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Figure 1: (a) A node-link representation of a Facebook network, and (b–e) its different levels of summarization. (b) Contours
showing node distribution. (c) Clusters are colored based on size. (d) The sources of the outgoing links from a cluster are
collapsed to a single point. (e) Each cluster is collapsed to a disk with a radius corresponding to the cluster size.

ABSTRACT
Node-link visualizations are commonly used to gain insights into
large network data where the entities of the networks (nodes)
are represented as points, and relationships (edges) are drawn as
straight line segments or links. With growing access to network
data and visualization tools, such visualizations are increasingly ap-
pearing in infographics and documents intended for non-specialist
readers. This necessitates understanding how these visualizations
are perceived by end users who are not necessarily domain experts,
and determining how visual summaries can be provided to ensure
consistent interpretation of the displayed information. In this paper,
we investigate the interpretability of node-link visualizations of
large graphs: we designed summary representations that could be
provided alongside the visualization to improve interpretation, and
we evaluated these designs through two user studies. Our results
indicate that the information perceived from traditional node-link
representations can vary substantially, especially when the nodes
are uniformly distributed rather than forming clusters or tangled
structures. We observed that visual summaries can enhance the
readability of these visualizations – summaries that reduce clutter
were preferred by participants and were more accurate for typical
interpretation tasks.
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1 INTRODUCTION
Network data generated from real-world contexts, such as social
media interactions, text corpora, co-authorship relations, or code
dependencies in software databases, are typically large, contain-
ing millions of nodes and edges. Node-link visualizations of such
networks are widely used to obtain a high-level understanding
of the network structure [14]. One crucial piece of information
is the identification of clusters, which are groups of nodes that
have more connections within the group than with the rest of the
graph. In a node-link visualization, clusters are revealed as blobs or
tangled structures (sometimes called hairballs). For example, Fig-
ure 1(a) illustrates a Facebook network with about 4,000 nodes and
88,000 links, where each node represents an individual and each
link represents a friendship relation. We can see several clusters in
the visualization, which are not necessarily based on ground-truth
communities but are rather formed based on the connectivity infor-
mation in the graph. We can also see links connecting two different
clusters, i.e., when some people from one cluster have friendship
relations with a different cluster.
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The increasing availability of visualization tools [1, 8, 35, 38] and
their effectiveness in showcasing information have paved the way
for these visualizations to be used in everyday settings. Examples
include analyzing social media posts to find clusters of supporters
of various parties in an election, examining library dependencies in
software repositories, or identifying research groups by visualizing
co-authorship graphs across various disciplines. Interpreting the
structure of a large network from its visualization is challenging,
even for simple tasks like estimating relative cluster sizes. Although
the clusters are revealed as tangled structures, their relative sizes
(i.e., number of nodes and links) are difficult to estimate as the area
they occupy in the display may not always correlate with their
actual size. Many specialized visual abstractions have appeared in
the literature to improve the scientific understanding of large net-
works [9, 19, 20, 40], but as node-link visualizations become more
prevalent, it is crucial to understand how general users, especially
those without domain expertise, perceive these structures.

A widely used technique for creating network layout is to use
force-based visualization algorithms (FA) [17] that simulate attrac-
tion and repulsion forces among the nodes. Prior work [12, 18, 33]
evaluated the readability of FA layouts for networks with a few
hundred nodes and for fine-grained tasks such as estimating dis-
tance between pairwise nodes and finding the neighbors of a given
node. This approach does not apply to large networks where such
detailed information is not visible, and thus leaves a significant gap
in the literature on the readability of these layouts. Furthermore,
force-based algorithms may not produce user-centric layouts [5] as
they can disproportionately emphasize certain clusters over others
due to variations in their network structures.
Our Contribution. To address the limitations of interpreting FA
layouts for large networks, we propose providing an intuitive visual
summary alongside an FA visualization. In this paper, we designed
several kinds of summaries by detecting and highlighting clus-
ters (Figure 1(b)–(e)) that can be algorithmically computed from
a node-link visualization. We then evaluate these visualizations
using realistic interpretation tasks on real-life networks through
two user studies. Since we identify clusters from the node positions
algorithmically, we first want to verify whether the clusters we
identify are of good quality and stable in an FA visualization.
RQ1. Can we find good quality clusters that align with the tangled
structures revealed in an FA visualization?

Once we establish the process for identifying high-quality clus-
ters, we design summary representations with increasingly coarse
granularity by encoding cluster properties into different visual cues.
In the first user study, we investigate the extent to which partic-
ipants agree on the identification of clusters in FA visualizations
and whether the automatically-detected clusters align with those
identified by participants.
RQ2. How well do participants agree on their identified clusters? Do
the automatically detected clusters align with those determined by
the participants?

We also investigate the effectiveness of five designs (the base-
line visualization and the four visual summaries) for completing
common visual interpretation tasks such as ranking the top three
clusters based on the number of nodes or links and finding pairs of
clusters that have many between-cluster links.

RQ3. How can visual cues be utilized to create summaries that en-
hance the interpretation of cluster structures in FA visualizations?
How do different levels of summarization aid in interpreting cluster
sizes and between-cluster relationships?

We conducted two user studies. Study 1 investigated task perfor-
mance and user preferences for five different visualization designs.
The tasks were designed to examine users’ agreement on cluster
identification in baseline node-link visualization, cluster size es-
timation and understanding relations between pairwise clusters,
both with and without the aid of visualization summaries. We used
uniform percentile-based thresholds to map cluster sizes to colors.
The first study showed that participants’ answers on identifying
large clusters can vary substantially – and even more so when the
tangled structures are not clearly visible in the visualization. If the
tangled structures are clearly visible, then the automatically de-
tected clusters often capture the clusters the participants detected.
For cases where clusters are difficult to identify, automatically de-
tected clusters can provide good recommendations. The study also
showed that adding summaries can significantly improve accuracy
on interpretation tasks. The analysis of the first study’s results
suggested several design improvements for the visualizations – and
in the second user study, we used the refined designs.

Since the summaries were designed by identifying high-quality
clusters, we noticed a skewed distribution for the cluster sizes.
Therefore, in Study 2 we used geometric-series based percentiles to
map cluster sizes to colors. Since the baseline node-link visualiza-
tion remained unchanged, Study 2 omitted the cluster identification
task. However, Study 2 included the remaining tasks of Study 1
and added more challenging tasks such as identifying clusters that
have relationships with other clusters in the network and identi-
fying clusters that have many sub-clusters within them. Study 2
further confirmed the effectiveness of summary representations for
ranking and cluster-pair search tasks, while also revealing dataset-
dependent performance variations, and providing insights into the
value of improved color binning. Across both studies, participants
favored coarser-grained visual summaries for ease of interpretation.

2 RELATEDWORK
In this section, we review the literature on the design and user eval-
uation of node-link visualizations and discuss recent developments
in the context of large networks.

Force-directed layouts [17] are widely used for creating node-
link visualizations due to their effectiveness in revealing clusters
based on network connectivity. However, force-based visualizations
disproportionately emphasize certain clusters, which means that
they are not inherently user-centric [5]. Eye-tracking studies have
found that force-directed visualizations outperform many other
network visualization styles such as orthogonal and layered lay-
outs for various analytical tasks [15, 31]. However, fine-grained
tasks such as estimating shortest paths or assessing node degrees
are difficult to perform in dense networks with high connectivity,
as these often lead to tangled structures that obscure structural
relationships [16]. Hence, it is more common to consider overview
tasks for large networks as specified in the task taxonomy for the
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evaluation of network layouts [21]. Given the scarcity of litera-
ture evaluating overview tasks in force-directed layouts of large
networks, we specifically focus on the context of large networks.

To analyze large networks, various network summarization tech-
niques, and abstractions have been proposed [11, 32]. For example,
edge bundling attempts to route the links along a common curve
to reduce clutter in the network. A technique called Graph Thumb-
nails [40] creates icon-like designs of the high-level structure of
network data. While the former primarily focuses on revealing a
general connectivity skeleton of the network, the latter investigates
how many large graphs can be compared at a glance by comparing
thumbnails. Other techniques include graph sampling [39], edge-
bundled networks that can be explored as geographic maps [26, 28],
and space partitioning to separate clusters that can later be explored
interactively [39]. All these techniques deviate significantly from
traditional node-link visualizations, and as our primary focus is
on node-link layouts, we do not incorporate them when designing
visualization summaries.

A rich body of past research has evaluated node-link visualiza-
tions with fine-grained tasks [12, 18, 29, 33], but for small graphs
and without focusing on summarization. Recent research has in-
creased the scalability of computing node-link visualizations [4],
and many tools are now available that can quickly create node-link
visualization for networks with millions of edges [1, 4, 35]. The
availability of such tools has enabled researchers and practitioners
from different domains to generate large network visualizations
for big datasets and make them accessible to general users. Hence,
we focus on designing visual summaries that may be provided
alongside the traditional node-link visualization to overcome inter-
pretability challenges for seemingly simple tasks such as assessing
cluster sizes and relationships.

3 VISUAL ENCODING
In this section, we describe the. details of the baseline node-link visu-
alization (created by FA [17]) and the four visualization summaries
(Figure 1) that progressively summarize the node-link visualization.
In the summaries, we worked with the top 50 high-quality clusters.
To ensure that the clusters are of high quality and agree with the
tangled structures of the node-link visualization, we detect clusters
automatically as described below.

3.1 Finding Top 50 Clusters and RQ1
Detecting FA clusters: We first detect clusters from the FA visualiza-
tion using a hierarchical density-based clustering algorithm called
HDBSCAN [25]. HDBSCAN grows clusters by iteratively collecting
their nearby points and thus can isolate regions of high point den-
sity as clusters. However, if we directly use the node positions of the
FA visualization as the input to HDBSCAN, the tangled structures
may not always be detected as clusters. This is because the edges
play a crucial role in causing visual tangles. Therefore, we placed
dummy nodes on short edges (those in the lowest 10th percentile
of all edge lengths) and input the node positions, as well as these
dummy nodes to HDBSCAN (Figure 2).

Detecting Modularity-Based clusters: A modularity-based cluster-
ing algorithm (the Louvain method [3]) partitions a network into
clusters so that a metric called modularity is maximized. Modularity

Figure 2: Interpolated dummy nodes added to short edges
before applying HDBSCAN.

is a widely used metric in network science to assess the presence of
cluster structures in a network by comparing the network with a
random network of the same number of nodes and links. We used
the Louvain method to find clusters in the network; however, since
the Louvain method does not consider the FA layout, the nodes of a
cluster may be distributed into many tangled structures (Figure 3).

Figure 3: (left) Modularity-based clusters in distinct colors.
(right) FA clusters in distinct polygons. Edges are omitted.

Filtering Top 50 clusters: Let 𝑐 be an FA cluster which may contain
nodes from many modularity-based clusters. We assign 𝑐 the rank
𝑓 (𝑐), which is the maximum number of nodes in 𝑐 that belong to
the same modularity-based cluster. Finally, we select the top 50
high-rank FA clusters to design our visualization summaries.

Variants of HDBSCAN have previously been used in the litera-
ture to detect clusters from network visualizations [24]. However,
this may produce many clusters, and we needed a convincing ap-
proach to select clusters of good quality. Filtering the top 50 based
on the rank we assigned using modularity-based clustering pro-
vides us with some justification to retain good-quality clusters. One
can observe from Figure 3 that large modularity-based clusters
roughly align with FA clusters, which provides evidence towards
RQ1 that it is possible to find clusters that align with the tangled
structures visible in an FA visualization. We next use these top 50
detected clusters for our visualization designs.
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3.2 Node-Link Visualization and Summaries
We used five designs for the study: the traditional node-link visual-
ization as a baseline, and four visualization summaries. A visualiza-
tion summary is presented as a pair, with the baseline visualization
shown at left and the summary representation shown at right. We
chose to show the two representations together because (a) we
expect a summary to augment understanding but not replace the
baseline, and (b) interactive dashboards often make more than one
alternative version available to users.
Vis. 1 (Baseline) Node positions in the baseline visualization are
obtained using the traditional FA algorithm (Figure 1(a)). Nodes are
drawn as small black circles, and the connections between them
are drawn as grey lines. We rendered the nodes after the links so
that they remain visible, and we reduced the opacity of the links so
that clusters become visible.
Vis. 2 — Summarize Node Distribution (Contour) This design
summarizes the distribution of the nodes using contour lines and a
color gradient (Figure 1(b)). We used a contour overlay because this
technique is often used in large network visualizations [42]. The
background of the design is the baseline node-link visualization.
We applied the Kernel Density Estimation (KDE) [34] to define the
node density at each point of the network, and then overlaid a
contour plot where all points of each contour line represent the
same node density. This provides an intuitive density distribution
of the nodes. For better readability, we colored the contour lines
with a continuous colormap from green (low density) to red (high
density).
Vis. 3 — Summarize Cluster Size (PolygonColor) This design
summarizes the size (number of nodes and links) of each cluster
by coloring the polygon that encloses the cluster (Figure 4); the
rationale for using enclosing polygons is that they are commonly
used to highlight clusters [6, 10, 33]. To enclose the nodes of a
cluster inside a polygon, we use a geometric object called an alpha
shape which performs better than a convex hull by carving off
unnecessary space [7].

Figure 4: Vis. 3 — PolygonColor, where (a) shows the qualita-
tive colormap and (b) shows the sequential colormap.

For the colormap, we used a 2D color matrix where the vertical
and horizontal axes correspond to the number of nodes and links.
We tested two different colormaps in our study, one sequential
and the other qualitative — both have previously been used in the
literature to design bivariate visualization [41], and the qualitative
colormap is inspired by the Corners Model [37] to highlight distinct
regions of high and low values while minimizing the prominence
of intermediate values. We create color bins based on the quantile
values.

Vis. 4 — Summarize Cluster edges (Center+Color) This design
further summarizes the clusters by merging the sources of the
links that leave a cluster into the cluster center, which is computed
by taking the mean of x- and y-coordinates of the corresponding
polygon corners (Figure 1(d)). The starting point for making this
design is PolygonColor. We do not change the node locations, but
the links within the cluster get removed and the outgoing links from
a cluster now emanate from the center point. The rationale behind
this higher-level summarization strategy is that the identification of
clusters and their color already gives some idea of the cluster sizes,
and thus one can focus on understanding the external relations that
a cluster has with other clusters.
Vis. 5 — Map Clusters to Disks (ClusterNetwork) This design
maps clusters to disks, with the size of a disk relative to the number
of nodes in the cluster (Figure 1(e)). The number of links in a cluster
is mapped to a color using the quantile values of the number of links.
The opacity of the link between two disks is relative to the number
of relations between the corresponding clusters, and each disk is
initially positioned at the cluster center. Such node-link networks
of clusters commonly appear in network summarization [27, 36]. To
prevent overlaps, the disks are iteratively moved away from each
other until a valid placement without collision is found. Although
this adjustment to disk layout can make it harder for users to match
the disks to the corresponding part of the baseline visualization, the
clusters can in practice be labeled or highlighted in a mouse-hover
operation.

Networks for User Study:We used five large networks: a sam-
ple of Facebook friend relations, DBLP author collaborations, a Web
hyperlink network, a YouTube social network, and a Brightkite so-
cial network; node and link counts for these networks are (4039,
88234), (4973731, 224133), (685228, 262279), (1157617, 137585), and
(58228, 201144), respectively. We downloaded the Datasets from
Stanford Large Network Dataset Collection (SNAP) [22]. For scala-
bility, we progressively removed low-degree nodes from the net-
work until the number of links was reduced to 300,000.

4 STUDY 1 (CLUSTER IDENTIFICATION AND
DESIGN VALIDATION)

Our first study investigates RQ1 – the degree of agreement when
identifying clusters (both across participants and between FA clus-
ters and participant choices), and RQ2 – how participants perform
when using different visualization designs that present different
types of summary information.

4.1 S1: Study Methods
4.1.1 S1: Participants and Apparatus. We recruited 20 participants
(15 male, 5 female, mean age 28 years), all of whom were under-
graduate or graduate students at a local university. Participants
were not required to have prior expertise in network analysis or
data visualization. None of the participants reported a color vision
deficiency.

The study was conducted in a controlled environment using a
75-inch 4K display and a Windows laptop with a standard mouse.
Participants completed the tasks using a custom web-based system
developed with the P5JS toolkit, which was used to present the
tasks and record responses and completion times.
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Table 1: Tasks used in the user study 1 and 2, and their corresponding domains

Study Type Task Domain

1 Identification Identify the top three clusters separately by node and link count. Interpret cluster locations in Baseline.
1,2 Ranking Ordering a given set of 5 clusters separately by node and link count. Interpret and compare sizes of different clusters.
1,2 Pair-Search Identify and rank the top three cluster pairs by between-cluster links. Assess the strength of between-cluster relations.
2 Degree-Estimation Identify the cluster that has links to the highest number of other clusters. Interpret degree centrality in a network of clusters.
2 Subcluster-Estimation Identify the cluster with the highest number of sub-clusters. Interpret fine-grained nested cluster structures.

Figure 5: Participants’ answers for top-3 cluster identification task (in red) and the top 50 FA clusters (in green).

4.1.2 S1 Tasks and Datasets. Participants performed three types
of tasks (Table 1). The Identification task asked participants to
draw outlines around the top three clusters by node count and the
top three by link count. In the Ranking task, we pre-labeled five
clusters in the visualization summary and asked participants to
provide two orderings of the clusters — one based on node count
and the other based on link count. The Search task required that
participants find the three pairs of clusters that had the highest
number of between-cluster links. The Identification task used only
the Baseline design, while the Ranking and Search tasks were
carried out with all five visualization designs. Each participant
carried out their tasks with only one of the five network datasets
specified in Section 3.2; this meant that each participant completed
11 task instances (one Identification task, five Ranking tasks, and
five Search tasks).

4.1.3 S1 Hypotheses. We hypothesized that participants would
have low agreement among themselves and also with FA clusters
(ℎ1). For the Ranking task, we hypothesized that Baselinewill have
lower accuracy, while ClusterNetwork will have higher accuracy
for the Pair-Search tasks than the others (ℎ2). We also hypothesized
that Center+Color and ClusterNetworkwill have higher accuracy
for the Pair-Search task (ℎ3).

4.1.4 S1 Procedure. All participants completed informed consent
and demographics forms before the study and were compensated
with $15 CAD for their participation. Participants were then given
an explanation of each visualization and completed a training ses-
sion which explained how to interpret each type of visualization
using annotated examples. For example, for the Contour design,
participants were told that Baseline would appear on the left and
Contour would appear on the right, and that the contour lines
represented node density, with an example showing a blue dotted

boundary highlighting a high-density region. The study system
then presented 11 task instances (one instance of the Identification
task, and five instances of Ranking and Search) and recorded all
relevant study data. For each of the 11 task instances, participants
were shown a visualization, accompanied by a brief guideline at the
top of the page to remind them how to interpret that specific design.
After completing the tasks for each Design, participants answered
questions about the difficulty of retrieving information from that
design, and completed a NASA-TLX-style questionnaire to assess
their perceived effort. At the end of each task, they completed a
question asking them which Design was fastest, most accurate, and
most preferred. To counterbalance learning effects, Datasets and
Designs were paired using a Latin square structure. Participants
were instructed to complete the tasks as quickly and accurately
as possible. The mean completion time of the entire study was 52
minutes. Ethical approval was received from the research ethics
board at the University of Saskatchewan.

4.1.5 S1 Study Design. The study used a mixed factorial design
with two factors: the primary factor (within-participants) was the
visualization Design (Baseline, Contour, PolygonColor, Cente
r+Color, ClusterNetwork), and the secondary factor (between-
participants) was Dataset (Facebook, DBLP, Web, YouTube, and
Brightkite). The ordering of designs and the single dataset used
by each participant was counterbalanced using a Latin square. We
separately investigated the effects of a third factor, type of Col-
orMap (Qualitative or Sequential), using only data from the two
visualization designs that used color (PolygonColor and Center+
Color).

Performance-based dependent measures were: agreement be-
tween participant answers (for the Identification task), accuracy for
the Ranking and Search tasks (computed using task-specific metrics
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such as mean edit distance and mismatch counts), and task com-
pletion time for Ranking and Search. Subjective measures included
participant ratings of how difficult it was to obtain information
from each design, as well as ratings of each design in terms of effort
and preference.

4.2 S1 Results
Analyses are organized below by task – first we report the degree
of agreement in cluster identification (Identification task), then
analyse accuracy and completion time (Ranking and Search tasks),
and then present analysis of subjective measures.

For factorial analyses, effect sizes for significant results are re-
ported as generalized eta squared (𝜂2) [23, 30]. Follow-up tests
were corrected using the Holm-Bonferroni method. No data were
removed as outliers. In the analyses below, we do not report main
effects of Dataset, since differences in this factor were expected due
to the varying structure and complexity of the data. We report main
effects of visualization Design and interactions between Design
and Dataset.

4.2.1 S1: Identification Task. Our RQ2 asks whether participants
agree among themselves about clusters, and whether participant
clusters agree with automatically-detected clusters. First, our initial
hypothesis (ℎ2) was that the participants would have a low agree-
ment in the clusters they identified. However, it appears that the
answer depends on whether the clusters are revealed as a distinctive
tangled structure or not. Figure 5 illustrates participant answers for
various Datasets in red where the task was to identify the top three
clusters by node count We computed the mean pairwise Jaccard
similarity, i.e., |𝑃𝑖∩𝑃 𝑗 |/|𝑃𝑖∪𝑃 𝑗 | where 𝑃𝑖 and 𝑃 𝑗 are the union of the
polygons drawn by the 𝑖th and 𝑗th participants. The mean Jaccard
similarity was 46.36% – Datasets in which tangled structures were
distinctive had a high agreement (DBLP - 71.17%, Web - 61.43%, and
YouTube - 58.42%), and Datasets in which clusters were not well
separated or less visible had a low agreement (BrightKite - 9.69%).
This suggests that guidance based on computational analysis needs
to be provided, especially for Datasets where a consensus cannot
be reached.

Second, we consideredwhether FA clusters alignwith participant-
identified clusters. Figure 5 shows the top 50 FA clusters in green.
The FA clusters often matched the top three clusters identified by
participants, but were often more granular than the participants’
clusters. The latter case is again more prominent when the clusters
in the visualization are less distinctive.

4.2.2 S1: Ranking Task. Participants ranked five pre-labeled clus-
ters twice: once by node count and once by link count. Wemeasured
accuracy in the rankings by calculating edit distance (using NLTK’s
default edit distance function [2]) between a participant’s ranking
and the correct ranking (lower values indicate better accuracy).

Accuracy of node-count ranking. Figure 6 summarizes the
edit distance results for the ranking task, and Table 2 presents
findings from the Design × Dataset ANOVA. The ANOVA found a
significant main effect of Design – as shown in Figure 6, Cluster-
Network (mean edit distance 0.85) had lower edit distances across
most datasets, and significantly lower mean than Baseline (2.30)
and Contour (2.60).

We also found a significant Design×Dataset interaction (Table 2).
To explore this interaction, we carried out one-way ANOVAs to
look for effects of Design within each Dataset. We found significant
effects of Design on edit distance in the Facebook Dataset (𝐹4,15 =
5.02, 𝑝 < .05) and the Brightkite dataset (𝐹4,15 = 5.29, 𝑝 < .05).
Follow-up t-tests showed that ClusterNetwork (0.50) had lower
edit distance than Contour (4.0) in the Brightkite dataset; there
were no pairwise differences found for the Facebook dataset.

Accuracy of link-count ranking. For the link-ranking task,
Figure 7 summarizes the mean edit distances, and Table 2 shows
the ANOVA results. As shown in Figure 7, edit distances across the
different designs were similar, and we did not find a main effect
of Design. However, we found a significant interaction between
Design and Dataset. As seen in Figure 7 (right), there is a substantial
accuracy difference across designs in the Web dataset (with Basel
ine performing much worse) compared to the other datasets. To
explore this interaction, we carried out one-way ANOVAs for each
dataset. We found a significant effect of Design on edit distance in
the Web dataset (𝐹4,15 = 5.43, 𝑝 < .05), but no pairwise differences
were found.

Completion time for ranking tasks.A single completion-time
measure was gathered that included both the node-ranking and
the link-ranking tasks. Table 2 summarizes the Design × Dataset
ANOVA (we found no effect of Design on completion time, nor any
interaction).

Qualitative vs. Sequential colormaps. To assess whether the
type of colormap affected accuracy in the node-count or link-count
tasks, we compared the Qualitative and Sequential colormaps. Fig-
ure 8 summarizes the edit distance results for the ranking task, and
Table 5 presents ANOVA results for factor ColorMap on accuracy
and completion time (no effects were found).

4.2.3 S1: Search Task. Participants identified the top three cluster
pairs with the highest between-cluster link counts, from a set of
five pre-defined clusters (which form a total of 10 possible pairs).
We measured mismatch count by the number of selected pairs that
were not in the solution set (lower values indicate better accuracy).

Accuracy of search. Figure 9 summarizes the mismatch results,
and Table 4 presents the Design × Dataset ANOVA. We did not
find a main effect of Design or a significant interaction between
Design and Dataset. As seen in Figure 9 (right), however, there is
a substantial accuracy difference across designs in the YouTube
dataset compared to the other datasets, which can be explored in
future studies.

Completion time for search. Figure 10 summarizes the com-
pletion time for the search task, and Table 4 presents findings from
the Design × Dataset ANOVA. The ANOVA found a significant
main effect of Design - as shown in Figure 10, Baseline (2.35) took
significantly more time than Contour (1.65), Center+Color (1.56),
and ClusterNetwork (1.54).

We also found a significant Design × Dataset interaction (Ta-
ble 4) for completion time. To explore this interaction, we car-
ried out a one-way ANOVAs to look for effects of Design within
each Dataset. We found significant effects in the Facebook dataset
(𝐹4,15 = 5.12, 𝑝 < .01), the Web dataset (𝐹4,15 = 3.77, 𝑝 < .05),
and the Brightkite dataset (𝐹4,15 = 4.27, 𝑝 < .05). Follow-up t-tests
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Figure 6: S1 Node ranking: (Left) mean edit distance ± SEM, by Design; (Right) mean edit distance ± SEM, by Dataset and Design.

S1: Factor DF (n,d) F p 𝜂2 Pairwise Contrasts (mean), t-test result
Edit Distance - Node Count

Design 4,75 6.15 p<.001 0.174 ClusterNetwork (0.85) < Baseline (2.30), p<.05
ClusterNetwork (0.85) < Contour (2.60), p<.05

Design × Dataset 16,75 2.08 p < .05 0.236 Contrasts reported in text
Edit Distance - Link Count

Design 4,75 1.38 0.25 -
Design × Dataset 16,75 2.07 p<.05 0.222 Contrasts reported in text

Completion Time - Combined Node Count and Link Count
Design 4,75 1.60 0.18 -
Design × Dataset 16,75 0.86 0.61 -
Table 2: S1: Factorial Analysis of Accuracy and Completion Time, Node and Link Ranking Tasks

Figure 7: S1 Link ranking: (Left) mean edit distance ± SEM, by Design; (Right) mean edit distance ± SEM, by Dataset and Design.

showed that ClusterNetwork (1.13) had significantly lower com-
pletion time than Baseline (2.36) in the Web dataset; no significant
pairwise differences were found for the Facebook or Brightkite
datasets.

Qualitative vs. Sequential colormaps. To assess whether the
type of colormap affected accuracy in the search task, we compared
the Qualitative and Sequential colormaps. Figure 9 summarizes the

mismatch result, and Table 5 presents findings from the one-way
ANOVA. We did not find any significant main effect of ColorMap,
either on mismatch counts or on completion time.

4.2.4 S1 Subjective Measures. We gathered two types of subjective
measures. First, participants rated each Design based on how well
it supported four analyses: identifying good clusters, estimating
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Figure 8: S1: Mean edit distances (± SEM), by ColorMap, for
node-count ranking (left) and link-count ranking (right).

S1: Measure DF (n,d) F p 𝜂2

Edit Distance – Node Count 1,38 0.95 0.34 –
Edit Distance – Link Count 1,38 1.66 0.21 –
Completion Time 1,38 0.04 0.83 –

Table 3: S1: Factorial Analysis of accuracy and completion
time for factor ColorMap (ranking tasks).

cluster size based on node count, estimating size based on link
count, and estimating between-cluster links.

Figure 12 summarizes users’ ratings across different designs. As
shown in the figure, participants gave better ratings to designs with
a higher degree of summarization across all four analysis types
(with the ClusterNetwork visualization consistently ranked best).

Second, after each task, participants ranked the Designs in terms
of speed, ease of use, and preference, along with a workload as-
sessment using a TLX-style survey [13]. As shown in Figure 13,
ClusterNetwork consistently outperformed the other designs, be-
ing rated as fastest, easiest to use, and most preferred. Center+
Color also demonstrated strong usability, particularly in ease of
use and preference, while Baseline consistently ranked the worst
(Figure 14).

4.3 S1 Discussion
Performance of Baseline compared with other designs. For the
ranking task (h2), we expected that Baseline would have lower
accuracy and that ClusterNetwork to perform best. The results
partially support this hypothesis: ClusterNetwork significantly
outperformed Baseline and Contour when ranking clusters by
node count. However, for link count, all Designs performed simi-
larly (although Baseline had a slightly higher mean edit distance).
The significant interaction between Design and Dataset suggests
that visual encoding effectiveness varies depending on whether
cluster structures are clearly visible. However, a high agreement
in cluster identification may not translate to accurate ranking (as
seen with the DBLP Dataset).
Does between-cluster link summarization perform better on
the search task? For the search task, we expected CenterColor
and ClusterNetwork to have higher accuracy (h3); however, no
significant effect of Design on mismatch count was found. However,
there were differences in task completion time, with Baseline
taking longer than Contour, Center+Color, and ClusterNetwork.

Did performance differ across the two colormaps? We found no
significant effects of ColorMap for accuracy (on either the node-
count or link-count ranking) or for completion time.

Did user preferences vary across the Designs? User preference
and TLX assessments further highlight perceived usability differ-
ences, with ClusterNetwork rated as the most efficient and Base-
line as the least. TLX scores show that Baseline imposed greater
cognitive effort, which aligns with its lower accuracy and efficiency.

4.4 Design Refinements for Study 2
Our findings led us to refine our Designs before we ran Study 2.
When we provided five candidate clusters for the ranking and pair-
search tasks, we outlined the clusters manually for Baseline and
used automatically detected clusters for the visual summaries. This
is because the polygon boundary of an automatically detected clus-
ter may not exactly match if we overlay it on Baseline, which
could be a potential source of confusion among participants. How-
ever, this creates a problem when we compare accuracy for Base
line with other Designs. Hence we decided to use automatically-
detected polygons to also highlight clusters in Baseline. We also
noticed that Center+Color had similar accuracy to that of Base
line when ranking clusters by nodes, despite having less clutter.
Hence we investigated and corrected a rendering issue that placed
links on top of nodes, potentially affecting accuracy in estimating
node count. Additionally, to overcome the visual clutter in the sum-
maries Contour and PolygonColor, we omitted links that are not
part of the top 50 clusters. We also noticed that PolygonColor and
Center+Color performed similarly to all other Designs when rank-
ing clusters by link count; many clusters were classified as having
high link counts (i.e., darker colors) despite using a percentile-based
binning due to a skewed distribution. When the color of two clus-
ters is the same, participants have no choice but to compare their
polygon area or appearance in Baseline. Therefore, in Study 2, we
selected percentiles by choosing thresholds in a geometric series,
i.e., 𝑝1, 𝑝2, 𝑝3 where 𝑝𝑖 = 1 −

(
1
4𝑖
)
, 𝑖 ∈ {1, 2, 3}. This creates a

larger bin size at lower values and a finer bin size at higher values,
effectively handling skewed distributions and providing more color
variations.

5 STUDY 2 (INTERPRETING CLUSTER SIZES
AND STRUCTURES)

Study 2 was designed to further investigate how different visual
summaries support participants in interpreting cluster sizes and
structures, with a wider variety of analysis tasks.

5.1 S2: Study Methods
5.1.1 S2 Participants and Apparatus. We recruited 20 new par-
ticipants (11 male, 9 female, mean age 26.8 years) who had not
gone through Study 1; participants were not required to have prior
expertise in network analysis or data visualization. None of the
participants reported a color vision deficiency.

The studywas conducted in the same environment used for Study
1, including the same 75-inch 4K display, Windows laptop, and
standard mouse. Tasks were presented with an updated version of
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Figure 9: S1 Accuracy for Search task: Mean mismatch ± SEM, by Design (left) and by Dataset and Design (right).

S1: Factor DF (n,d) F p 𝜂2 Pairwise Contrasts (mean), t-test result
Mismatch Count

Design 4,75 1.19 0.32 -
Design × Dataset 16,75 1.68 0.07 -

Completion Time
Design 4,75 7.61 p<.001 0.1839 Contour (1.65), Center+Color (1.56), ClusterNetwor

k (1.54) < Baseline (2.35)
Design × Dataset 16,75 2.80 p<.01 0.2705 Contrasts reported in text

Table 4: S1: Factorial Analysis of Accuracy and Completion Time, Search Task

Figure 10: S1 Search Task: (Left) completion time ± SEM, by Design; (Right) completion time ± SEM, by Dataset and Design.

S1: Factor DF (n,d) F p 𝜂2

Mismatch Count 1,38 1.75 0.19 –
Completion Time 1,38 1.53 0.22 –

Table 5: S1: Factorial Analysis of accuracy and completion
time for factor ColorMap (search task)

the custom web-based system described above, which also recorded
participants answers.

5.1.2 S2 Tasks and Datasets. Study 2 used two tasks from Study
1 (Ranking and Search), and added two additional tasks (see Table
1): the Degree-Estimation task required users to identify the clus-
ter having links to largest number of other clusters (i.e., with the
highest degree centrality in the cluster network), and the Subcluster-
Estimation task required participants to identify the cluster with
largest number of subclusters in it. These new tasks are somewhat
more challenging, but are also common when interpreting a net-
work visualization. The Subcluster-Estimation task did not include
the ClusterNetwork design, while the remaining four tasks incor-
porated all five Designs across five different Datasets. As with Study
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Figure 11: S1 Search: Mean mismatch ± SEM (Left) and mean
time completion (Right), by ColorMap.

Figure 12: S1: Mean perceived difficulty for information ac-
cess (± SEM), by Design. Shorter bars are better.

Figure 13: S1: Subjective Question Responses (Preference) (±
SEM), by Design. Longer bars are better.

Figure 14: S1: Subjective Question Responses (Workload) (±
SEM), by Design. Shorter bars are better (except for Perfor-
mance).

1, each participant carried out their tasks with only one of the five
datasets (Section 3.2); this meant that each participant completed
19 task instances (four Subcluster-Estimation instances, and five
instances for each of the Ranking, Search, and Degree-Estimation
tasks).

5.1.3 S2 Hypotheses. For Study 2, we hypothesized that all Designs
would outperform Baseline in ranking tasks (h4). We expected
Center+Color and ClusterNetwork, which provide a summary
of between-cluster links, to achieve higher accuracy than other
Designs (h5). Additionally, due to the difficulty of understanding
subcluster structure, we hypothesized that the Designs would not

have any effect on the mean agreement score for subcluster estima-
tion (h6).

5.1.4 S2 Procedure. Study 2’s procedure was similar to Study 1. Par-
ticipants completed informed consent and demographics forms be-
fore the study and were then given an explanation of each visualiza-
tion and completed a training session which explained how to inter-
pret each design. The study system then presented 19 task instances
(five instances of the Ranking, Search, and Degree-Estimation tasks,
and four instances of the Subcluster-Estimation task), and recorded
all study data. After completing the tasks for each design, partici-
pants answered questions about the difficulty of retrieving infor-
mation from the design. After all instances of a task were done,
participants completed a NASA-TLX-style questionnaire, and rated
the design in terms of speed, accuracy, and preference. To counter-
balance learning effects, Datasets and Designs were paired using a
Latin square structure. Participants were instructed to complete the
tasks as quickly and accurately as possible. The mean completion
time of the entire study was 61 minutes, and participants were com-
pensated with $15 CAD for their participation. Ethical approval
was received from the research ethics board at the University of
Saskatchewan.

5.1.5 S2 Study Design. Study 2 used a mixed-factorial design simi-
lar to that of Study 1: Design was the primary (within-participants)
factor, with levels (Baseline, Contour, PolygonColor, Center+Co
lor, and ClusterNetwork), and Dataset was a secondary between-
subjects factor (Facebook, DBLP, Web, YouTube, Brightkite). As
with Study 1, the ordering of designs and the single dataset used
by each participant was counterbalanced using a Latin square. We
again carried out a separate investigation of the effects of ColorMap
(Qualitative or Sequential), using data from designs PolygonColor
and Center+Color.

Performance-based dependentmeasureswere: accuracy and com-
pletion time for the Ranking and Search tasks (using the same met-
rics as for Study 1); accuracy and completion time for the Degree-
Estimation task (based on distance from the correct answer); and
degree of agreement for the Subcluster-Estimation tasks. (We used
agreement for Subcluster-Estimation rather than accuracy because
it is difficult for automated tools such as DBSCAN to identify the
exact number of subclusters; due to the lack of a clear ground truth,
we opted to assess participant agreement instead of accuracy). Sub-
jective measures included participant ratings of how difficult it was
to obtain information from each design, as well as ratings of each
design in terms of effort and preference.

5.2 S2 Results
5.2.1 S2: Ranking Task. As in Study 1, we calculated the edit dis-
tance between a participant’s rankings (one based on node count
and one based on link count) and the corect ranking.

Accuracy of node-count ranking. Figure 15 summarizes edit
distances, and Table 6 shows results of theDesign×Dataset ANOVA.
We found a significant main effect of Design – as can be seen in
Figure 6, ClusterNetwork (mean edit distance 0.70) had lower edit
distances across most datasets, and overall was significantly lower
than Baseline (1.85) and Contour (2.45).
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Figure 15: S2 Node ranking: (Left) mean edit distance ± SEM, by Design; (Right) edit distance by Design and Dataset.

We also found a significant Design × Dataset interaction (Ta-
ble 6). To explore this interaction, we carried out one-way ANOVAs
to look for effects of Design within each Dataset. We found signifi-
cant effects of Design on edit distance in the Web Dataset (𝐹4,15 =
5.02, 𝑝 < .05) and the Brightkite dataset (𝐹4,15 = 5.29, 𝑝 < .05).
Follow-up t-tests showed that for both datasets, ClusterNetwor
k (which had perfect accuracy in these datasets) had a lower edit
distance than Baseline (edit distance 2.25 for Web, and 3.25 for
Brightkite).

Accuracy of link-count ranking. For the link-ranking task,
Figure 16 summarizes edit distances, and Table 6 shows the Design
× Dataset ANOVA. We again found a significant effect of Design –
as shown in Figure 16, Baseline (2.85) had higher edit distances
than PolygonColor (1.55) and Center+Color (1.70). We did not
find any significant interaction between Design and Dataset.

Completion time for ranking tasks. As in Study 1, a sin-
gle completion-time measure included both the node-ranking and
the link-ranking tasks. Table 6 summarizes the results of (Design
× Dataset) ANOVA. We found no significant effect of Design on
completion time, nor any interaction with Dataset.

Qualitative vs. Sequential colormaps. We again assessed
whether Qualitative or Sequential colormaps led to greater accu-
racy or reduced completion time. Figure 17 summarizes the edit
distance results by ColorMap, and Table 7 presents ANOVA results.
No effects of ColorMap were found on either measure.

5.2.2 S2: Search Task. As in Study 1, participants identified the top
three cluster pairs with the highest between-cluster link counts;
we measured mismatch count by the number of selected pairs that
were not in the solution set.

Accuracy of search. Figure 18 summarizes themismatch results,
and Table 8 presents the Design × Dataset ANOVA. We found
a significant effect of Design - as shown in Figure 18, Baseline
(1.55) had significantly higher mismatch counts than Center+Color
(0.75) and ClusterNetwork (0.80). We did not find a significant
interaction between Design and Dataset.

Completion time for search. Figure 19 summarizes completion
time measures, and Table 8 presents findings from the Design ×
Dataset ANOVA. We found a significant main effects of Design –
as seen in Figure 19, Baseline (1.48) took significantly more time

than ClusterNetwork (2.82). We did not find a Design × Dataset
interaction.

Qualitative vs. Sequential colormaps.We compared the Qual-
itative and Sequential colormaps in terms of accuracy and comple-
tion time in the Search tasks. Figure 20 summarizes the mismatch
result and completion time by ColorMap, and Table 9 presents
ANOVA results. We did not find effects of ColorMap on mismatch
count, but there was a significant effect of ColorMap on completion
time – as shown in Figure 20, tasks with the Qualitative colormap
(2.12 minutes) took more time than with the Sequential colormap
(1.85 minutes).

5.2.3 S2: Degree-Estimation Task. Participants identified the cluster
with the highest degree of centrality (i.e., the cluster connecting
to the largest number of other clusters). We scored accuracy based
on the distance from the correct answer in a ranked list (e.g., if
a participant correctly chose the cluster with the highest degree,
their answer was scored as 5; if they chose the cluster with the
second-highest degree, their answer was scored as 4, and so on,
with minimum score 0).

Accuracy of Degree-Estimation. Figure 21 summarizes the
accuracy results (distance from correct answer) for the Degree-
Estimation task. Table 10 presents findings from theDesign×Dataset
ANOVA. We found a significant effect of Design – as shown in Fig-
ure 21, Center+Color (4.0) had a significantly better score than
Contour (2.8). We did not find a significant interaction between
Design and Dataset.

Completion time forDegree-Estimation task.Table 10 shows
the Design × Dataset ANOVA; we did not find an effect of Design
or a Design × Dataset interaction.

Qualitative vs. Sequential colormaps.We again compared the
Qualitative and Sequential colormaps; Table 11 presents ANOVA
results for factor ColorMap on accuracy and completion time (no
effects were found).

5.2.4 S2: Subcluster-Estimation Task. In this task, participants were
asked to choose the cluster with the most subclusters. As described
above, we chose to assess participant agreement in this task due
to the difficulty of calculating true accuracy (see Section 5.1.2).
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S2: Factor DF (n,d) F p 𝜂2 Pairwise Contrasts (mean), t-test result
Node Count

Design 4,75 5.84 p<.001 0.165 ClusterNetwork (0.70) < Baseline (1.85), p<.01
ClusterNetwork (0.70) < Contour (2.45), p<.01

Design × Dataset 16,75 1.94 p < .05 0.219 Contrasts reported in text
Link Count

Design 4,75 6.12 p < .001 0.186 PolygonColor (1.55) < Baseline (2.85), p < .05
Center+Color (1.70) < Baseline (2.85), p < .05

Design × Dataset 16,75 1.32 0.21 -
Completion Time - Combined Node Count and Link Count

Design 4,75 1.90 0.11 -
Design × Dataset 16,75 0.68 0.80 -
Table 6: S2: Factorial Analysis of Accuracy and Completion Time, Node and Link Ranking Tasks

Figure 16: S2 Link ranking: (Left) mean edit distance ± SEM, by Design; (Right) mean edit distance ± SEM, by Dataset and Design.

Figure 17: S2 Ranking: Mean edit distances for nodes ± SEM
(Left) and links (Right), by ColorMap.

S2: Measure DF (n,d) F p 𝜂2

Edit Distance – Node Count 1,38 2.10 0.16 –
Edit Distance – Link Count 1,38 0.39 0.54 –
Completion Time 1,38 1.66 0.21 –

Table 7: S2: Factorial analysis of accuracy and completion
time for factor ColorMap (ranking tasks)

Therefore, we do not carry out a factorial analysis, but rather re-
port the degree of agreement (similar to the approach used for the
Identification task of Study 1).

We calculated agreement rate by comparing the clusters chosen
by each pair of participants within each design and dataset. We
counted the number of times the same cluster was chosen, and
divided by the number of pairs to get an agreement rate. We then
calculated the average for each Design (collapsing across Datasets);
these results are shown in Figure 22. As can be seen in the figure,
the agreement rate for Contour (36.7%) was substantially lower
than that of Baseline and PolygonColor (both 56.7%), with Cent
er+Color in between at (46.7%).

5.2.5 S2 Subjective Measures. As in Study 1, we gathered two types
of subjective measures. First, participants rated each Design based
on how well it supported four analyses: identifying good clusters,
estimating cluster size based on node count, estimating size based
on link count, and estimating between-cluster links. Figure 23 sum-
marizes participants’ ratings. As shown in the figure, participants
again gave better ratings to designs with a higher degree of sum-
marization (the ClusterNetwork or Center+Color visualizations
were consistently ranked best).
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Figure 18: S2 Accuracy for Search task: Mean mismatch ± SEM, by Design (left) and by Dataset and Design (right).

S2: Factor DF (n,d) F p 𝜂2 Pairwise Contrasts (mean), t-test result
Mismatch Count

Design 4,75 3.90 p < .01 0.121 Center+Color (0.75) < Baseline (1.55), p < .05
ClusterNetwork (0.80) < Baseline (1.55), p < .05

Design × Dataset 16,75 1.68 0.07 -
Completion Time

Design 4,75 4.22 p<.01 0.146 ClusterNetwork (1.48) < Baseline (2.82)
Design × Dataset 16,75 1.00 0.46 -

Table 8: S2: Factorial Analysis of Accuracy and Completion Time, Search Task.

Figure 19: S2 Search Task: Completion time ± SEM, by Design (left) and by Dataset and Design (right).

S2: Factor DF (n,d) F p 𝜂2

Mismatch Count 1,38 0.84 0.37 –
Completion Time 1,38 4.22 p < .05 0.10

Table 9: S2: Factorial Analysis of accuracy and completion
time for factor ColorMap (search task)

Second, after each task, participants ranked the Designs in terms
of speed, ease of use, and preference; they also completed a work-
load assessment using a TLX-style survey [13]. Figures 24 and 25
summarize these results.
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S2: Factor DF (n,d) F p 𝜂2 Pairwise Contrasts (mean), t-test result
Score

Design 4,75 4.28 p < .01 0.160 Center+Color (4.0) > Contour (2.8), p < .05
Design × Dataset 16,75 0.95 0.51 -

Completion Time
Design 4,75 1.14 0.24 -
Design × Dataset 16,75 1.36 0.19 -

Table 10: S2: Factorial Analysis of Accuracy and Completion Time, Degree-Estimation Task.

Figure 20: S2 Search: (Left) mean mismatch ± SEM, by Col-
orMap; (Right) mean time completion ± SEM, by ColorMap.

S2: Factor DF (n,d) F p 𝜂2

Score 1,38 0.06 0.81 –
Completion Time 1,38 0.04 0.84 -

Table 11: S2: Factorial Analysis of accuracy and completion
time for factor ColorMap (Degree-Estimation task).

6 OVERALL DISCUSSION
Here we compare and consider the main results from Study 1 and
Study 2, provide design guidelines based on our findings, and outline
limitations of the studies that lead to future work.

6.1 Summary of Main Study Results
Performance of Baseline compared with summary designs.
Several of the tasks and measures in both studies showed signif-
icant effects of Design, with Baseline often performing worse
than the summary representations (particularly the most gran-
ular designs ClusterNetwork and Center+Color). For example,
ClusterNetwork outperformed Baseline and Contour in ranking
clusters by node count (S1), and had better accuracy and comple-
tion time than Baseline in the Search task (S2). However, other
tasks did not show any differences between designs (e.g., no effect
of Design on accuracy in either the link-count ranking of S1 or
the Search task in either S1 or S2). In addition, other tasks showed
effects of specific designs – e.g., the two color-based designs (Poly
gonColor and Center+Color) were more accurate than Baseline
for link-count ranking in Study 2. We also observed that PolygonC
olor and Center+Color had lower edit distances in Study 2 than
in Study 1 for both node and link counting, which suggests that the
design refinements identified after Study 1 (see Section 4.4), such
as the importance of a careful binning strategy using a geometric
series, were effective.

Does between-cluster link summarization achieve better per-
formances in the Search task? Although Study 1 only found
significant main effect of Design on task completion time for the
Search task, Study 2 showed significance on both accuracy and task
completion time with Baseline being significantly less accurate
than Center+Color and ClusterNetwork. This strengthens the
support for (ℎ5) where we expected link summarization to be ef-
fective in searching for cluster pairs (we also believe this to be an
outcome of the design refinements implemented for Study 2).

Does the effectiveness of visual summaries depend on how
visible the clusters are in the Baseline representation? When
ranking by node count, we observed a significant interaction be-
tween Design and Datasets in both Studies 1 and 2. Moreover, Study
2 showed the Center+Color to be significantly more accurate than
Baseline in Web Dataset for the pair-search task. For the degree-
estimation task, we observed Center+Color to be more accurate
than Contour in the Facebook Dataset.

Performance differences across two colormaps. We did not find
accuracy differences for colormaps in either Study 1 or Study 2. We
believe the improved color binning strategy offered enough varia-
tion such that the two maps performed similarly. While Study 1 did
not show any significant differences when considering completion
time for both ranking and search tasks, Study 2 showed colormaps
to have a significant effect on the search task (with sequential color
being faster). This further suggests that increased granularity in
color bins (variation in color) contributes to faster task completion.

Did user performance differ across the Designs for more de-
tailed tasks? The Subcluster-Estimation task was a fine-grained
task where participants had to assess and count small cluster struc-
tures within a bigger cluster. Although we used a large 75-inch
display, this task appeared to be difficult. We already observed
in Study 1 that participants may have low agreement in cluster
identification if the clusters are not clearly visible in the node-link
visualization. This issue becomes even more prominent when iden-
tifying subclusters, as they are often less distinct within a cluster,
supporting (ℎ6).

Did user preferences vary across the Designs? In both studies,
users strongly preferred more coarse-grained visual summaries
for all information types, with ClusterNetwork rated as the most
efficient and Baseline as the least. This does not always align with
participants’ performance, however: for example, ClusterNetwork
in Study 2 had low mean accuracy for ranking links. We believe
this is a result of not applying the improved color binning strategy
for ClusterNetwork.
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Figure 21: Accuracy for Degree-Estimation task. S2: (Left) mean score ± SEM, by Design; (Right) mean score ± SEM, by Design
and Dataset.

Figure 22: S2 Subcluster Estimation: Agreement Rate, by De-
sign. Note that ClusterNetwork was not used in this task.

Figure 23: S2: Mean perceived difficulty for information ac-
cess (± SEM), by Design. Shorter bars are better.

Figure 24: S2: Subjective Question Responses (Preference) (±
SEM), by Design. Longer bars are better.

Figure 25: S2: Subjective Question Responses (Workload) (±
SEM), by Design. Shorter bars are better (except for Perfor-
mance).

6.2 Design Guidelines
Our studies reveal some key factors that should be carefully con-
sidered for designing node-link representations of large networks.

Providing Visual Summaries: To improve the readability of the FA
layout, one should consider providing supplementary summaries.
These summaries can help users identify clusters more easily, esti-
mate their sizes, and understand the pairwise relationships between
them. The summaries should be sufficiently different to comple-
ment each other. The summaries may be created by identifying
clusters algorithmically, where a spatial clustering algorithm could
be used to find clusters from an FA layout. Since edges play an
important role in how people perceive a tangled structure, such a
clustering algorithm should consider both the node and edge loca-
tions to achieve a better agreement between the algorithmically
detected and visually identifiable clusters.

Designing ColorMaps to Capture Cluster Variation: Proper atten-
tion should be paid to designing colormaps based on data distri-
butions. For example, if the largest clusters are chosen to create a
summary, these clusters will naturally have a large number of nodes
and edges. Using uniform size thresholds for coloring may result in
many clusters being rendered in the same color. Instead, uniform
percentile-based thresholds or geometric-series-based percentiles
can be more effective in differentiating the sizes of clusters.

Choosing Granularity in Color Matrices: When using a color ma-
trix to map cluster sizes to colors, selecting a more granular option
(e.g., 5 × 5) can enhance the ability to distinguish between different
cluster sizes and accomplish size estimation tasks more efficiently
compared to a less granular option (e.g., 3 × 3). For a more gran-
ular matrix, a sequential colormap is preferable to a qualitative
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colormap, as it helps reduce the number of different hues while
naturally maps darker shades to larger cluster sizes.

Considering Differences in Datasets: Depending on the network
size and edge density within clusters, the same opacity for render-
ing may not be equally effective for all networks. This requires
tuning by the visualization designer so that nodes and edges are
rendered with appropriate opacity to ensure better visual exposure
of the clusters. In datasets where node distributions are mostly
uniform and distinct clusters are challenging to identify visually,
careful consideration is needed when using a spatial clustering
algorithm to automatically detect clusters. For example, the algo-
rithm’s parameters should be chosen carefully by experimenting
with various configurations.

Choosing Summaries Based on Information Needs: The desired
summaries may vary depending on user needs. For example, if
understanding node distribution is the priority, then Contour could
be the preferred option. Alternatively, if estimating cluster sizes
is more important, then ClusterNetwork is more suitable. The
Center+Color design serves as a middle ground between the two,
revealing pairwise relationships between clusters while providing
some visibility of node distributions.

Improving Readability through Consistent Labeling: When visu-
alizing one or more summaries, using clear cluster labels for the
FA layout and its summaries, and a consistent color scheme across
summaries can reduce the risk of misinterpretation. In interactive
settings, all the visualization views can be information linked such
that hovering over a cluster in one view highlights the correspond-
ing cluster in all other views.

6.3 Limitations and Future Work
There are several limitations to our studies, each of which provides
an opportunity for further research.

First, although our studies involved real-world datasets and real-
istic analytics tasks, the analysis scenario was artificial. In future
studies, we will identify datasets and tasks that have been used
in existing real-world presentations, and determine whether our
findings are consistent in these scenarios.

Second, our in-person studies involved only 20 participants per
study, and the participants were all university students; therefore,
a crowdsourced experiment could be useful in gaining insights
into the perception of a more general audience. We also limited
our focus to node-link visualizations, whereas edge bundling is
frequently employed to reduce visual clutter; therefore, conducting
an in-depth exploration of edge bundling presents a promising
direction for future research.

Third, our study uses FA visualizations which are often generated
by parameter tuning. Hence the exposure of the clusters depends on
the choice of parameters being used, which may vary depending on
the dataset. However, we believe that our results will generalize to
other datasets because our study included a diverse set of node-link
visualizations where clusters appeared in many different forms.

Fourth, while our study demonstrated the effectiveness of vi-
sual summaries in aiding cluster interpretation, the subcluster-
estimation task was particularly tedious for participants. This obser-
vation suggests that future approaches might benefit from rethink-
ing how such complex tasks are supported—possibly through more

interactive or adaptive techniques that guide users progressively,
rather than expecting full-detail interpretation upfront. Incorporat-
ing interaction, such as zoomable details or on-demand expansion
of visual elements, could improve both usability and engagement
in similar tasks.

Fifth, the participants in our study did not report any color vision
deficiencies, but color perception varies widely across individuals,
and we plan to further investigate how color perception might
affect user performance with complex visualizations. For exam-
ple, individuals have different abilities in differentiating colors,
which could affect the choice of color-binning strategy. In addition,
overly-complex or high-contrast color schemes may alter the user’s
cognitive load and make it harder for some users to focus on the
task. Future studies could benefit from incorporating accessible
palettes, or calibrating user perceptual abilities and then adapting
color palette to the capabilities of the individual.

7 CONCLUSION
Network datasets generated from real-world contexts often contain
millions of nodes and edges, and it can be difficult to interpret the
overall structure of these networks. To explore ways of improving
interpretation of clusters with large networks, we designed new
visualizations and tested them in two user studies. We showed that
user interpretation can vary substantially when reading large node-
link visualization, especially when cluster structures are difficult
to discern; these results show the potential value of providing a
visual summary alongside the baseline visualization. We designed
four visual summaries with varying levels of granularity, and tested
the designes in two user studies. The studies showed strong user
preference for more coarse-grained summaries; we also observed
that the effectiveness of different summaries varied by task type,
and performance often improved as the summaries increased the
degree of summarization compared to the baseline node-link repre-
sentation. Our findings suggest that large node-link visualizations
can improve interpretation by providing a summary representation
that complements the original information.
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