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- Adaptive Load Sharing in Homogeneous Distributed
Systems
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Abstract—In most current locally distributed systems, the work gen-
erated at a node is processed there; little sharing of computational re-
sources is provided. In such systems it is possible for some nodes to be
heavily loaded while others are lightly loaded, resulting in poor overall
system performance. The purpose of load sharing is to improve perfor-
mance by redistributing the workload among the nodes.

The load sharing policies with the greatest potential benefit are
adaptive in the sense that they react to changes in the system state.
Adaptive policies can range from simple to complex in their acquisition
and use of system state information. The potential advantage of a com-
plex policy is the possibility that such a scheme can take full advantage
of the processing power of the system. The potential disadvantages are
the overhead cost, and the possibility that a highly tuned policy will
behave in an unpredictable manner in the face of the inaccurate infor-
mation with which it inevitably will be confronted.

The goal of this paper is not to propose a specific load sharing policy
for implementation, but rather to address the more fundamental ques-
tion of the appropriate level of complexity for load sharing policies.
We show that extremely simple adaptive load sharing policies, which
collect very small amounts of system state information and which use
this information in very simple ways, yield dramatic performance im-
provements. These policies in fact yield performance close to that ex-
pected from more complex policies whose viability is questionable. We
conclude that simple policies offer the greatest promise in practice,
because of their combination of nearly optimal performance and in-
herent stabii” v.

Index Terms—Design, load sharing, local area networks, perfor-
mance, queueing models, threshold policies.

I. InTRODUCTION

OAD SHARING attempts to improve the perfor-

mance of a distributed system by using the processing
power of the entire system to ‘‘smooth out’” periods of
high congestion at individual nodes. This is done by
transferring some of the workload of a congested node to
other nodes for processing. The potential attractiveness of
load sharing is enhanced by factors such as the increasing
size of locally distributed systems, the use of shared file
servers, the presence of pools of computation servers, and
the development of streamlined communication proto-
cols.
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Two important components of a load sharing policy are
the transfer policy, which determines whether to process
a task locally or remotely, and the location policy, which
determines to which node a task selected for transfer
should be sent. Policies that use only information about
the average behavior of the system, ignoring the current
state, are termed static policies. Static policies may be
either deterministic or probabilistic. Policies that react to
the system state are termed adaptive policies.

Numerous static load sharing policies have been pro-
posed. In the earliest formulations of the problem it was
assumed that information about the average execution
times and intercommunication requirements of all tasks
were known. Typically the goal was to find a technique
to deterministically allocate tasks to nodes so that the total
time to process all tasks was minimized; for example [2],
[13], [14]. More recently, Tantawi and Towsley [15] de-
veloped a technique to find the optimal probabilistic as-
signment.

Adaptive load sharing policies have received less atten-
tion. Livny and Melman [11] showed that in a network of
autonomous nodes there is a large probability that at least
one node is idle while tasks are queued at some other
node, over a wide range of network sizes and average node
utilizations. This is a key result because it clearly indi-
cates the potential benefit of adaptive load sharing. Livny
and Melman also developed a taxonomy of load sharing
policies, and used simulation to evaluate a number of
them. Bryant and Finkel [3] proposed a specific adaptive
load sharing policy, and analyzed its performance using
simulation. They also explored techniques for estimating
the remaining service time of a task already being pro-
cessed, a quantity of interest in deciding which task to
transfer from a congested node. Krueger and Finkel [7]
also used simulation to evaluate the performance of a spe-
cific policy. Barak and Shiloh [1] used limited experi-
mentation with synthetic workloads to investigate a policy
distinguished by the technique used to maintain system
state information. They showed that if the workload re-
mained constant, their policy converged to a load distri-
bution that was near optimal.

Static load sharing policies are attractive because of
their simplicity: ‘‘transfer all compilations originating at
node X to computation server ¥’ or ** - - - to computa-
tion servers Y and Z with probabilities 0.8 and 0.2, re-
spectively.’’ Itis clear, though, that the potential of static
policies is limited by the fact that they do not react to the
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current system state: at the time a particular compilation
originates at node X, computation server ¥ may be so
heavily loaded that Z is a much superior choice, or both
Y and Z may be so congested that processing the task lo-
cally is preferable, even considering the impact of this
decision on other tasks originating at node X. The attrac-
tion of adaptive policies is that they do respond to system
state, and so are better able to avoid those states with un-
necessarily poor performance. However, since adaptive
policies must collect and react to system state informa-
tion, they are necessarily more complex than static poli-
cies. The adaptive policies that have been examined in the
literature collect considerable state information and at-
tempt to make the “‘best’” choice possible based on that
information. For example, the policy proposed by Krue-
ger and Finkel [7] attempts to keep the queue length at
each node near the system average queue length.'

From a practical point of view, such complexity raises
a number of concerns. The first concem is the effect of
overhead. The value of a policy depends critically on the
overhead required to administer it, which may vary con-
siderably depending on system characteristics. Excessive
overhead may negate the benefits of an improved work-
load distribution.

The second concem is the effect of the occasional poor
decisions that inevitably will be made. Complex policies
rely on detailed information about the system state and
the behavior of the workload. Not only is this information
expensive to gather, but some quantities, such as the ex-
pected congestion at nodes in the near future or the amount
of processing that a particular task requires to complete,
cannot be known precisely regardiess of the effort ex-
pended. Because of this, a decision that a complex load
sharing policy expects to be near optimal may in fact be
quite poor.

The final concern is the potential for instability. In at-
tempting to fully exploit system processing power, a com-
plex load sharing policy must make decisions based on
subtle apparent misallocations of load. This requirement
to react to small distinctions means that the inherent in-
accuracy and rapidly changing nature of system state in-
formation may cause the policy to react in an unstable
manner [6]. At the extreme, a form of processor thrash-
ing can occur, in which all of the nodes are spending all
of their time transferring tasks. Less complex policies,
because they tend to react more slowly to changes in the
system state, are inherently less susceptible to such insta-
bility.

Motivated by these concerns, in this paper we ask a
fundamental question concerning adaptive load sharing
policies in general: what is an appropriate level of com-
plexity for such policies? We show that:

'An implicit assumption of most proposed schemes is that it is desirable
to attempt to balance the queue lengths at the processors. In fact, such
balancing is not required. All that is necessary for optimal performance (in
the standard homogeneous model) is that all processors be busy if any task
is waiting. Thus in this paper we purposefully adopt the terminology ‘‘load
sharing™" rather than *‘load balancing.”
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e Extremely simple adaptive load sharing policies—
policies that collect a very small amount of state infor-
mation and that use this information in very simple ways—
yield dramatic performance improvements relative to the
no load sharing case.

e These extremely simple policies in fact yield perfor-
mance close to that which can be expected from complex
policies that collect large amounts of information and that
attempt to make the ‘‘best’’ choice given this informa-
tion—policies whose viability is questionable.

e These results are valid over a wide range of system
parameters.

We conclude that simple adaptive load sharing is of
considerable practical value, and that there is no firm evi-
dence that the potential costs of collecting and using ex-
tensive state information are justified by the potential ben-
efits.

II. PoLiciEs aAND MODELS

In studying the appropriate level of complexity for
adaptive load sharing policies, we consider a set of ab-
stract policies that represent only the essential aspects of
load sharing, and we investigate these policies using sim-
ple analytic models. Our objective is not to determine the
absolute performance of particular load sharing policies,
but rather to assess the relative advantages of varying de-
grees of sophistication. By representing only the essential
aspects of load sharing and eliminating secondary details,
we are better able to interpret the results of our compar-
ative analysis and so build our intuition.

An obvious concern is that this approach may ignore
‘‘details’’ with significant practical implications—the is-
sues noted in Section I, such as the actual cost of collect-
ing and reacting to state information, the behavior of pol-
icies when this information is unavailable or out-of-date,
etc. If the conclusion of our study were that increasing
sophistication yielded substantial benefit, then these con-
cerns would have to be addressed, because failure to
properly account for these characteristics will tend to over-
state the performance of complex policies relative to the
performance of simple ones. However, the conclusion of
our study is quite the opposite, despite giving the *‘benefit
of the doubt’’ to complex policies.

A. System Model

We represent distributed systems as collections of iden-
tical nodes, each consisting of a single processor. The
nodes are connected by a local area broadcast channel
(e.g., an Ethernet). All nodes are subjected to the same
average arrival rate of tasks, which are of a single type.

In contrast to previous papers on load sharing, we rep-
resent the cost of task transfer as a processor cost rather
than as a communication network cost. It is clear from
measurement and analysis [9] that the processor costs of
packaging data for transmission and unpackaging it upon
reception far outweigh the communication network costs
of transmitting the data. Further, network delays are
small, and are almost entirely overlapped with processing
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related to use of the network. Representing the network
cost in addition to the processor cost would not affect the
tractability of our models, but nor would it affect our re-
sults. Thus, for simplicity, it is omitted. (In Section III-
E we will show that, under reasonable assumptions, the
total communication network load imposed by adaptive
load sharing is negligible.)

Our homogeneity assumptions—that nodes are identical
and are subjected to the same average arrival rate of
tasks—also are made principally to simplify the presen-
tation, and do not undermine the applicability of the re-
sults. Node homogeneity is a reasonable assumption when
considering load sharing among clusters of workstations
or clusters of computation servers. Arrival homogeneity
merely implies that over the long term the external load
imposed on each node is the same. Over the short term,
these loads may vary considerably. The entire objective
of adaptive load sharing is to respond to such variations.
Even if homogeneity does not hold (the system consists
of a mix of nodes of different types, or there are differ-
ences in external loads), models that consider this case
(but that are not considered here) indicate the suitability
of simple policies. These simple policies are similar to
those for homogeneous systems, but they additionally uti-
lize the relatively static information specifying the system
inhomogeneities.

B. Load Sharing Policies

We will study three abstract load sharing policies, com-
paring their performance to each other and to two
“‘bounding”’ cases: no load sharing, and perfect load
sharing at zero cost. As noted in Section I, a load sharing
policy has two components: a transfer policy that deter-
mines whether to process a task locally or remotely, and
a location policy that determines to which node a task
selected for transfer should be sent. Each of these sub-
policies might be expected to employ system state infor-
mation. The three load sharing policies that we consider
have identical transfer policies, but differ in their location
policies. '

The transfer policy that we have selected is a threshold
policy: a distributed, adaptive policy in which each node
uses only local state information. No exchange of state
information among the nodes is required in deciding
whether to transfer a task. A task originating at a node is
accepted for processing there if and only if the number of
tasks already in service or waiting for service (the node
queue length) is less than some threshold T. Otherwise,
an attempt is made to transfer that task to another node.
Note that only newly received tasks are eligible for trans-
fer. Transferring an executing task poses considerable dif-
ficulties in most systems [12].

The three location policies that we examine for use in
conjunction with this extremely simple transfer policy are
referred to as Random, Threshold, and Shortest. They are
discussed in the subsections that follow.

1) Random: The simplest location policy is one that
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uses no information at all. With the Random policy a des-
tination node is selected at random and the task is trans-
ferred to that node. No exchange of state information
among the nodes is required in deciding where to transfer
a task.

A question that arises in considering the behavior of the
random policy is how the destination node should treat an
arriving transferred task. The obvious answer is that it
should treat it just as a task originating at the node: if the
local queue length is below threshold the task is accepted
for processing; otherwise it is transferred to some other
node selected at random. As shown in Appendix A, this
choice has the unfortunate property of causing instability:
no matter what the average load, it is guaranteed that
eventually the system will enter a state in which the nodes
are devoting all of their time to transferring tasks and none
of their time to processing them. This instability is anal-
ogous to that arising in the infinite population ALOHA
system [5]; repeated task transfers in load sharing systems
play a similar role with respect to stability as do message
collisions in ALOHA.

Instability can be overcome by the use of an appropriate
control policy. Such control policies have been developed
for a number of multiple access systems [8], [16]. The
simple control policy that we adopt here is to restrict the
number of times that a task can be transferred using a
static transfer limit, L,. The destination node of the Lith
transfer of a task must process that task regardless of its
state. ;

A key result of this paper is that, in many situations,
this extremely simple combination of a threshold transfer
policy and a random location policy with a static transfer
limit dramatically improves system response time relative
to no load sharing. Since this policy uses no system state
information at all, this is an indication that very simple
schemes can yield significant benefits.

2) Threshold: Threshold is a location policy that ac-
quires and uses a small amount of information about po-
tential destination nodes. Under this policy a node is se-
lected at random and probed to determine whether the
transfer of a task to that node would place it above thresh-
old. If not, then the task is transferred; the destination
node must process the task regardless of its state when the
task actually arrives. If so, then another node is selected
at random and probed in the same manner. This continues
until either a suitable destination node is found, or the
number of probes exceeds a static probe limit, L,. In the
latter case, the originating node must process the task.

The objective of the Threshold policy is to avoid ‘‘use-
less’” task transfers (those to nodes already at or above
their threshold), although, like Random, it makes no at-
tempt to choose the *‘best’” destination node for a task.
The use of probing with a fixed limit, rather than broad-
cast, ensures that the cost of executing the load sharing
policy will not be prohibitive even in large networks. As
will be discussed in Section III-D, the performance of this
policy is surprisingly insensitive to the choice of probe
limit. In other words, the performance with a small (and
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economical) probe limit, e.g., 3 or 5, is almost as good
as the performance with a large probe limit, e.g., 20.

A key result of this paper is that the Threshold policy
provides substantial performance improvement relative to
the Random policy for a wide range of system parameters.
This indicates that the use of a small amount of state in-
formation in a simple (and computationally inexpensive)
way is likely to more than compensate for the additional
cost.

3) Shortest: This location policy acquires additional
system state information and attempts to make the ‘‘best’’
choice given this information. L, distinct nodes are cho-
sen at random, and each is polled in turn to determine its
queue length. The task is transferred to a node with the
shortest queue length, unless that queue length is greater
than or equal to the threshold, in which case the originat-
ing node must process the task. The destination node must
process the task regardless of its state at the time the task
actually arrives. (A simple improvement to Shortest is to
discontinue probing whenever a node with queue length
of zero is encountered, since that node is guaranteed to be
an acceptable destination.)

The Shortest policy uses more state information, in a
more complex manner, than does the Threshold policy. A
key result of this paper is that the performance of Shortest
is not significantly better than that of the simpler Thresh-
old policy. This suggests that state information beyond
that used by Threshold, or a more complex usage of state
information, is of little benefit.

C. Analytic Model Structure and Solution

The three policies introduced in the previous section
have similar analytic models.

Each node is modeled as a queueing center [4]. New
tasks arrive at each node at average rate \. The average
task service time (processing cost) is S. We define the
load factor p of each node to be the ratio of offered load
to service capacity (i.e., p = AS). Because of the cost of
task transfer, the average utilization of the nodes may be
significantly greater than p.

The cost of transferring a task from one node to another
is represented by a processing cost at the sending node
whose average value is denoted by C. This cost is a key
parameter. (The processing cost of receiving a task is in-
cluded in the service time of the task, S.) As discussed
earlier, communication network costs are assumed to be
negligible (relative to other costs). In addition, the cost
of probing a node is assumed to be negligible. These as-
sumptions are examined in Section III-E.

At each node, the transferring of tasks is given preemp-
tive priority over the processing of tasks. In the process-
ing of tasks, any service discipline that selects tasks in a
way that is independent of their actual service time (e.g.,
First-Come-First-Served, Processor Sharing) is allowed.
All of the performance measures that will be considered
here are independent of the actual discipline used.

Under the assumptions stated above, a Markov model
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of a distributed system under each of the load sharing pol-
icies can be constructed. The model has a very large state
space, with complex structure. To simplify the analysis
we decompose the model, by assuming that the state of
each node is stochastically independent of the state of any
other node. Each node can then be analyzed in isolation.
The effect of the remainder of the system on an individual
node is represented by an arrival process of transferred
tasks. Because the network is homogeneous, system per-
formance measures can be obtained by analyzing a model
of any individual node.

This decomposition approach is asymptotically exact as
the number of nodes in the system increases, since the
queue lengths of the nodes are asymptotically indepen-
dent. For systems of finite size the analysis is an approx-
imation. Results obtained from simulation indicate that
this approximation, which also has been used in modeling
multiple access protocols such as ALOHA. introduces
negligible errors even for relatively small numbers of
nodes. In particular, the major numerical results used in
our study have been validated through simulation for net-
works of 20 nodes (and thus certainly for greater numbers
of nodes, although not necessarily for smaller numbers).
A sample of our simulation results is contained in Appen-
dix C,

All of the quantities needed to determine the state tran-
sition rates of the model of an individual node are input
parameters, with the exception of a description of the ar-
rival process of transferred tasks. The nature of this ar-
rival process depends on the load sharing policy. For the
Random policy, the arrival rate of transferred tasks is in-
dependent of the current queue length (i.e., state) of the
node, since Random utilizes no information about the state
of potential destination nodes. For the Threshold policy,
arrivals of transferred tasks are constrained to those states
in which the node is below its threshold. For the Shortest
policy, the arrival rate of transferred tasks decreases as
the queue length at the node increases.

The assumption of homogeneous nodes makes it pos-
sible to determine the arrival rate of transferred tasks: the
overall arrival rate must equal the overall rate at which
the node transfers tasks to other nodes, and the equilib-
rium state probabilities of potential destination nodes, as
‘‘observed’” when probing, for example, are identical to
those of the node itself. These quantities are model out-
puts. For the Random and Threshold policies this depen-
dence of model inputs on outputs yields a single equation
in a single unknown, which is solved numerically. For the
Shortest policy, the dependence is sufficiently complex
that an iterative numerical technique is required.

Equations relating the variables of the model are de-
veloped by considering the node to be in one of two
phases: “‘processing’’ (when the node queue length is less
than or equal to the threshold value), or “‘transferring’’
(when the node queue length is greater than the threshold
value). During a processing phase the node is either idle
or is processing tasks. During a transferring phase the
node is busy, either transferring tasks or processing tasks
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that could not be transferred because of a restriction im-
posed by the location policy.

Fig. 1 shows the birth~death model corresponding to
the processing phase. In each state the arrival rate of tasks
is the sum of the rate of arrival of new tasks () and the
rate of arrival of tasks transferred to this node by the re-
mainder of the system (\,(n)). This latter term is in gen-
eral dependent on the queue length n at the node and the
load sharing policy being modelled. This submodel can
be analyzed using standard methods.

A transferring phase is identical in behavior to a busy
period of a two class, preemptive priority HOL M/M/1
queue [4], where the classes are tasks that are processed
and tasks that are transferred. The total arrival rate at the
node is (A + A(T ™)), where A(T") denotes the arrival
rate of tasks transferred to the node conditioned on the
node being in a transferring phase. The proportion of this
total arrival rate consisting of tasks that will be processed
and the proportion consisting of tasks that will be trans-
ferred depends on the probability of a task not being trans-
ferred because of a location policy restriction.

The analyses of the birth-death model corresponding to
the processing phase and of the HOL priority model cor-
responding to the transferring phase yield conditional state
probabilities and performance measures. These are com-
bined using weights representing the proportion of time
the system spends in each phase to determine overall per-
formance. The performance measures that can be ob-
tained include average response times, utilizations, queue
lengths, transfer rates, and probe rates. Details on the
analyses of the two phases and the calculation of perfor-
mance measures are given in Appendix B.

III. PERFORMANCE COMPARISONS

Our objective is to compare the performance of three
abstract load sharing policies—Random, Threshold, and
Shortest—to each other and to two *‘bounding’’ cases: no
load sharing (represented by K independent M/M/I
queues, where K is the number of nodes), and perfect load
sharing at zero cost (represented by an M/M/K queue).
Our measure of performance is mean response time as a
function of system load.

This comparison is potentially difficult because of the
large number of parameters involved: the average task
service time S, the average cost of task transfer C, the
threshold T, the probe limit for the Threshold and Shortest
policies L,, the transfer limit for the Random policy L,,
and the number of nodes K. Fortunately, the results are
robust in the sense that the intuition gained from studying
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Fig. 2. Principal performance comparison: response time versus load p.
S(task service time) = |. C(cost of task transfer) = 0.1. T(threshold) =
2. L (probe limit for Threshold and Shortest) = 3. L (transfer limit for
Random) = 1.

performance for a ‘‘representative’’ set of parameter val-
ues is valid over a wide range of parameter values. The
structure of our presentation exploits this fact: Section III-
A contains a thorough discussion of response time versus
system load for a particular choice of parameter values,
while Sections III-B-III-F explore the sensitivity of these
results to the various parameters.

A. Principal Performance Comparison

Fig. 2 is a graph of average response time versus load
for each of the five policies under consideration. For con-
venience, S is fixed at 1 throughout our analysis so that
response times may be considered to be reported in units
of the task service time.

We will first discuss the figure, and then the choice of
parameter values indicated in the text accompanying the
figure. The key observations concerning the figure are as
follows.

¢ The Random policy yields substantial performance
improvement over no load sharing. The degree of the im-
provement is surprising since the Random policy is so
simple.

® The Threshold policy yields substantial further per-
formance improvement for system loads greater than 0.5.
This shows the value of the small amount of additional
information utilized by Threshold.

® The Shortest policy yields negligible further perfor-
mance improvement over the Threshold policy. Again this
is somewhat surprising, since Shortest acquires consid-
erably more information than Threshold, and attempts to
make the ‘‘best’’ decision based on that information.

If factors such as the actual cost of collecting and re-
acting to state information, the behavior of policies when
this information is unavailable or out-of-date, etc., are
ignored, then intuitively Shortest should have the best
performance among all load sharing policies that employ
threshold transfer policies. Thus, based on the compari-
son of Threshold and Shortest, we can conclude (subject
to verification that our results are robust with respect to
the choice of parameter values) that relatively simple in-
formation concerning potential destination nodes is suffi-
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cient to obtain essentially all of the benefit available
through this class of policies. This conclusion is rein-
forced by the fact that our analysis indeed gives the ‘‘ben-
efit of the doubt’’ to complex policies by ignoring the is-
sues just noted, which clearly are more significant for
complex policies such as Shortest than for simpler poli-
cies such as Threshold.

In Fig. 2 there is significant room for improvement be-
tween the performance of the Shortest policy and the
bound established by the M/M/K analysis. This might
suggest that our conclusion with respect to the informa-
tion required by location policies does not hold for trans-
fer policies: perhaps significantly improved performance
can be obtained by using a transfer policy that employs
more than local threshold information. However, there are
reasons (in addition to the obvious pragmatic ones) to be-
lieve that simple transfer policies are as relatively advan-
tageous as simple location policies. The M/M/K analysis
does not provide a tight bound: it assumes perfect load
sharing at zero cost, when in fact an “‘optimal’” policy
would require a significant rate of task transfers, each of
which has a nonnegligible cost. Further, the parameter
values used in Fig. 2 are conservative, rather than being
advantageous to the policies under consideration. We will
discuss these parameter values now, and return to the
question of an appropriate optimistic bound on achievable
performance in Section III-F.

In Fig. 2, the average cost of task transfer C was 0.1,
that is, 10 percent of the average task service time. We
believe this to be a conservative (overly high) choice; our
reasoning, as well as the sensitivity of the results to the
cost of task transfer, is explored in Section III-B.

The threshold T was 2. That is, a node would attempt
to transfer a task that arrived when two (or more) tasks
already were present. The sensitivity of the results to the
choice of threshold is explored in Section III-C.

The probe limit for the Threshold and Shortest policies
L, was 3. The sensitivity of the results to the choice of
probe limit is explored in Section III-D. The rates of prob-
ing in the Threshold and Shortest policies are compared
in Section III-E.

The transfer limit for the Random policy L, is set to 1.
The implications of this will be discussed in Section III-
B. The rate of task transfers for all policies, and its impact
on network congestion, is discussed in Section III-E.

As noted in Section II, the number of nodes K is not a
parameter of our analysis of Random, Threshold, and
Shortest. The analysis is asymptotically exact as the num-
ber of nodes increases. OQur major results have been val-
idated through simulation for networks of 20 nodes, im-
plying that the performance of the policies quickly
becomes insensitive to the number of nodes as the number
of nodes increases.

B. Sensitivity to Transfer Cost

We believe that the average cost of task transfer C, al-
though nonnegligible, can be expected to be quite low rel-

ative to the average cost of task processing S; the range
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1-10 percent seems to include the cases of greatest inter-
est. (We mean this to be interpreted as an average across
many tasks; we are not asserting a relationship between
processing cost and transfer cost.)

Transfer costs higher than 10 percent, although cer-
tainly possible, would likely be infrequent. On current
systems not designed to facilitate load sharing (e.g., 4.2
BSD Unix running on Vaxes connected by Ethernet, using
FTP on top of TCP/IP for task transfer), the transfer costs
for relatively small compilations and formatting runs are
a few percent of the processing costs. We would expect
that any practical implementation of load sharing would
attempt to select tasks such as these for migration—tasks
with a relatively high ratio of processing cost to transfer
cost. One also can easily imagine more efficient proto-
cols. The advent of systems based on file servers and da-
tabase servers will further decrease the cost of task trans-
fer: only a descriptor will be shipped.

At the other end of the spectrum, performance is insen-
sitive to transfer cost for costs of 1 percent or less.

Fig. 3 shows average response time versus system load
for the Threshold policy for four different average transfer
costs C: 0.01 (1 percent of the processing cost), 0.05 (5
percent), 0.10 (10 percent as shown in Fig. 2) and 0.25
(25 percent). The other parameters (e.g., threshold, probe
limit) are fixed as in Fig. 2. Note that in practice the av-
erage transfer cost would be a factor considered in se-
lecting the value of the threshold, whereas a fixed thresh-
old of 2 was used for each transfer cost in Fig. 3.

Fig. 4 shows average response time versus average
transfer cost C for all policies, for a fixed system load of
0.7. (Note that a log scale is used for the transfer cost
axis.) Again, the other parameters (e.g., threshold, probe
limit) are fixed as in Fig. 2. The performance of Thresh-
old and Shortest relative to one another is insensitive to
transfer cost. Their performance relative to the extremes
of the M/M/1 and M/M/K analyses is insensitive to trans-
fer cost for values below 0.05 (5 percent of processing
cost), but degrades rapidly as transfer costs exceed 0.25
(25 percent). The Random policy performs relatively bet-
ter at low transfer costs than at high ones. In fact, our
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analysis does not do justice to Random at low transfer
costs. Reasonable performance at relatively high transfer
costs requires a transmission limit L, of 1, the value used
throughout our analysis. However, at relatively low trans-
fer costs a higher transmission limit yields substantially
better performance, since tasks can be transferred multi-
ple times (at low cost) in search of a suitable node. This
yields behavior similar to that of the Threshold policy,
except that the task itself is sent, rather than a probe.

C. Choice of Threshold

The threshold T is a fundamental parameter: for each
of the three load sharing policies it determines when a
task transfer will be attempted (through the transfer pol-
icy); for the Threshold and Shortest policies it determines
whether the transfer will be allowed (through the location
policy).

Clearly the “‘best’’ threshold depends on the system
load and the transfer cost. At low loads a low threshold
is appropriate because many nodes are idle, whereas at
high loads a high threshold is appropriate because most
nodes have significant queue lengths. Low thresholds are
appropriate for low transfer costs, since smaller differ-
ences in node queue lengths can be exploited: high costs
demand higher thresholds.

One might imagine that a complex adaptive threshold
selection strategy would be required to obtain reasonable
performance. Figs. 2-4, which used a fixed threshold of
2, indicate that this is not the case. To explore this point
further, Fig. 5 shows average response time versus Sys-
tem load for the Threshold policy for three thresholds: 1,
2 (as shown in Fig. 2) and 3. (The corresponding graph
for Shortest is essentially indistinguishable.) The other
parameters are fixed as in Fig. 2. We see that 1 is the
optimal threshold for system loads below 0.8, 2 is the
optimal threshold for loads between 0.8 and 0.9, and
thresholds greater than 2 are advantageous at (unreason-
ably high) system loads above 0.95. (The Random policy
exhibits greater sensitivity to choice of threshold, but the
optimal threshold still is 1 over a wide range of system
load.)

These results suggest that the optimal threshold is not
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T(threshold) = 2. L(transfer limit for Random) = 1.

very sensitive to system load. Thus, a simple adaptive
policy that selects among two or three threshold values,
perhaps based on information acquired while probing, of-
fers potential benefit at low cost and risk. Such policies
are an area of current research.

D. Choice of Probe Limit

Fig. 6 shows average response time versus probe limit
for all policies, for a fixed system load of 0.7. (Random
has no probe limit; it is included along with M/M/1 and
M/M/K for comparison purposes.)

In the case of Threshold, the rapid decrease in the mar-
ginal benefit of increasing the probe limit is easy to ex-
plain. The purpose of probing in this policy is to locate a
node that is below threshold. If p is the probability that a
particular node is below threshold, then (because the
nodes are assumed to be independent) the probability that
a node below threshold is first encountered on the ith probe
is p(1 — p)' ~'. For large p, this quantity decreases rap-
idly: the probability of succeeding on the first few probes
is high. For small p, the quantity decreases more slowly.
However, since most nodes are busy, the improvement in
system-wide response time that will result from locating
a node below threshold is small, so abandoning the search
after the first few probes does not carry a substantial pen-
alty. It is clear that small probe limits are appropriate.
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In the case of Shortest, the situation is somewhat more
complex. There may be some marginal benefit even to
very large probe limits. Fig. 6 shows this, but understates
the effect for two reasons. First, this benefit is greatest at
high system loads; the load of 0.7, selected for consis-
tency with other figures and a “‘reasonable’” high load for
illustrative purposes, is not high enough to fully display
the effect. Second, at a threshold value of 2, Shortest can-
not find a node with a queue length more than one task
shorter than that of the first acceptable destination found,
since the maximum acceptable destination queue length is
1. If the threshold were higher (because of a higher sys-
tem load, for example), there would be more room for
improvement. However, it still is the case that relatively
small probe limits are appropriate for Shortest. The mar-
ginal benefit of increasing the probe limit does decrease
(although this decrease is not as rapid as for Threshold),
and, as the probe limit increases, the rate and hence the
cost of probing increases (this increase is actually greater
for Shortest than for Threshold). (The latter effect is not
shown in the figures, since the cost of probing is omitted
from our analysis.)

E. Transfer and Probing Traffic

Here we consider the network traffic due to task trans-
fers (for all three policies) and probes (for Threshold and
Shortest).

Threshold and Shortest each will transfer an individual
task at most one time. This also is true of Random with
the transfer limit of 1 that we have been using in our ex-
amples. This implies that the transfer rate per node can
be no greater than A, and that the task transfer rate over
the entire system can be no greater than KA.

As illustrated in Fig. 7, the actual task transfer rates for
Threshold and Shortest are extremely similar and are con-
siderably less than this maximum value, while the rate for
Random approaches this maximum only for relatively high
system loads. (The unit of time in the figure is the task
processing time S, which is equal to 1.) It is impossible
to translate these results into network utilization without
making rather arbitrary assumptions, but for the sake of
illustration, suppose that the processing cost of tasks is
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Fig. 8. Rate of probes per node versus load p. S(task service time) = 1.
Clcost of task transfer) = 0.1. T(threshold) = 2. L,(probe limit) = 3.

related to their size in the ratio of 1 second per 1 kbytes
(e.g., a 100K task would process for 100 seconds), and
that we are considering a 10 Mbit network (i.e., each 1K
transferred requires 0.0008 seconds of network time).
Then, an upper bound network utilization due to task
transfers under the Threshold or Shortest policies would
be 0.4 X 0.0008 X K (since these policies never exceed
a transfer rate of 0.4), yielding a network utilization of 3
percent in a system of 100 nodes. If we envision a system
based on file servers, then the network cost of load shar-
ing over and above the inherent cost of remote file access
is insignificant regardless of the particular assumptions
that are made.

Note, incidentally, that the decrease in transfer rate at
high loads for Threshold and Shortest is exactly what one
should expect: in this situation many nodes are over
threshold, so there is an increasing probability that a
transfer attempt will fail, i.e., that no suitable destination
node will be found during the probe phase.

Fig. 8 shows the rate of probes per node for Threshold

and Shortest. Because the probe limit is 3, the maximum
probe rate per node can be no greater than 3 A. The figure
shows that the two policies behave similarly, with
Threshold requiring marginally fewer probes than Short-
est. The difference is maximized at approximately the
point corresponding to the maximum transfer rate. (The
lifference between the two policies can be much larger
or larger probe limits and/or thresholds.) As the system
oad increases beyond 0.7, the probe rate for each policy
begins to increase substantially. Still, given the maximum
rate per node of L, A, the network load and processor load
due to probing will be negligible. (Note that at most L,
probes can be performed per processed task.) Probing
could be implemented, for example, using a single remote
procedure cell with a return value that is binary (in the
case of Threshold) or integer (in the case of Shortest).

F. An Optimistic Evaluation

We noted in Section III-A that our evaluation was con-
servative in two respects: the M/M/K analysis does not
provide a tight bound, and the choice of parameter values
is not advantageous to the policies under consideration.
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In this section we briefly consider the Threshold scheme
from a more optimistic point of view:

e The threshold T, rather than being fixed, is set to
either 1 or 2 depending on the system load. Fig. 5 sug-
gests the improvement that this offers.

e The probe limit is increased from 3 to 5. Fig. 6 sug-
gests the improvement that this offers.

© We consider an average transfer cost of 0.01, in ad-
dition to 0.10. (The average task processing time remains
fixed at 1.) Fig. 3 suggests the improvement that this of-
fers.

® We compare performance to a plausible lower bound
that includes the average transfer cost, obtained as fol-
lows:

An M/M/K queueing system can be viewed as a
model of perfect load sharing among K nodes: no node
will ever be idle when more than a single task is present
at some other node. The results of an M/M/K analysis are
‘“‘too optimistic,”’ though, because the cost of the task
transfers required to achieve this perfect load sharing is
ignored.

Livny and Melman [11] calculate a lower bound on the
number of task transfers required to ensure that no node
will ever be idle when another node has a queue length
greater than 1. They note that a task must be transferred
when one of the following events occurs: an arrival occurs
at a busy node when there are less than X tasks in the
system, or a completion occurs at a node with only one
task present when there are more than X tasks in the sys-
tem. Thus, the minimum rate of task transfers XT can be
expressed as

K-1
Ay = -Z. [)\:‘P[i] + é (K — i) PIK + i]}

where P[j] is the probability that there are j tasks in an
M/M/K queueing system with arrival rate KA and service
rate per server 1/S.

This expression can be used to increase the average task
service time S by the transfer cost C multiplied by the
probability that a task requires a transfer, A;/\. Since the
use of these increased service times in the M/M/K anal-
ysis results in a new set of state probabilities (implying a
new rate of task transfers), an iteration is used.

Fig. 9 shows a comparison of M/M/1, Threshold with
transfer costs of 0.1 and 0.01, the modified M/M/K anal-
ysis just described (labeled ‘‘Mod. M/M/20’") with a
transfer cost of 0.1, and the traditional M/M/20 analysis.
The important observations are:

e With a variable threshold and a probe limit of 5, the
performance of Threshold with a transfer cost of 0.1 is
noticeably improved over that shown in Fig. 2, i.e., no-
ticeably further from the performance of the M/M/1 sys-
tem, and noticeably closer to the performance of the M/
M/20 system.

e Viewing the modified M/M/K analysis as a plausible
lower bound, there is little room for improvement beyond
the performance of Threshold.
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e When the transfer cost drops to 0.01, the perfor-
mance of Threshold is such that there is very little room
for improvement relative to the absolute bound estab-
lished by the M/M/20 analysis. (The performance of the
modified M/M/20 system with a transfer cost of 0.01 is
indistinguishable from the performance of the traditional
M/M/20 system.)

IV. SuMMARY

We have explored the use of system state information
in adaptive load sharing policies for locally distributed
systems, with the goal of determining an appropriate level
of policy complexity. Our investigations have been based
on the use of simple analytic models of load sharing pol-
icies. Simulation results have indicated the validity of
these models.

Our results suggest that extremely simple load sharing
policies using small amounts of information perform quite
well—dramatically better than when no load sharing is
performed, and nearly as well as more complex policies
that utilize more information. This provides convincing
evidence that the potential benefits of adaptive load shar-
ing can in fact be realized in practice.

Our original intent in considering the class of threshold
policies in general, and the Threshold policy in particular,
was to establish a plausible bound on the performance of
realistic load sharing schemes by considering a policy so
simple that one expects to be able to do better in practice.
However, the results of our analysis indicate that fairly
direct derivatives of Threshold are plausible candidates
for implementation. In particular, our results have shown
the benefit of ‘‘threshold-type’’ information, as opposed
to no information at one extreme or to ‘‘complete’” infor-
mation at the other.

APPENDIX A
InsTaBILITY OF RANDOM WITH No TRANSMISSION LiMiT

This Appendix considers a variation of the Random
policy in which there is no transfer limit (L, = oo): trans-
ferred tasks are treated exactly as new tasks when apply-
ing the transfer policy. We refer to this policy as Uncon-
trolled Random. Uncontrolled Random is unstable for a
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nonzero transfer cost. No matter what the average load p,
the system does not approach an equilibrium behavior: the
expected backlog of work increases monotonically with
time. Intuitively, this behavior occurs since there is a pos-
itive probability that all nodes will be in a transferring
phase simultaneously. In Uncontrolled Random, each
node would then begin to receive transferred tasks at rate
1/C, and would try to retransfer these tasks at the same
rate. Since no useful work is being done, the queue size
at each node would increase at rate A.

The instability of Uncontrolled Random is analogous to
that of the infinite population ALOHA system [5]. Much
of the terminology regarding stability that has been de-
veloped for use in the ALOHA context will be used here.

Fig. 10 is a result of the analysis that follows in this
Appendix. The figure shows the mean node queue length
equilibrium contour as a function of the system load, for
Uncontrolled Random with a threshold of 2 and a transfer
cost of 0.1. The average task service time is fixed at one.
The equilibrium contour is composed of system equilib-
rium points, at which the output traffic intensity of the
system (defined as the throughput multiplied by the av-
erage task service time) equals the input traffic intensity
(or loading factor). A load line is defined as a vertical line
corresponding to a particular value of input traffic inten-
sity. There may be none, one, or two points of intersec-
tion of an equilibrium contour with a particular load line.
At the input traffic intensity pn,,, equal to the maximum
possible output traffic intensity, there is only one inter-
section point. For values of p greater than p,,, the sys-
tem is overloaded and queue lengths grow without bound;
in this case there are no intersection points. For values of
p less then p.,,, there are two intersection points; the
lower is termed the system operating point and the upper
the system saturation point. Below the system saturation
point, the tendency of the system is to return to the system
operating point. However, once the system saturation
point is exceeded (which occurs eventually due to random
fluctuations), the performance of the system degrades rap-
idly.

The remainder of this Appendix consists of the analysis
of the Uncontrolled Random policy for system equilib-
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rium points. Here p,(0 = n < T) and 7, denote the con-
ditional probability of queue length #, and the mean queue
length, respectively, given that the node is in a processing
phase. A, and A,(n) denote unconditioned and conditioned
arrival rates of transferred tasks, respectively.

In Uncontrolled Random, the arrival rate of transferred
tasks is independent of the node state. Therefore, for all
n:

An) = N, (URD)

The arrival rate of transferred tasks must equal the rate of
task transfers. Also, since no tasks are processed in the
transferring phase, the probability of being in this phase
is equal to that portion of the node utilization that is due
to transferring tasks, or CA,. Since only those tasks that
arrive while the queue length is greater than or equal to T
are transferred,

A= [pr(1 — C\) + CM()\ + N
Solving for pr yields

A
= Ch'
AEK
e e (UR2)

Consider now the birth-death model of Fig. 1. The con-
ditional probability p, is given by

_1=p—-C\
Py =—T-6x

Using this expression, (UR1), and the formula for the so-
Iution of a birth-death model [4] yields, for0 = n < T,

1 —p—CA\ n
— [S(\ + :
o SO+
Equating the right-hand side of (UR3) for n = T with the

right-hand side of (UR2) gives

A
k+h,

Equation (UR4) has the solution A, = (1/§) — A for all
C = 0. However, for each S in the region of interest (C
< § < (1/N)), this solution does not result in conditional
state probabilities that sum to one, except for a special
case value of A that depends on S. This special value can
be found by substituting this solution for A, into equation
(UR3). Noting that the right-hand side is then indepen-
dent of n, and that all of the conditional probabilities must
therefore be equal, the conditional probabilities sum to
one if and only if p, = 1/(T + 1). Making this substitu-
tion and solving for A yields as the special case value:

P = (UR3)

~CN=(1L = p—CNISX + M1 (UR4)

o
A= I—S
T T+ 1
T Ss—-C

If C =0 (and p < 1), (UR4) has exactly one valid so-
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lution. Therefore, there is only one equilibrium point, and
the system is stable. If C > 0, (UR4) has exactly two
valid solutions for all positive values of p less than some
value p,,x < 1, one valid solution for p = p,,,, and no
valid solutions for p > ppa,. The value pg,, defines the
maximum possible throughput of the system. For p =
Pmax the system is overloaded. For 0 < p < pp., the sys-
tem is unstable.

The solutions of equation (UR4) may be found nu-
merically by any appropriate method. (The method used
to obtain the numerical results of Fig. 10 is based on the
bisection method of finding roots.) For each valid solu-
tion, the conditional state probabilities p, are given by
(UR3). The conditional mean queue length 7, is given
by

Py —_ — T
5= SO N {1 o C}\,][l SO + M)

1—CN 1 = SN + WP
_ TIS(\ + x,)]f]
1—SA+ M) (HR3)

From this solution all of the performance measures of in-
terest can be derived. For example, the mean response
time R of tasks is given by

_m(l = CN) + TC?\,+§[_;]
A AL=-Ch+ N

(UR6)

The first term in (URG) is derived by applying Little’s
equation [10], using expressions for the throughput and
mean queue length of locally processed tasks. The
throughput of processed tasks is given by A. The mean
queue length of tasks to be processed at the node is given
by the mean queue length during a processing phase, mul-
tiplied by the probability of being in a processing phase,
plus the queue length during a transferring phase, multi-
plied by the probability of being in a transferring phase.
The second term in (UR6) is just the mean number of
times a task must be transferred, multiplied by the mean
delay experienced each time.

R

APPENDIX B
SoLuTioN oF MoODELS

This Appendix completes the analysis of the load shar-
ing models introduced in Section II. As in Appendix A,
p-(0 = n < T) and 7, denote the conditional probability
of queue length n and the mean queue length, respec-
tively, given that the node is in a processing phase; \, and
M(n) denote unconditioned and conditioned arrival rates
of transferred tasks, respectively. In addition, p%. de-
notes the absolute probability of being in a transferring
phase.

A. Random Policy

In the Random policy, the arrival rate of transferred
tasks is independent of the node state. Therefore, for all

n,
M) = . (R1)

The arrival rate of transferred taks must equal the rate of
task transfers. Since only those tasks that arrive while the
queue length is greater than or equal to T are transferred,
under the constraint of the transfer limit L,,

Ly
A=A LZJ, [pr(l = p$+) + p?»r‘].

Note, in the above equation, that A multiplied by the /th
term in the summation gives the rate at which tasks that
have already been transferred / — 1 times are transferred
once more. Performing the summation yields

N = [pr(1 = pT4)
1 — [pr(l — p%+) + p§1
1 = [pr(1 = p7+) + p7-]

The probability of being in a transferring phase is just that
portion of the node utilization due to performing task
transfers and processing tasks that could not be trans-
ferred because of the transfer limit. Therefore,

FpaIk [ } (R2)

pF+ = CN + SNpr(1 — p%+) + pF.a“*".

Using (R2) to substitute for the exponentiated term and
solving for p7+ yields

po, S PISAEN) — (- O N

r L= (1 =pp) SN+ N)

(R3)

Consider now the birth-death model of Fig. 1. Using
the formula for the solution of a birth-death model along
with equation (R1) yields

_ IS+ MIT I = SO+ \))
Pr="T_150 + NI

(R4)

Equation (R4) can be used to substitute for p; in (R2)
and (R3). Equation (R3) can then be used to substitute for

P7+ in (R2), yielding a nonlinear equation in the single
‘unknown A,. The solution of this equation may be found

numerically by any appropriate method. (The method used
to obtain numerical results is based on the bisection
method of finding roots.) Once A, has been found, py is
given by (R4), and p%+ is then given by (R3). From the
formula for the solution of a birth-death model, the con-
ditional mean queue length 7, is given by

| g cx,][1 — SO + MY

A, = S(\ + )\,)[ 1 —p%e LI = SO+ NP

T T
[SA + M)] ] ®S)

1 =8N+ MN)
All of the performance measures of interest can now be

computed. In particular, the mean response time R of tasks
is given by:
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_ (1 = pa) + Tpfe + Npr(l — p7) + p7d“*' Rpey, ),
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A

where Rr., denotes the mean delay experienced in being
transferred, and Ry, denotes the processing delay for a
task that arrives at the node when the node is at or over
threshold, and yet is not transferred due to the transfer
limit. The first term in (R6) is derived by applying Little’s
equation, using expressions for the throughput and mean
queue length of locally processed tasks. The throughput
of processed tasks is given by A. The mean queue length
of tasks to be processed at the node is given by the mean
queue length during a processing phase, multiplied by the
probability of being in a processing phase, plus the
threshold multiplied by the probability of being in a trans-
ferring phase, plus the mean queue length of tasks that are
processed locally only because of the transfer limit (which
is given by the arrival rate of such tasks multiplied by
their mean delay). The second term in (R6) is just the
mean number of times a task must be transferred, multi-
plied by the mean delay experienced each time.

Expressions for Ry, and Ry., are derived from the so-
lution of a preemptive priority HOL M/M/1 queue [4].
Ry, is given by

+ K_RT*-, (R6)
L,,
M = [pr(1 = p74) + pTal A
“[1 = [pr(1 = p7+) + p3+17].
This gives
+ _ pr( — p74) + p74]
(1 = pn)( — p7+)
" [1 = [pr(1 — pF9) + pTe1™l. (T3)

The probability of being in a transferring phase is just that
portion of the node utilization due to performing task
transfers and processing tasks that could not be trans-
ferred because of a failure to find a suitable destination.
Therefore,

P+ = CN + SAIpr(l — p%e) + ph]tl.

Using (T3) to substitute for the exponentiated term and
solving for p%. yields

prSA = (1 — pr)(§ — C) Nf

a, = : T4
c P ST A =B+ =Ny
Rpsy = v
B | —C A D Consider now the birth-death model of Fig. 1. Using
pr(1 — p%.) + p. the formula for the solution of a birth-death model along
with (T1) yields
Ry+, is given by
A
S-E-0O¢C alI a
Rov = pr(l —p74) + P71+ (R8)
e A A I
1 e k = : = S}\ l i a+ + a; 'I—I
[ o —p +p%+}[l RS TR G
B. Threshold Policy . 3
* -
In the model of the Threshold policy, all transferred _ SO+ M) A = SN+ NY) (T5)

tasks arrive when the node queue length is less than the
threshold T. Therefore, A(T) and A(T*) are both zero.
When the node queue length is less than T, the arrival rate
of transferred tasks is independent of the node state. Since
the probability that the node queue length is less than T
is (1 — pr)(1 — p%+), it must be the case that, for0 < n
=T-1,

A(n) = NF (ThH)

where A is defined by
(1 =pn = p7y)

The arrival rate of transferred tasks must equal the rate of
task transfers. Since only those tasks that arrive while the
queue length is greater than or equal to the threshold 7
are transferred, under the constraint of a probe limit of

N (T2)

e 1= SO + 2O

Equation (T5) can be used to substitute for prin (T3)
and (T4). Equation (T4) then can be used to substitute for
pr+ in (T3), yielding a nonlinear equation in the single
unknown A;. The solution of this equation may be found
numerically by any appropriate method. (The method used
to obtain numerical results is based on the bisection
method of finding roots.) Once A* has been found, p; is
given by (T5), p7-+ is then given by (T4), and A, is then
given by (T2).

From the formula for the solution of a birth-death
model, the conditional mean queue length 7, is given by

| = = Cﬂ{l — [SON + A9)T
1 —p% 1 — SO\ + A9
_ TS\ + )\:")]T]
1 = SN+ N9

7, = SO\ + )\,*)[

(T6)
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The mean response time R of tasks is given by
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R Al — p%) + IpF+ + Npr(1 — p§+) + p51"*" Rpv,

A

where Ry, denotes the mean delay experienced in being
transferred, and Ry+, denotes the processing delay for a
task that arrives at the node when the node is at or over
threshold, and yet is not transferred since a suitable des-
tination has not been found after the maximum number of
probes. This equation is quite similar to that for the Ran-
dom policy, and is derived in a similar manner.

Expressions for Rr+, and Ry, are derived from the so-
lution of a preemptive priority HOL M/M/1 queue. Ry,
is given by exactly the same equation as for the Random
policy

o RT*.I’

X (T7)

The probability of being in a transferring phase is just that
portion of the node utilization due to performing task
transfers and processing tasks that could not be trans-
ferred because of a failure to find a suitable destination.
Therefore:

pt+ = CN + SN[pr(l — p7+) + pfl=*!. (83)
The arrival rates A(n), for0 < n < T — 1, are then given
by
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Ry, is given by
$-E-0C)C tf a
pr(l — p7+) + p7+ (T9)
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RT*p = N
[l - C ﬁf a
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C. Shortest Policy

Iteration is used to evaluate the model of the Shortest
policy. In a typical step, a model solution is used to derive
new values for the arrival rates of transferred tasks, and
a new solution is computed. In the following description
of the iteration equations, pshort, denotes the probability
that a node with queue length n is selected when attempt-
ing to find a suitable node to which to transfer a task. The
following equation gives pshort,, 0 <= n <= T — 1, in
terms of the probe limit L,, the conditional state proba-
bilities p,, and the probability of being in a transferring
phase p7.:

o n=1i Lp
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The first term in (S1) gives the probability that all of the
L, randomly chosen nodes have queue length greater than
or equal to n; the second term gives the probability that
all of the L, randomly chosen nodes have queue length
greater than or equal to n + 1. The difference of the two
terms provides the required probability. Noting that only
those tasks that arrive when a node is at or over threshold
can be transferred, under the constraint of a probe limit
of L,, and that the arrival rate of transferred tasks must
equal the rate of task transfers,

A = [pr(1 = p7+) + P71 A

“ [1 = [pr(1 = p%+) + p%d&l. (S2)

pr(l = p7e) + p1+

— SNlpr(1 — p§+) + p‘{w]L"}

The formula for the solution of a birth-death model yields,
forl <=n=<T,

An — 1
Pr =pn_.[1 SR D ’} o (55)
Finally, p, is given by
1 —p— C\
e T M S6
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In one iteration of the method used to compute numer-
ical results, (S1)—-(S6) are applied to a model solution in
order, yielding a new model solution. The conditional
state probabilities of the new solution then are normalized
to sum to one by scaling the probabilities p, for k > 0.
The iteration stopping criterion is based on comparing old
and new conditional mean queue length values, as ob-
tained from the conditional state probabilities. Empiri-
cally, the iteration is insensitive to the initializations used.
Once the solutions of (S1)-(86) have been obtained, the
mean response time R of tasks is given by the same equa-
tions as in the analysis of the Threshold policy.

AprpENDIX C
SIMULATION RESULTS

Experimentation with an event-driven simulation pro-
gram has provided validation of the decomposition ap-
proximation utilized in our analytic models. The simula-
tion program uses the same system model as do the
analytic models, but does not make the decomposition ap-
proximation.
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Fig. 11. Simulation results: response time versus load p. S(task service
time) = 1. C(cost of task transfer) = 0.1. T(threshold) = 2. L (probe
limit for Threshold and Shortest) = 3. L(transfer limit for Random) =
L:

In Fig. 11 we present a small sample of the results of
our simulation experiments. A system with 20 nodes has
been simulated. Fig. 11 should be compared to Fig. 2; for
the Random, Threshold, and Shortest policies the former
figure shows the simulation results that correspond to the
analytic results of the latter figure. (Fig. 11 also includes
the analytic results for M/M/1 and M/M/20 for compar-
ison purposes.) Note the close correspondence between
the two figures, both with respect to the absolute values
of the performance measures (particularly at low to mod-
erate loadings), and with respect to the indicated relative
performance of the three load sharing policies.
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