐𝑘 be the corners of 𝑃 .
This force calculates a gravitational pull on 𝑣 from each corner 𝑐 𝑗 ,
where 1 ≤ 𝑗 ≤ 𝑘 , based on the distance 𝑑 (𝑣, 𝑐 𝑗). This corner gravity
®𝐹𝑔𝑗 exerted by a corner 𝑐 𝑗 is defined as

®𝐹𝑔𝑗 = 𝑘𝑔 ·𝑚𝑖 ·
®𝑟 𝑗

∥ ®𝑟 𝑗 ∥

where𝑚𝑣 is the mass of 𝑣 and ®𝑟 𝑗 = (𝑥𝑐 𝑗 − 𝑥𝑣, 𝑦𝑐 𝑗 − 𝑦𝑣) represents
the vector from 𝑣 to 𝑐 𝑗 . The corner gravity is balanced with the
center gravity and hence nodes do not clump together at a corner.
Figure 6(Right) illustrates the combined effect of our central gravity
and corner gravity, which gives a much better polygon coverage.
External Gravity. The external gravitational force is applied to
the nodes that are connected to external polygons so that they are
pulled toward the center of the external polygon. For a node 𝑣 in a
polygon 𝑃 with a connection to the nodes of an external polygon
𝑄 with center 𝑞, the gravitational force ®𝐹𝑞 is designed by scaling a
typical gravitational force by the ratio of the number of neighbors

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

G with group info. Compute group-group
network Gc Embed Gc

Draw each subgraph
separately and then

scale and fit

Apply GMap
Algorithm

G with group info.

Generate
KMap
polygons

positions

Move nodes
iteratively
using force equations

Initialize
node

KMap PCL

Figure 5: Conceptual representation for the steps of Method 1 (KMap) and Mathod 2 (PCL).

Figure 6: Left: A layout of a grid using the traditional force-
based layout. Middle: A layout of the same grid with our
customized gravitational force. Right: The effect of corner
gravity.

of 𝑣 inside 𝑄 to that of 𝑃 , i.e.,

®𝐹𝑞 =
𝑚′

𝑣

𝑚𝑣
· (𝑘𝑔 ·𝑚𝑣 ·

®𝑟𝑒
∥ ®𝑟𝑒 ∥

) = 𝑘𝑔 ·𝑚′
𝑣 ·

®𝑟𝑒
∥ ®𝑟𝑒 ∥

. (3)

Here ®𝑟𝑒 = (𝑥𝑣 −𝑥𝑞, 𝑦𝑣 −𝑦𝑞) is the vector from 𝑣 to 𝑞, and𝑚𝑣,𝑚
′
𝑣

are the number of neighbors of 𝑣 inside 𝑃 and 𝑞, respectively. Al-
though from the equation it seems that all nodes with external
connections will move towards the boundary of 𝑃 , due to the pres-
ence of central gravity, nodes with larger𝑚𝑣 are less affected by
the external gravity. This is a desired outcome as nodes with larger
𝑚𝑣 are stronger representatives of 𝑃 . Figure 7 illustrates the role of
external gravity using two grids that reside in their polygons but
are connected by a few edges.
Attraction Force. In a traditional force-based algorithm the larger
the repulsion force, the larger is the layout. When the drawing area
is unbounded, this naturally allows edges to stretch based on the
force simulation. However, when the drawing area is limited by a
polygonal region, we need to adjust the attraction force based on the
space available. Let 𝑣 and𝑤 be two adjacent nodes with Δ𝑥 = |𝑣𝑥 −

Figure 7: Left: A layout of two grids, each lying inside its own
polygon. Without external gravity, we see longer edges that
connect nodes between these polygons. Right: A layout of
the same grids but with external gravity, which brings nodes
of one polygon that are adjacent to the other polygon closer
to the polygon boundary.

2

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3637

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89 90 91 92

93

94

9596

97

98

99 100

101

102

103

104
105

106

107

108 109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124125126

127

128

129

130

131

132

133

134

135

136

137 138

139

140

141

142

143

144

145

146

147

148

149

150151

152

153 154 155

156

157

158

159

160

161

162

163

164

165

166

167

168

169170

171

172

173

174

175

176

177

178

179

180

181182

183

184

185186

187

188

189190

191192

193

194

195196

197198

199200

2

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

6768

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131132

133

134

135

136

137

138

139

140

141 142 143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Figure 8: Left: A force layout with traditional attraction force
on a graph containing a large star. Right: Application of the
modified attraction force.

𝑤𝑥 | and Δ𝑦 = |𝑣𝑦 −𝑤𝑦 |. A typical attraction force is proportional
to the distance between 𝑣 and 𝑤 , i.e., ®𝐹𝑎 (𝑣,𝑤) = (Δ𝑥 ,Δ𝑦). We
modify the attraction force as follows. We first compute a minimum
distance threshold 𝛼 which is computed by dividing the total area
of the polygon by the number of nodes. Intuitively, we want the
neighbors of a node to spread at a distance of 𝛼 . Then the new

Map Visualizations for Graphs with Group Restrictions GI’25, May 26–29, 2025, Kelowna, BC, Canada

force is ®𝐹𝑎 (𝑣,𝑤) = (Δ𝑥 𝛼
|𝑣𝑤 | ,Δ𝑦

𝛼
|𝑣𝑤 |), where |𝑣𝑤 | is the distance

between 𝑣 and𝑤 . Figure 8 illustrates the result.
Properties of Generated MVGs: Since PCL utilizes the polygons
generated by KMap, all polygon properties remain consistent with
those of KMap. The nodes of a subgraph are initially positioned
at the center of the polygon and moved gradually until they oc-
cupy a significant portion (𝛼) of the polygon. Unlike KMap, this
process enforces a soft constraint, which may occasionally result in
nodes extending beyond the polygon boundaries. To prevent such
occurrences, users can adjust 𝛼 or increase the gravitational force
constant. The node distribution within each polygon is influenced
by relationships both within and outside the subgraphs, and hence
between-group relationships are better captured. Therefore, PCL is
likely to produce fewer edge crossings than KMap.

5 EXPERIMENTS
We conduct the experiments on real-life datasets. We first describe
the datasets, and then discuss some examples of MVGs created
by the six methods described in Section 3, and finally present a
quantitative evaluation of these methods.

5.1 Dataset Description
We evaluate all our methods using real-world datasets and using
quantitative metrics that measure the layout properties.
Small Graphs. This consists of the graphs musicland, bookland,
university-similarity, tradeland and recipies from [21]. If a group is
not specified in the graph information, then we create the groups
by a community detection algorithm.
DBLPGraphs. For this dataset, we consider the time interval 2020–
2023 and select 13 conference venues. We assign a person 𝑥 to a
venue 𝑦 if the person has the highest number of publications in
𝑦 than any other venues. We take 10 graphs by taking random
samples of node size |𝑉 | ∈ {100, 300, 500, 700, 900}, and thus 50
graphs in total.
University Collaboration Graphs. The University of Arizona
Knowledge Map (KMap) uses various types of research metadata,
such as publications, proposals, grants, patents, and collaborative
projects, to map the university’s internal collaboration networks. In
the KMap dataset, each node represents a researcher, and edges rep-
resent connections with other researchers on campus. This graph
has 226 polygons. We create 10 random sample of this graph by
taking 5𝑖 nodes per polygon, where 1 ≤ 𝑖 ≤ 10. If there is less than
5𝑖 nodes in a polygon, we take all its nodes.

5.2 Qualitative Assessment
Figure 9 illustrates a co-authorship network with 4787 nodes and
11489 edges. For large graphs, GMap and MapSet fail to create
natural-looking country shapes. SF-CBAhas better polygonal shapes
but the polygons are in a sparse arrangement. Furthermore, the
structure within individual groups is unclear. Figure 10 shows that
KMap and PCL both produce readable layouts. KMap does not move
the nodes based on between-group relations and hence we can see
many small but dense subgraphs placed uniformly across each poly-
gon. PCL captures the between-group relations better and the nodes
move closer to the boundary due to their outside connections. This
is also evident from the example shown in Figure 1 even for a graph

that is 10 times larger. Figure 11 shows the MVGs created for the
tradeland graph dataset. All methods produce readable layout for
this small graph with 150 nodes and 134 edges, but group sizes are
better captured by SF-CBA, KMap and PCL. The relations among
groups are better captured by PCL.

5.3 Quantitative Results
Let 𝐺 = (𝑉 , 𝐸) be a graph with node set 𝑉 and edge set 𝐸. Let 𝐻 =

(V, E) be a weighted graph, representing the group information,
i.e., V corresponds to a partition of 𝑉 into groups, and edge set E
represents the relationships between two groups. We design some
quality metrics (M1–M7) to capture the desired qualities of an MVG.

Metric M1 measures the convexity of the polygonal regions. User
studies in prior work [17, 21] have demonstrated a preference for
convexity, but no quantitative metric has been used to capture this
quality.

Metrics M2–M6 are designed to capture the quality of the organi-
zation of the polygons. M2 assesses the extent to which polygonal
regions cover the drawing area. This stems from the natural expec-
tation of efficient area utilization. M3 examines how accurately the
polygon adjacencies reflect the adjacencies in the group-group net-
work. M4 measures how well the polygon areas reflect the weight
of the groups. Both the contiguity of the regions and their area-
proportionality are common constraints employed in cartographic
representations [8, 9, 31], but they have not been quantitatively
assessed in this specific context before.

Metrics M5–M7 are designed to capture the quality of a node-
link layout. M5 (Stress) and M7 (Edge Crossing) are commonly used
metrics in the literature. M5 measures the ratio of graph distance to
display distance between pairwise nodes, while M7 counts the num-
ber of pairs of edges that create a crossing. M6 measures whether
nodes are distributed in the polygon, which relates to readability of
the layout and efficient utilization of the available drawing space.

In the following, we provide the details.

5.3.1 Polygon Convexity (𝑀1). In an MVG, each node 𝑣 ∈ 𝑉 is
contained within a polygon 𝑃 ∈ V that represents the group of 𝑣 .
We prefer the polygon to be similar to a convex polygon but with
an irregular boundary. Let 𝑐 (𝑃) be the number of corner-to-corner
segments that are contained entirely in the polygon 𝑃 . We measure
the convexity of the polygon as follows.

𝑀1 =
1
|P |

∑︁
𝑃∈P

(𝑐 (𝑃)/|𝑃 |2) (4)

where P is the set of polygons representingV . A larger value for
𝑀1 reflects better polygon aesthetics.

5.3.2 Drawing Area Coverage (𝑀2). We prefer the drawing area to
be covered by the polygons. Hence we measure the convex hull of
the union of the polygons to the sum of the area of the polygons.

𝑀2 =
𝑎𝑟𝑒𝑎(𝐶𝐻 (⋃𝑃∈P))∑

𝑃∈P 𝑎𝑟𝑒𝑎(𝑃) (5)

where 𝐶𝐻 (𝑋) is the convex hull of polygon 𝑃 . A larger value for
𝑀2 indicates better coverage.

5.3.3 Polygon Neighborhood Preservation (𝑀3). The proximity of
the polygons should be reflective of the graph 𝐻 . In this metric, we

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

Figure 9: MVGs for a co-authorship network with about 11,000 edges: GMap, MapSet, and SF-CBA (left to right).

Figure 10: (left) KMap for the co-authorship network of Fig. 9 with a zoomed in view that shows uniform positions of the nodes.
(right) PCL of the same network with a zoomed in view that repositions nodes to reveal structural information.

Figure 11: MVGs created (from left) by GMap, MapSet, SF-CBA, KMap, and PCL for the tradeland graph dataset.

strictly measure the adjacencies that have been correctly realized.
Let 𝑎𝑑 𝑗 (𝑢, 𝑣) be an indicator function that is 1 if the polygons of
two vertices 𝑢 and 𝑣 of 𝐻 are adjacent (i.e., touch or share part of
their boundaries). Then the metric is as follows.

𝑀3 =
1

|𝐸 (𝐻) |
∑︁

(𝑢,𝑣) ∈𝐸 (𝐻)
J(𝑢, 𝑣) (6)

5.3.4 Polygon Area Realization (𝑀4). We prefer the area of each
polygon to be proportional to the weight of the group (e.g., number

of vertices) that it represents. We first measure the absolute differ-
ence 𝑟 (𝑃) between the relative weight of a group and relative area
of the corresponding polygon.

𝑟 (𝑃) = | 𝑤 (𝑣)∑
𝑣∈𝑉 (𝐻) 𝑤 (𝑣) −

𝑎𝑟𝑒𝑎 (𝑃)∑
𝑃 ∈P𝑎𝑟𝑒𝑎 (𝑃)

|

where 𝑃 is the polygon corresponding to 𝑣 . We then subtract the
mean area error from 1 to measure the polygon area realization.

𝑀4 = 1 − 1
|P |

∑︁
𝑃∈P

𝑟 (𝑃) (7)

Map Visualizations for Graphs with Group Restrictions GI’25, May 26–29, 2025, Kelowna, BC, Canada

A larger value for𝑀4 indicates a lower area error.

5.3.5 Stress (𝑀5). The stress of a layout is a classic metric that
compares the graph distance and display distance [27]. We use
normalized stress, which has also been used in[21].

stress =
1
𝑚

∑︁
𝑢,𝑣∈𝑉

𝑤 (𝑢, 𝑣)
(

| |𝑝𝑢 − 𝑝𝑣 | | − 𝑑𝑢𝑣

max{| |𝑝𝑢 − 𝑝𝑣 | |, 𝑑𝑢𝑣}

)2
Here 𝑚 = 1

2
∑
𝑢𝑣 𝑤 (𝑢, 𝑣) and 𝑤 (𝑢, 𝑣) is set to 𝑑𝑢𝑣 . A layout is

considered to be good if it has low stress. We set 𝑀5 = 1 − 𝑠𝑡𝑟𝑒𝑠𝑠

so that a larger value indicates higher quality.

5.3.6 Polygon Area Coverage (𝑀6). We want the polygon area to
be utilized by the nodes inside the polygon. Hence we first find
the error by subtracting the area of the convex hull of the vertices
inside a polygon from the convex hull of the polygon. We then
subtract the mean error from 1 to define𝑀6.

𝑀6 = 1 − 1
|P |

∑︁
𝑃∈P

𝑎𝑟𝑒𝑎(𝐶𝐻 (𝑃)) − 𝑎𝑟𝑒𝑎(𝑓 (𝑃))
𝑎𝑟𝑒𝑎(𝐶𝐻 (𝑃)) (8)

Here 𝑓 (𝑃) is the area of the convex hull of the nodes in 𝑃 .

5.3.7 Edge Crossing (𝑀7). This metric counts the number of pairs
of edges that properly cross in the layout. We normalize the metric
by dividing the number of crossings by the maximum possible
crossings, i.e., the number of edges squared. We subtract the value
from 1 so that a higher value indicates fewer crossings.

𝑀7 = 1 − 1
|𝐸 |2

∑︁
𝑒,𝑒′∈𝐸

𝐼 (𝑒, 𝑒′), (9)

where 𝐼 (𝑒, 𝑒′) is 1 if 𝑒 and 𝑒′ properly intersect, and 0 otherwise.

5.4 Results
Table 1 shows the performance of all methods for the Small Graphs
dataset, where the metrics are designed such that larger values are
better. Although GMap and MapSet do not produce the visualiza-
tion that we prefer for an MVG, e.g., GMap contains fragmented
polygons and MapSet contains polygons with narrow extensions,
we also report their performances. They can be seen as extreme
cases and by comparing them with the rest (SF-CBA, KMap, PCL)
we can obtain an idea of how much the performances deviate when
we incorporate group information explicitly when constructing a
graph layout. GMap and MapSet perform very well in M2 (Drawing
Area Coverage), M3 (Polygon Neighborhood Preservation), and
M5 (Stress). While M2, M3 are likely due to their compact polygon
packing, M5 is obvious as the whole graph layout already mini-
mizes Stress. When comparing these metrics with the rest (SF-CBA,
KMap, PCL), the performance degradation appears small (often
within 10%).

When comparing SF-CBA, KMap, and PCL, we see KMap and
PCL to win inM2 (Drawing Area Coverage), M3 (Polygon Neighbor-
hood Preservation), M4 (Polygon Area Realization), M6 (Polygon
Area Coverage), and M7 (Edge Crossing). This is expected for M2,
M3, M4 and M6 as both KMap and PCL produce more compact
layout than SF-CBA. KMap (and hence PCL) had high values in
M1 (Polygon Convexity), which is consistent with our understand-
ing as we have seen others to either have fragmented or irregular
polygons. PCL had higher M7, i.e., lower edge crossing, than KMap

which is due to the between-group edges that KMap does not care-
fully handle. Surprizingly, KMap had higher M5, i.e., lower stress,
which we believe due to the graphs being small and not having
too many between-group edges to produce noticeable differences
and we will see the differences later when analyzing DBLP dataset.
Table 2 shows the performances on the University Collaboration
dataset. We see the same trends as in Table 1 except for M3 (Polygon
Neighborhood Preservation) and M5 (Stress) when SF-CBA and
PCL wins over KMap, respectively. Note that this dataset has over
200 polygons, which may generate favorable scenarios for M3 and
M5 for those methods.

Figure 12 illustrates the performances onDBLP dataset. For many
metrics, we see high variability in the performances. However, for
M1 (Polygon Convexity), KMap (and hence PCL) are consistent
winners, and forM7 (Edge Crossing), PCL appears to be consistently
winning over all others. We performed a Wilcoxon paired test
to determine whether there are significant differences between
the means of various methods. For M1 (Polygon Convexity), we
observed significant difference in all pairs. KMap (and hence PCL)
had significantly higher mean than others (𝑝 < 0.01). For M7 (Edge
Crossing), we observed PCL to have a significantly higher mean
(𝑝 < 0.01) when compared with each other method. We did not find
any statistical difference for any other metric except for M1 and M7.
Although this is unfortunate, it shows the challenge of designing
metrics that would properly capture the MVG properties.

5.5 Summary
For small graphs with a few hundred edges, GMap, MapSet, and
SF-CBA are viable options for creating MVGs, as their outputs may
be readable. However, GMap often produces fragmented polygons,
MapSet tends to generate meandering polygon shapes, and SF-CBA
creates complex polygonal structures similar to GMap. For large
graphs with several thousand edges, our methods, KMap and PCL,
are currently the only approaches capable of producing readable
layouts. KMap is significantly faster than PCL, as it involves fewer
force equations to simulate, whereas PCL requires more time to
converge. Despite this, PCL excels at revealing between-group re-
lationships with fewer edge crossings while preserving polygon
convexity. Thus, PCL better achieves the desired properties of an
MVG compared to other methods. However, in applications where
visualizing between-polygon edges is not a priority, KMap offers a
more organized visualization within individual polygons than PCL.

6 CONCLUSION
We examined the problem of creating map-like visualizations for
graphs with group restrictions. The experimental results show that
both the graph structure and between-group relationships are bet-
ter captured in the visualizations created by our methods compared
to the ones available in the literature. The source code of our imple-
mentation is available here [28]. Although the methods we examine
produce layouts that visually look very different, the quantitative
metrics are not much distinctive. Designing better quantitative
metrics would be a natural direction for research.

We have deployed a system [19] to be used within the University
of Arizona (Figure 3) that visualizes the faculty collaboration graph
as an MVG where the polygons correspond to the departments.

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

GMap MapSet SF-CBA KMap PCL
Mean Std Mean Std Mean Std Mean Std Mean Std

M1 (Polygon Convexity) 0.29 0.01 0.19 0.07 0.29 0.03 0.30 0.01 0.30 0.01
M2 (Drawing Area Coverage) 0.72 0.11 0.88 0.04 0.68 0.04 0.75 0.05 0.75 0.05
M3 (Polygon Neighborhood Preservation) 0.70 0.10 0.70 0.10 0.63 0.07 0.65 0.16 0.65 0.16
M4 (Polygon Area Realization) 0.92 0.02 0.93 0.02 0.94 0.02 0.98 0.00 0.98 0.00
M5 (Stress) 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00
M6 (Polygon Area Coverage) 0.21 0.08 0.21 0.08 0.22 0.08 0.18 0.07 0.15 0.05
M7 (Edge Crossing) 0.92 0.08 0.92 0.08 0.92 0.09 0.96 0.07 0.96 0.07

Table 1: Performances for all metrics on the Small Graphs dataset. A larger value indicates better performance. The highest
values in each row among the three methods (SF-CBA, KMap, PCL) are shown in bold.

GMap MapSet SF-CBA KMap PCL
Mean Std Mean Std Mean Std Mean Std Mean Std

M1 (Polygon Convexity) 0.09 0.06 0.20 0.07 0.19 0.09 0.33 0.02 0.33 0.02
M2 (Drawing Area Coverage) 0.71 0.05 0.70 0.06 0.72 0.05 0.73 0.08 0.73 0.08
M3 (Polygon Neighborhood Preservation) 0.68 0.06 0.68 0.07 0.72 0.05 0.70 0.05 0.71 0.06
M4 (Polygon Area Realization) 0.92 0.01 0.93 0.02 0.91 0.01 0.92 0.01 0.92 0.01
M5 (Stress) 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00
M6 (Polygon Area Coverage) 0.20 0.00 0.20 0.00 0.20 0.01 0.20 0.00 0.21 0.00
M7 (Edge Crossing) 0.92 0.04 0.91 0.04 0.91 0.05 0.92 0.02 0.96 0.02

Table 2: Performances for all metrics on University Collaboration dataset. A larger value indicates better performance. The
highest values in each row among the three methods (SF-CBA, KMap, PCL) are shown in bold.

Figure 12: The mean and standard deviation of all metrics for all methods over the DBLP co-authorship graphs dataset.

Map Visualizations for Graphs with Group Restrictions GI’25, May 26–29, 2025, Kelowna, BC, Canada

We have had several meetings with such potential end-users to
understand the pros and cons of using MVG. We have had several
meetings with potential end-users to understand the pros and cons
of using MVG. It appears that such an MVG can act as an insti-
tutional knowledge map, which is helpful to the administrators
and research facilitators. Although MVG has its promise, there are
also challenges associated with interpreting the map. When work-
ing with end-users, we often get some natural questions: (a) Why
does a department appear at a central location of the map whereas
some others appear in the periphery? (b) Why does department
X have a smaller or larger area than department Y? (c) Does the
relative position of the departments correspond to their physical
location on campus? (d) Why are some polygons disconnected even
when there are relations among the corresponding groups? Most
of these questions are resolved when the users are explained the
map metaphor for the graph, the properties of a layout, and the sys-
tem’s attempt to automatically create country-like regions for the
departments under conflicting optimization goals. However, how
this eventually influences the user perception and interpretation is
yet to be explored. We envision full-fledged user studies on such
real-life applications of MVG in subsequent papers.

We used SF-CBA, a coarse version of CBA [21], in our evaluation
(due to the unavailability of a replication code for CBA). SF-CBA
misses the part that brings the nodes towards their original position
in the whole graph layout and moves the polygons closer together.
One could attempt to revive CBA for a better evaluation. However,
we believe due to the reliance of CBA on a whole graph layout, it
would not be able to reveal individual group structure. It would be
intriguing to create a variant of CBA that does not rely much on
the whole graph layout but focus more on group information to
construct better MVGs.

7 ACKNOWLEDGMENTS
The work of D. Mondal is supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and that
of S. Kobourov by the National Science Foundation (NSF CCF-
2212130).

REFERENCES
[1] Basak Alper, Nathalie Riche, Gonzalo Ramos, and Mary Czerwinski. 2011. De-

sign study of linesets, a novel set visualization technique. IEEE transactions on
visualization and computer graphics 17, 12 (2011), 2259–2267.

[2] Kevin W Boyack, Richard Klavans, and Katy Börner. 2005. Mapping the backbone
of science. Scientometrics 64, 3 (2005), 351–374.

[3] Stuart K Card, Jock Mackinlay, and Ben Shneiderman. 1999. Readings in informa-
tion visualization: using vision to think. Morgan Kaufmann.

[4] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. 2009. Bubble sets:
Revealing set relations with isocontours over existing visualizations. IEEE trans-
actions on visualization and computer graphics 15, 6 (2009), 1009–1016.

[5] DBLP. 2024. https://dblp.org/xml/release/. [Online; accessed 19-July-2024].
[6] TimDwyer, KimMarriott, and Peter J Stuckey. 2006. Fast node overlap removal. In

Proceedings of the 13th International Symposium on Graph Drawing (GD). Springer,
153–164.

[7] Alon Efrat, Yifan Hu, Stephen G. Kobourov, and Sergey Pupyrev. 2014. MapSets:
Visualizing Embedded and Clustered Graphs. In Graph Drawing - 22nd Interna-
tional Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 8871), Christian A. Duncan
and Antonios Symvonis (Eds.). Springer, 452–463.

[8] Jared Albert Espenant and Debajyoti Mondal. 2024. StreamTable: An Area Pro-
portional Visualization for Tables with Flowing Streams. Computing in Geometry
and Topology 3, 1 (2024), 8–1.

[9] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G Kobourov, Debajy-
oti Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. 2018. Table cartogram.

Computational Geometry 68 (2018), 174–185.
[10] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5

(2010), 75–174.
[11] Daniel Fried and Stephen G Kobourov. 2014. Maps of computer science. In 2014

IEEE Pacific Visualization Symposium. IEEE, 113–120.
[12] Emden R Gansner, Yehuda Koren, and Stephen North. 2005. Graph drawing by

stress majorization. In Proceedings of the 12th International Symposium on Graph
Drawing (GD). Springer, 239–250.

[13] Marius Hogräfer, Magnus Heitzler, and Hans-Jörg Schulz. 2020. The state of the
art in map-like visualization. In Computer Graphics Forum, Vol. 39. Wiley Online
Library, 647–674.

[14] Yifan Hu, Emden R Gansner, and Stephen Kobourov. 2010. Visualizing graphs and
clusters as maps. IEEE Computer Graphics and Applications 30, 6 (2010), 54–66.

[15] Yifan Hu, Emden R. Gansner, and Stephen G. Kobourov. 2010. Visualizing Graphs
and Clusters as Maps. IEEE Computer Graphics and Applications 30, 6 (2010),
54–66.

[16] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.
2014. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PloS one 9, 6 (2014), e98679.

[17] Radu Jianu, Adrian Rusu, Yifan Hu, and Douglas Taggart. 2014. How to display
group information on node-link diagrams: An evaluation. IEEE Transactions on
Visualization and Computer Graphics 20, 11 (2014), 1530–1541.

[18] Tomihisa Kamada and Satoru Kawai. 1989. An algorithm for drawing general
undirected graphs. Information processing letters 31, 1 (1989), 7–15.

[19] KMap. 2024. Inistituional Knowledge Map. https://kmap.arizona.edu/map. Ac-
cessed: 2024-11-12.

[20] Stephen G. Kobourov. 2007. Force-Directed Drawing Algorithms. Chapman &
Hall/CRC.

[21] Stephen G. Kobourov, Sergey Pupyrev, and Paolo Simonetto. 2014. Visualizing
Graphs as Maps with Contiguous Regions. In 16th Eurographics Conference on
Visualization, EuroVis 2014 - Short Papers, Swansea, UK, June 9-13, 2014, Niklas
Elmqvist, Mario Hlawitschka, and Jessie Kennedy (Eds.). Eurographics Associa-
tion.

[22] Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. 2022. The complexity
of drawing a graph in a polygonal region. Journal of Graph Algorithms and
Applications 26, 4 (2022), 421–446.

[23] Wouter Meulemans, Nathalie Henry Riche, Bettina Speckmann, Basak Alper,
and Tim Dwyer. 2013. Kelpfusion: A hybrid set visualization technique. IEEE
transactions on visualization and computer graphics 19, 11 (2013), 1846–1858.

[24] Jacob Miller, Stephen Kobourov, and Vahan Huroyan. 2022. Browser-based hyper-
bolic visualization of graphs. In 2022 IEEE 15th Pacific Visualization Symposium
(PacificVis). IEEE, 71–80.

[25] Debajyoti Mondal, Manishankar Mondal, Chanchal K Roy, Kevin A Schneider,
Yukun Li, and Shisong Wang. 2019. Clone-world: A visual analytic system for
large scale software clones. Visual Informatics 3, 1 (2019), 18–26.

[26] Debajyoti Mondal and Lev Nachmanson. 2018. A New Approach to GraphMaps,
a System Browsing Large Graphs as Interactive Maps. In Proc. of the 13th Inter-
national Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP-IVAPP). 108–119.

[27] Gavin J. Mooney, Helen C. Purchase, Michael Wybrow, Stephen G. Kobourov,
and Jacob Miller. 2024. The Perception of Stress in Graph Drawings. In 32nd
International Symposium on Graph Drawing and Network Visualization (GD 2024)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 320), Stefan Felsner
and Karsten Klein (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 21:1–21:17. https://doi.org/10.4230/LIPIcs.GD.2024.21

[28] Ehsan Moradi. 2024. https://github.com/vga-usask/Map-Visualizations-For-
Graphs.

[29] Ehsan Moradi and Debajyoti Mondal. 2023. BigGraphVis: Visualizing Com-
munities in Big Graphs Leveraging GPU-Accelerated Streaming Algorithms. In
Proceedings of the 18th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP), Christophe Hurter,
Helen C. Purchase, and Kadi Bouatouch (Eds.). SCITEPRESS, 195–202.

[30] Lev Nachmanson, Roman Prutkin, Bongshin Lee, Nathalie Henry Riche, Alexan-
der E Holroyd, and Xiaoji Chen. 2015. Graphmaps: Browsing large graphs as
interactive maps. In Proceedings of the 23rd International Symposium on Graph
Drawing and Network Visualization (GD). Springer, 3–15.

[31] Sabrina Nusrat, Md. Jawaherul Alam, and Stephen G. Kobourov. 2018. Evaluating
Cartogram Effectiveness. IEEE Trans. Vis. Comput. Graph. 24, 2 (2018), 1077–1090.
https://doi.org/10.1109/TVCG.2016.2642109

[32] Yosuke Onoue and Koji Koyamada. 2017. Optimal tree reordering for group-
in-a-box graph layouts. In SIGGRAPH Asia 2017 Symposium on Visualization.
1–9.

[33] Alexandre Perrot and David Auber. 2020. Cornac: Tackling Huge Graph Visual-
ization with Big Data Infrastructure. IEEE Transactions on Big Data 6, 1 (2020),
80–92.

[34] Peter Rodgers, Leishi Zhang, and Andrew Fish. 2008. General Euler diagram
generation. In Diagrammatic Representation and Inference: 5th International Con-
ference, Diagrams 2008, Herrsching, Germany, September 19-21, 2008. Proceedings

https://dblp.org/xml/release/
https://kmap.arizona.edu/map
https://doi.org/10.4230/LIPIcs.GD.2024.21
https://github.com/vga-usask/Map-Visualizations-For-Graphs
https://github.com/vga-usask/Map-Visualizations-For-Graphs
https://doi.org/10.1109/TVCG.2016.2642109

GI’25, May 26–29, 2025, Kelowna, BC, Canada Hossain, Moradi, Mondal, and Kobourov

5. Springer, 13–27.
[35] EduardaMendes Rodrigues, NatasaMilic-Frayling,Marc Smith, Ben Shneiderman,

and Derek Hansen. 2011. Group-in-a-box layout for multi-faceted analysis of
communities. In 2011 IEEE Third International Conference on Privacy, Security,
Risk and Trust and 2011 IEEE Third International Conference on Social Computing.
IEEE, 354–361.

[36] Paolo Simonetto, Daniel Archambault, David Auber, and Romain Bourqui. 2011.
ImPrEd: An Improved Force-Directed Algorithm that Prevents Nodes from Cross-
ing Edges. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1071–1080.

[37] André Skupin. 2002. A cartographic approach to visualizing conference abstracts.
IEEE Computer Graphics and Applications 22, 1 (2002), 50–58.

[38] Steven van den Broek, Wouter Meulemans, and Bettina Speckmann. 2024. Simple-
Sets: Capturing Categorical Point Patterns with Simple Shapes. IEEE Transactions

on Visualization and Computer Graphics (2024).
[39] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. 2017. Visualizing group

structures in graphs: A survey. In Computer Graphics Forum, Vol. 36. Wiley Online
Library, 201–225.

[40] James AWise, James J Thomas, Kelly Pennock, David Lantrip, Marc Pottier, Anne
Schur, and Vern Crow. 1995. Visualizing the non-visual: Spatial analysis and
interaction with information from text documents. In Proceedings of Visualization
1995 Conference. IEEE, 51–58.

[41] Hsiang-Yun Wu, Martin Nöllenburg, and Ivan Viola. 2020. Multi-level area
balancing of clustered graphs. IEEE Transactions on Visualization and Computer
Graphics 28, 7 (2020), 2682–2696.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Existing Visualization Methods
	3.1 GMap
	3.2 MapSet
	3.3 Scale-And-Fit Approach (SF-CBA)

	4 Our Methods for Creating MVGs
	4.1 Method 1 (KMap)
	4.2 Method 2 — Polygon Constrained Layouts (PCL)

	5 Experiments
	5.1 Dataset Description
	5.2 Qualitative Assessment
	5.3 Quantitative Results
	5.4 Results
	5.5 Summary

	6 Conclusion
	7 Acknowledgments
	References

