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• Chvátal and Klincsek (1980) gave an O(n3)-time and O(n2)-space algorithm

• Edelsbrunner and Guibas (1989) improved the space complexity to O(n)
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Given a set P of n points in the plane and a positive integer k, select k pairwise
disjoint convex subsets of P such that the cardinality of the smallest subset is
maximized.

Input
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Given a set P of n points in the plane and a positive integer k, select k pairwise
disjoint convex subsets of P such that the cardinality of the smallest subset is
maximized.
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Bottleneck convex subsets 

of the given point set



• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set
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• Erdős-Szekeres theorem (1935): Every point set contains a convex a Ω(log n)-gon

• Urabe (1996): One can partition a point set into O(n/ log n) convex subsets, each of size
O(log n)

• Erdős et al. (1996): For sufficiently large n and with k ≤ (n − Ramsey-remainder(k))/k one
can find k point sets where the size of the smallest convex set is at least k → Ramsey
Reminder Problem
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• Find the minimum number of disjoint convex sets that covers the given point set

• Arkin et al. (2003): Finding the convex cover number of a point set is NP-hard

• Arkin et al. (2003): A polynomial-time O(log n)-approximation for convex cover
number
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• If we want at least n/3 convex sets (i.e., k ≥ n/3), then depending on the point set
cardinality we can greedily partition the point set into balanced sets to maximize
the minimum subset

• Károlyi (2003): An O(n log n)-time algorithm algorithm to decide whether a
partition into convex quadrilaterals exists. Therefore, we can leverage to find
polynomial-time algorithm for the bottleneck convex subset problem when k ≥ n/4
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Given a set P of n points in the plane and a positive integer k, select k pairwise
disjoint convex subsets of P such that the cardinality of the smallest subset is
maximized.
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• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set
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Observation: Given any partial solution with k convex set, we have only nO(k) feasible
options for extending these convex sets.
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Encode a partial solution in 

a slab and create a 

directed graph with slabs 

as vertices and edges 

based on feasibility.
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Given a set P of n points in the plane, and a positive integer k, Bottleneck Convex 

Subsets can be solved in O(n5k+3) time

• The size of the directed graph is O(n5k+3)

• A solution is found using breadth-first search in this graph.  



• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set
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• Reduce Numerical 3-Dimesional Matching to Angle Partition

• Reduce Angle Partition to Bottleneck Convex Subsets
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• Numerical 3-Dimesional Matching.                                                                      
Three sets A={a1,...,an}, B={b1,...,bn}, C={c1,...,cn}, each with n distinct positive 
integers.  Decide whether there exist n triples (ai, bj, ck),  such that ai + bj = ck.

Input: A = {16,14,10}, B={8,6,12}, C={18,28,20}

Output: T = {(16,12,28), (14,6,20), (10,8,18)}
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Three sets A={a1,...,an}, B={b1,...,bn}, C={c1,...,cn}, each with n distinct positive 
integers.  Decide whether there exist n triples (ai, bj, ck),  such that ai + bj = ck.
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• Angle Partition.                                                                                                   
Given a point set P of 3n points lying on three horizontal lines. Partition P into at  
most n y-monotone  angles,  where  none of them are right facing
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Instance of Angle Partition 

with 3n points on three lines

Instance of Bottleneck Convex Subsets 

with n(4n + 7) points, and k = n
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• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set
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• A f(r) · nO(1) time algorithm for bottleneck convex subsets, where r is the number
of points interior to the convex hull
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• A f(r) · nO(1) time algorithm for bottleneck convex subsets, where r is the number
of points interior to the convex hull

• Guess the structure of at most k convex sets inside the convex hull

• Guess the size δ of the minimum convex set in the solution

• Each partial convex set of size x now requires (δ-x) more points

• These (δ-x) points must come from the convex hull
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k = 4

Guess for δ is 5
δ-x1= 2

δ-x3= 3

δ-x2= 2



• A f(r) · nO(1) time algorithm for bottleneck convex subsets, where r is the number
of points interior to the convex hull

• Model the problem as a maximum flow problem
• Create a graph with each partial set having a production of (δ-x) units of flow

and each convex hull point as a sink that can consume 1 unit of flow

The overall time complexity becomes O(r 2r^{k+2} g(n) log n), where g(n) is for
computing maximum flow and term log n is for the guess and verify
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• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set
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• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Does there exist a fixed-parameter tractable algorithm parameterized by k?

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• Does there exist a polynomial-time algorithm for the case when k ∈ Θ(n)?

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set

• How about other point-set parameters such as number of convex layers and
minimum line cover number?

The 27th International Computing and Combinatorics Conference (COCOON 2021)
27



• A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k

• Does there exist a fixed-parameter tractable algorithm parameterized by k?

• Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.

• Does there exist a polynomial-time algorithm for the case when k ∈ Θ(n)?

• A fixed-parameter tractable algorithm parameterized by the number of points that
are strictly interior to the convex hull of the given point set

• How about other point-set parameters such as number of convex layers and
minimum line cover number?

The 27th International Computing and Combinatorics Conference (COCOON 2021)
28


