Bottleneck Convex Subsets: Finding *k* Large Convex Sets in a Point Set

¹ Stephane Durocher, ² J. Mark Keil, ³ Saeed Mehrabi, ² Debajyoti Mondal

¹ University of Manitoba, Canada
² University of Saskatchewan, Canada
³ Carleton University, Ottawa, Canada

The 27th International Computing and Combinatorics Conference (COCOON 2021)

Finding a largest convex point set

- Chvátal and Klincsek (1980) gave an $O(n^3)$ -time and $O(n^2)$ -space algorithm
- Edelsbrunner and Guibas (1989) improved the space complexity to O(n)

Finding k large convex point sets (maximize the minimum)

Given a set P of n points in the plane and a positive integer k, select k pairwise disjoint convex subsets of P such that the cardinality of the smallest subset is maximized.

Bottleneck Convex Subsets

Given a set P of n points in the plane and a positive integer k, select k pairwise disjoint convex subsets of P such that the cardinality of the smallest subset is maximized.

Our Contributions

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
- Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set

Related Research – lower bound when $k \in O(n/\log n)$

• Erdős-Szekeres theorem (1935): Every point set contains a convex a $\Omega(\log n)$ -gon

Urabe (1996): One can partition a point set into O(n/ log n) convex subsets, each of size O(log n)

Erdős et al. (1996): For sufficiently large n and with k ≤ (n - Ramsey-remainder(k))/k one can find k point sets where the size of the smallest convex set is at least k → Ramsey Reminder Problem

Related Research – convex cover number

• Find the minimum number of disjoint convex sets that covers the given point set

- Arkin et al. (2003): Finding the convex cover number of a point set is NP-hard
- Arkin et al. (2003): A polynomial-time O(log n)-approximation for convex cover number

Related Research – Finding k large convex sets for large k

- If we want at least n/3 convex sets (i.e., k ≥ n/3), then depending on the point set cardinality we can greedily partition the point set into balanced sets to maximize the minimum subset
- Károlyi (2003): An O(n log n)-time algorithm algorithm to decide whether a partition into convex quadrilaterals exists. Therefore, we can leverage to find polynomial-time algorithm for the bottleneck convex subset problem when $k \ge n/4$

Bottleneck Convex Subsets

Given a set P of n points in the plane and a positive integer k, select k pairwise disjoint convex subsets of P such that the cardinality of the smallest subset is maximized.

Our Contributions

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
- Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set

A polynomial-time algorithm when k is fixed

Observation: Given any partial solution with k convex set, we have only $n^{O(k)}$ feasible options for extending these convex sets.

A polynomial-time algorithm when k is fixed

A polynomial-time algorithm when k is fixed

- The size of the directed graph is $O(n^{5k+3})$
- A solution is found using breadth-first search in this graph.

Given a set *P* of *n* points in the plane, and a positive integer *k*, Bottleneck Convex Subsets can be solved in $O(n^{5k+3})$ time

Our Contributions

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
- Bottleneck Convex Subsets is NP-hard when *k* is an arbitrary input parameter.
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set

NP-hard when k is an arbitrary input parameter

- Reduce Numerical 3-Dimesional Matching to Angle Partition
- Reduce Angle Partition to Bottleneck Convex Subsets

Numerical 3-Dimesional Matching to Angle Partition

• Numerical 3-Dimesional Matching.

Three sets A={ a_1 ,..., a_n }, B={ b_1 ,..., b_n }, C={ c_1 ,..., c_n }, each with *n* distinct positive integers. Decide whether there exist *n* triples (a_i , b_i , c_k), such that $a_i + b_i = c_k$.

Input: A = {16,14,10}, B={8,6,12}, C={18,28,20} Output: T = {(16,12,28), (14,6,20), (10,8,18)}

Numerical 3-Dimesional Matching to Angle Partition

• Numerical 3-Dimesional Matching.

Three sets A={ $a_1,...,a_n$ }, B={ $b_1,...,b_n$ }, C={ $c_1,...,c_n$ }, each with *n* distinct positive integers. Decide whether there exist *n* triples (a_i , b_i , c_k), such that $a_i + b_i = c_k$.

Input: A = {16,14,10}, B={8,6,12}, C={18,28,20} Output: T = {(16,12,28), (14,6,20), (10,8,18)}

• Angle Partition.

Given a point set *P* of 3n points lying on three horizontal lines. Partition P into at most n y-monotone angles, where none of them are right facing

Numerical 3-Dimesional Matching to Angle Partition

 Numerical 3-Dimesional Matching. Three sets A={a₁,...,a_n}, B={b₁,...,b_n}, C={c₁,...,c_n}, each with *n* distinct positive integers. Decide whether there exist *n* triples (a_i, b_i, c_k), such that a_i + b_i = c_k.

Input: A = {16,14,10}, B={8,6,12}, C={18,28,20} Output: T = {(16,12,28), (14,6,20), (10,8,18)}

Angle Partition to Bottleneck Convex Subsets

Instance of Angle Partition with 3*n* points on three lines

Instance of Bottleneck Convex Subsets with n(4n + 7) points, and k = n

The 27th International Computing and Combinatorics Conference (COCOON 2021)

Angle Partition to Bottleneck Convex Subsets

Instance of Angle Partition with 3*n* points on three lines

Instance of Bottleneck Convex Subsets with n(4n + 7) points, and k = n

Angle Partition to Bottleneck Convex Subsets

Instance of Angle Partition with 3*n* points on three lines

Instance of Bottleneck Convex Subsets with n(4n + 7) points, and k = n

Our Contributions

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
- Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set

Fixed-parameter tractable algorithm

• A $f(r) \cdot n^{O(1)}$ time algorithm for bottleneck convex subsets, where *r* is the number of points interior to the convex hull

Fixed-parameter tractable algorithm

- A $f(r) \cdot n^{O(1)}$ time algorithm for bottleneck convex subsets, where *r* is the number of points interior to the convex hull
 - Guess the structure of at most k convex sets inside the convex hull
 - Guess the size δ of the minimum convex set in the solution
 - Each partial convex set of size x now requires (δ -x) more points
 - These (δx) points must come from the convex hull

k = 4

Guess for δ is 5

The 27th International Computing and Combinatorics Conference (COCOON 2021)

Fixed-parameter tractable algorithm

- A $f(r) \cdot n^{O(1)}$ time algorithm for bottleneck convex subsets, where *r* is the number of points interior to the convex hull
 - Model the problem as a maximum flow problem
 - Create a graph with each partial set having a production of (δx) units of flow and each convex hull point as a sink that can consume 1 unit of flow

The overall time complexity becomes $O(r 2^{r^{k+2}} g(n) \log n)$, where g(n) is for computing maximum flow and term log *n* is for the guess and verify

Our Contributions

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
- Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set

Open Problems

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
 Does there exist a fixed-parameter tractable algorithm parameterized by k?
- Bottleneck Convex Subsets is NP-hard when *k* is an arbitrary input parameter.
 - Does there exist a polynomial-time algorithm for the case when $k \in \Theta(n)$?
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set
 - How about other point-set parameters such as number of convex layers and minimum line cover number?

Open Problems

- A polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k
 Does there exist a fixed-parameter tractable algorithm parameterized by k?
- Bottleneck Convex Subsets is NP-hard when k is an arbitrary input parameter.
 - Does there exist a polynomial-time algorithm for the case when $k \in \Theta(n)$?
- A fixed-parameter tractable algorithm parameterized by the number of points that are strictly interior to the convex hull of the given point set
 - How about other point-set parameters such as number of convex layers and minimum line cover number?

Thank You!

