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LBP-based Segmentation of Defocus Blur
Xin Yi, Mark Eramian

Abstract—Defocus blur is extremely common in images cap-
tured using optical imaging systems. It may be undesirable, but
may also be an intentional artistic effect, thus, it can either
enhance or inhibit our visual perception of the image scene.
For tasks such as image restoration and object recognition,
one might want to segment a partially blurred image into
blurred and non-blurred regions. In this paper, we propose
a sharpness metric based on LBP (local binary patterns) and
a robust segmentation algorithm to separate in- and out-of-
focus image regions. The proposed sharpness metric exploits the
observation that most local image patches in blurry regions have
significantly fewer of certain local binary patterns compared to
those in sharp regions. Using this metric together with image
matting and multi-scale inference, we obtained high quality
sharpness maps. Tests on hundreds of partially blurred images
were used to evaluate our blur segmentation algorithm and
six comparator methods. The results show that our algorithm
achieves comparative segmentation results with the state-of-the-
art and have big speed advantage over the others.

Index Terms—defocus, blur, segmentation, LBP, local binary
patterns, image restoration, object recognition, out-of-focus,
blurred,

I. INTRODUCTION

Defocus blur in an image is the result of an out-of-focus
optical imaging system. In the image formation process, light
radiating from points on the focus plane are mapped to a point
in the sensor, but light from a point outside the focus plane
illuminates a non-point region on the sensor known as a circle
of confusion. Defocus blur occurs when this circle becomes
large enough to be perceived by human eyes.

In digital photography, defocus blur is employed to blur
background and “pop out” the main subject using large-
aperture lenses. However, this inhibits computational image
understanding since blurring of the background suppresses de-
tails beneficial to scene interpretation. In this case, separation
of the blurred and sharp regions of an image may be necessary
so that post-processing or restoration algorithms can be applied
without affecting the sharp regions, or so that image features
are only extracted from in-focus regions.

Most current image deblurring methods assume that the
blur is spatially invariant [13], [41], [23], [27], [26], [22].
Typically, a global blur kernel is estimated and the origi-
nal image is reconstructed by fitting it to different image
priors with maximimum a posteriori estimation. Methods
that explicitly model spatially variant blur typically restore
small image patches within which blur can be treated as
invariant, and restored patches are stitched together [48], [2],
[6], [47], [16]. Efficient and accurate detection of blurred or
non-blurred regions is useful in several contexts including: 1)
in avoiding expensive post-processing of non-blurred regions
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(e.g. deconvolution) [12]; 2) in computational photography to
identify a blurred background and further blur it to achieve the
artistic bokeh effect [4], [43], particularly for high-depth-of-
field cellular phone cameras; and 3) for object recognition in
domains where objects of interest are not all-in-focus (e.g.
microscopy images) and portions of the object which are
blurred must be identified to ensure proper extraction of image
features, or, if only the background is blurred, to serve as an
additional cue to locate the foreground object and perform
object-centric spatial pooling [40].

The purpose of segmentation of defocus blur is to separate
blurred and non-blurred regions so that any aforementioned
post-processing can be facilitated. Herein, this problem is ex-
plicitly addressed without quantifying the extent of blurriness
and a new sharpness metric based on Local Binary Patterns
(LBP) is introduced.

II. RELATED WORKS

The most commonly seen approach for defocus segmenta-
tion literature is via local sharpness measurement. There are
many works in this area in the past two decades and most of
them can be found in the image quality assessment field where
images are rated by a single sharpness score that should con-
form to the human visual perception. These applications only
require a single sharpness value to be reported for a single im-
age, thus most of the measures only rely on sharpness around
local edges [14], [31], [29] or some distinctive image structures
determined in the complex wavelet transform domain [17].
Similarly, the line spread profile has been adopted for edge
blurriness measurement in image recapture detection [46].
Since most of these metrics are measured around edges, they
cannot readily characterize sharpness of any given local image
content unless edge-sharpness is interpolated elsewhere as was
done in [4], [57].

Measures such as higher order statistics [21], variance of
wavelet coefficients [52], local variance image field [53] have
been used directly in segmentation of objects of interest in
low-depth-of-field images. These local sharpness metrics are
based on local image energy which means that the measures
will not only decrease if the energy of the PSF (point spread
function) decreases (becomes more blurry), but also decreases
if the energy of the image content drops. Thus, a blurry, high-
contrast edge region could have a higher sharpness score than
an in-focus, low-contrast one. These metrics are suitable for
relative sharpness measures, e.g. in focal stacking, but do not
behave very well for local sharpness measure across various
image contents. This deficiency has already been pointed out
in [55].

Recently, the authors of [43], [28] proposed a set of novel
local sharpness features, e.g. gradient histogram span, kurtosis,
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for training of a naı̈ve Bayes classifier for blur classification
of local image regions. The sharpness is interpreted as the
likelihood of being classified as sharp patch. Su et al. used
singular value decomposition (SVD) of image features to
characterize blur and simple thresholding for blurred region
detection [44]. Vu et al. used local power spectrum slope and
local total variation for the measure in both the spectral and
spatial domains. The final sharpness is the geometric mean of
the two measures [51].

Instead of measuring sharpness only based on local infor-
mation, Shi et al. proposed to learn a sparse dictionary based
on a large external set of defocus images and then use it to
build a sparse representation of the test image patch. The
final measure was the number of non-zero elements of the
corresponding words [20].

Depth map estimation is another approach that can also
be used for defocus blur segmentation. Zhuo et al. used
edge width as a reference for depth measurement under the
assumption that edges in blurred regions are wider than those
in sharp regions [57]. They obtained a continuous defocus map
by propagating the sharpness measures at edges to the rest of
the image using image matting [25]. Bae and Durand’s work
is similar, but they computed edge width differently by finding
the distance of second derivative extrema of opposite sign in
the gradient direction [4]. These methods tend to highlight
edges in places where the blur measure is actually smooth.

Zhu et al. tried to explicitly estimate the space-variant PSF
by analyzing the localized frequency spectrum of the gradient
field [56]. The defocus blur kernel is parameterized as a
function of a single variable (e.g. radius for a disc kernel
or variance for Gaussian kernel) and is estimated via MAPk
estimation [26]. Similar work can be found in [9] but the blur
kernel is restricted to a finite number of candidates. Khosro et
al. estimate the blur kernel locally via blind image deconvolu-
tion by assuming the kernel is invariant inside the local block.
But instead of fitting the estimated kernel to a parameterized
model, they quantized the sharpness through reblurring [5].
Florent et al. treat the blur kernel estimation as a multi-
label energy minimization problem by combining learned local
blur evidence with global smoothness constraints [11]. These
methods are inherently slow because of the iterative nature.

Unlike [4], [56], [57], we do not intend to construct a
depth map. Our goal is only to separate in-focus regions from
regions of defocus blur; Also unlike [20], we do not rely
on external defocus images; in this respect our work is most
similar to [44], [28], [43], [51].

We postulate that local-based defocus blur segmentation
methods to date have been limited by the quality of the
sharpness measures which they employ.

We now review local metrics of image sharpness that
have been recently introduced for the segmentation of blurred
regions. Generally, they fall into one of three categories: gra-
dient domain metrics, intensity domain metrics, and frequency
domain metrics.

A. Gradient Domain Metrics
1) Gradient Histogram Span [54], [44]: The gradient mag-

nitude of sharp images exhibits a heavy-tailed distribution [13],

[41], [26], [22] and can be modelled with a two component
Gaussian mixture model (GMM):

G = a1e
− (g−µ1)2

σ1 + a2e
− (g−µ2)2

σ2 , (1)

where means µ1 = µ2 = 0, variance σ1 > σ2, g is the gradient
magnitude, and G is the gradient magnitude distribution in a
local region. The component with larger variance is believed
to be responsible for the heavy-tailed property. Thus the local
sharpness metric is:

mGHS = σ1. (2)

2) Kurtosis [43]: Kurtosis, which captures the “peaked-
ness” of a distribution, also characterizes the gradient mag-
nitude distribution difference. It is defined as:

K =
E[(g − µ)4]

E2[(g − µ)2]
− 3 (3)

where the first term is the fourth moment around the mean
divided by the square of the second moment around the mean.
The offset of 3 is to cause the peakedness measure of a normal
distribution to be 0. The derived local sharpness metric is:

mK = min(ln(K(gx) + 3), ln(K(gy) + 3)), (4)

where gx, gy are gradient magnitudes along x and y axis
respectively.

B. Intensity Domain Metrics

1) Singular Value Decomposition (SVD) [28]: An image
patch PPP can be decomposed by SVD:

PPP = UUUΛΛΛVVVT =

n∑
i=1

λiuuuivvv
T
i , (5)

where UUU,VVV are orthogonal matrices, ΛΛΛ is a diagonal matrix
whose diagonal entries are singular values arranged in de-
scending order, uuui and vvvi are the column vectors of UUU and VVV
respectively, and λi are the singular values of ΛΛΛ. It is claimed
that large singular values correspond to the rough shape of the
patch whereas small singular values correspond to details. The
sharpness metric is:

mSVD(k) = 1−
∑k
i=1 λi∑n
i=1 λi

, (6)

where the numerator is the sum of the k largest singular values.
2) Linear Discriminant Analysis (LDA) [43]: By sampling

a set of blurred and non-blurred patches, this method finds
a transform WWW that maximizes the ratio of the between-class
variance Sb to the within-class variance Sw of the projected
data with each variance:

Sb =
2∑
j=1

(µj − µ)T (µj − µ),

Sw =

2∑
j=1

Nj∑
i=1

(xji − µj)
T (xji − µj),

(7)

where j = 1 represents the blurred class, j = 2 represents the
sharp class, xi is the intensity of the i-th pixel, and Nj is the
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number of pixels in the corresponding region (see also Section
2.3 of [43]). This is solved by maximizing the ratio det|Sb|

det|Sw| and
the resulting column vectors of the projection matrix WWW are
the eigenvectors of S−1w Sb. The final metric can be expressed
as:

mLDA(i) = wwwT
i ppp (8)

where wwwi is the i-th column vector of matrix WWW, and ppp is the
vectorized patch intensity.

3) Sparsity [20]: This measure is based on sparse repre-
sentation. Each patch is decomposed according to a learned
over-complete dictionary which expressed as

argmin
uuu
||ppp−DDDuuu||2 + λ||uuu||1 (9)

where DDD is the learned dictionary on a set of blur image
patches. ppp is the vectorized patch intensity and uuu is the
coeficients vector, each item of which is the weight used for
the reconstruction. The reconstruction of a sharp patch requires
more words than blurred patches. Thus the sharpness measure
is defined as the number of non-zero elements in uuu, i.e., the
L0 norm of uuu.

mS = ||uuu||0 (10)

4) Total variation [51]: This metric is defined as

mTV =
1

4
max
ξ∈P

TV (ξ)

with TV (ξ) =
1

255

∑
i,j

|xi − xj |
(11)

which is the maximum of the total variation of smaller blocks
ξ (set as 2× 2 in the original paper) inside the local patch P .
The coefficient 1

4 is a normalization factor since the largest
TV of a 2 × 2 block is 4. The author argued that a non-
probabilistic application of TV can be used as a measure of
local sharpness due to its ability to take into account the degree
of local contrast.

C. Frequency Domain Metrics

1) Power Spectrum [28], [43], [51]: The average of the
power spectrum for frequency ω of an image patch is:

J(ω) =
1

n

∑
θ

J(ω, θ) ' A

ωα
(12)

where J(ω, θ) is the squared magnitude of the discrete Fourier
transform of the image patch in the polar coordinate system,
n is the number of quantizations of θ, and A is an amplitude
scaling factor. It was shown that α = 2 for sharp, natural
images [49], [15], [8]. Since blurred images contain less
energy in the high frequency components, the magnitude of
their power spectra tend to fall off much faster with increasing
ω, and the value of α is larger for such images. Rather than
fitting a linear model to obtain α, the average of the power
spectrum can be used instead as an indicator since the power
spectra of blurred regions tend to have a steeper slope than for
sharp regions, thus have a smaller average power. The metric
is:

mAPS =
1

n

∑
ω

∑
θ

J(ω, θ) (13)

In [51], [28], the authors directly use the fitted spectrum
slope α as the measure. However, the author in [43] claimed
that the average power spectrum is more robust to outliers and
overfitting, thus we only evaluate mAPS .

D. Response Behavior of Sharpness Metrics

Given these sharpness metrics, we conducted a preliminary
study to observe how they respond to different local image
textures to see if they are limiting progress in blur detection
as previously postulated. Since the proposed work is centred
on local sharpness measure, this experiment excludes measures
that rely on external informations, e.g. mLDA and mS .

Following the same methodology in [10], we assumed there
are four common types of textures that appear in natural
scenes, a random texture such as grass, a man-made tex-
ture, a smooth texture such as sky or fruit surface, and an
almost smooth texture such as areas on the road sign (the
characteristic of this texture is of low contrast and has more
detail than pure smooth regions). Four such exemplar textures
are shown in Figure 1. Gaussian blur of varying severity
(σ ∈ [0.1, 10.0]) was applied to these image patches and each
metric was computed for each texture and blur level. For the
SVD-based metric, we tested with k = 6, that is, mSVD(6),
but the response is similar for most values of k. The size of
image patches were 21× 21 pixels for all metrics.

Figure 2 shows the response of each metric to each of the
four exemplar textures in Figure 1 over the tested range of
σ. In addition, by evaluating 8000 sharp patches covering
different scenes, an aggregate performance of these measures
is also shown in Figure 2. The thick red curve shows the mean
response over the 8000 patches and the dashed red curves
show higher and lower quartiles (75th and 25th percentile). It
can be seen from this figure that, in an aggregate manner, all
measures decrease when blur increases (one exception is that
mK shows a slight increase after σ approaches 5). However,
the aggregate data hides responses that are very different
from the aggregate with mGHS and mK exhibiting minor to
moderate non-monotonicity on some specific textures. Two
patches are shown in Figure 3 with two levels of blur. The
one with larger σ has larger mK .

A smooth texture should elicit a constant, yet low response
to the sharpness metrics since its appearance does not change
with varying degrees of defocus blur, but the yellow curve
shows big differences in responses for most of the sharpness
metrics, with mGHS , mTV and mSVD exhibiting the least
variation. One would also expect that blurry regions would
have smaller response than sharp regions, but that is not the
case for all metrics. For example, at σ = 1.5 the range
of values between the higher and lower quartile has a large
overlap with range when σ = 0. In this respect, mAPS has
the worse performance. Finally, none of the metrics are well-
suited for measuring low contrast sharp regions, such as the
almost smooth region in the example. This is because the low
contrast region has very small intensity variance which leads
to low gradient and low frequency response. The green and
grey curve are almost inseparable for mGHS ,mSVD and mTV .
This drawback is further shown in Figure 11. The low contrast
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man-made texture

random texture
smooth texture

almost smooth texture

Fig. 1: Four commonly appeared textures in natural scenes.
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Fig. 2: Responses of different measures. The thick red curve shows the mean performance over 8000 patches and the dashed
red line shows the higher and lower quartile. The responses to 4 exemplar patches are shown in blur, cyan, green, grey curves
respectively.

mK = 0.9507 mK = 1.0915

σ=0.1 σ=1.1

Fig. 3: An example of the non-monotonicity of the sharpness
measure mK . The patches showing here are the almost smooth
patch under two levels of Gaussian blur as marked by black
dots in mK response in Figure 2.

yellow region of the road sign does not have a correct response
for all measures even if it is in focus.

In the next section we present our new sharpness metric
based on local binary patterns which is monotonic. The range
of response values for blur patches has less intersection than

that of sharp regions and it has a more appropriate response
to low contrast region.

III. PROPOSED LBP BASED BLUR METRIC

Local Binary Patterns (LBP) [33] have been successful for
computer vision problems such as texture segmentation [32],
face recognition [3], background subtraction [19] and recog-
nition of 3D textured surfaces [36]. The LBP code of a pixel
(xc, yc) is defined as:

LBPP,R(xc, yc) =

P−1∑
p=0

S(np − nc)× 2p

with S(x) =

{
1 |x| ≥ TLBP

0 |x| < TLBP

(14)

where nc is the intensity of the central pixel (xc, yc), np
corresponds to the intensities of the P neighbouring pixels
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located on a circle of radius R centered at nc, and TLBP > 0
is a small, positive threshold in order to achieve robustness for
flat image regions as in [19]. Figure 4 shows the locations of
the neighbouring pixels np for P = 8 and R = 1. In general,
the points np do not fall in the center of image pixels, so the
intensity of np is obtained with bilinear interpolation.

n0

n7
n6

n5

n4

n3
n2

n1

nc

Fig. 4: 8-bit LBP with P = 8, R = 1.

0 1 2 3 4

5 6 7 8

Fig. 5: The uniform rotationally invariant LBP.

A rotation invariant version of LBP can be achieved by
performing the circular bitwise right shift that minimizes the
value of the LBP code when it is interpreted as a binary
number [34]. In this way, number of unique patterns is reduced
to 36. Ojala et al. found that not all rotation invariant patterns
sustain rotation equally well [34], and so proposed using only
uniform patterns which are a subset of the rotation invariant
patterns. A pattern is uniform if the circular sequence of bits
contains no more than two transitions from one to zero, or
zero to one. The non-uniform patterns are then all treated as

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

Local binary patterns

Fr
eq

ue
nc

y

blur region
sharp region

Fig. 6: LBP code distribution in blurred and sharp regions.
Bins 0–8 are the counts of the uniform patterns; bin 9 is
the count of non-uniform patterns. Data is sampled from 100
partial blurred images from [42].

one single pattern. This further reduces the number of unique
patterns to 10 (for 8-bit LBP), that is, 9 uniform patterns, and
the category of non-uniform patterns. The uniform patterns
are shown in Figure 5. In this figure, neighbouring pixels are
coloured blue if their intensity difference from centre pixel is
larger than TLBP , and we say that it has been “triggered”,
otherwise, the neighbours are coloured red.

Figure 6 shows the histogram of the nine uniform LBP
patterns appearing in the blurred and non-blurred regions
of 100 images randomly selected from a publicly available
dataset of 704 partially blurred images [42], each of which is
provided with a hand-segmented groundtruth image denoting
the blurred and non-blurred regions. Bin 9 is the number of
non-uniform patterns. The frequency of patterns 6, 7, 8, and 9
in blurred regions is noticeably less than that for sharp regions.
The intuitive explanation for this is that in smoother areas,
most neighbouring pixels will be similar in intensity to nc, and
the chance of a neighbour being triggered is lower, making
the lower-numbered uniform patterns with fewer triggered
neighbours more likely. Examples of the LBP histograms of
specific sharp and blurred patches is given in Figure 7 which
also exhibit this expected behaviour.

Our proposed sharpness metric exploits these observations:

mLBP =
1

N

9∑
i=6

n(LBP riu28,1 i) (15)

where n(LBP riu28,1 i) is the number of rotation invariant uni-
form 8-bit LBP pattern of type i, and N is the total number of
pixels in the selected local region which serves to normalize
the metric so that mLBP ∈ [0, 1]. One of the advantages of
measuring sharpness in the LBP domain is that LBP features
are robust to monotonic illumination changes which occur
frequently in natural images.

The threshold TLBP in Equation 14 controls the proposed
metric’s sensitivity to sharpness. As shown in Figure 8, by
increasing TLBP , the metric becomes less sensitive to sharp-
ness. However, there is a tradeoff between sharpness sensitivity
and noise robustness, as shown in Figure 9. In situations
where high sensitivity to sharpness is needed, a discontinuity-
preserving noise reduction filter such as non-local means [7]
should be employed.

Figure 10 shows our metric’s response to various levels
of blur (TLBP = 0.016). There is a sharp fall-off between
σ = 0.2 and σ = 1.0 which makes the intersection of response
value range of sharp and blur much smaller than the other met-
rics. When σ approaches 2, responses for all patches shrinks
to zero which facilitates segmentation of blurred and sharp
regions by simple thresholding. Moreover, almost smooth
region elicit a much higher response than smooth region
compared with the other metrics. Finally, the metric response
is nearly monotonic, decreasing with increasing blur, which
should allow such regions to be distinguished with greater
accuracy and consistency. Figure 11 shows maps of the local
response of our metric and comparators for a sample image.
Our metric has the most coherent response and responds the
most consistently to low contras regions such as the road sign.
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A
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original image
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groudtruth
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C

Fig. 7: Histogram of LBP patterns in three different patches which are sampled from blurred (A), sharp (B), and transitive (C)
areas respectively. In the ground truth image, white denotes the sharp region and black the blurred region.

original image TLBP = 0.004 TLBP = 0.012

TLBP = 0.020 TLBP = 0.028 TLBP = 0.036

Fig. 8: Response of mLBP (Equation 15) for various values of
threshold TLBP . TLBP determines the cutoff for the magnitude
of intensity change that is considered an “edge”, regardless of
edge sharpness.

original image PSNR = 29.98dB PSNR = 20.22dB

Fig. 9: Response of mLBP in the presence of noise. Top: the
original image and two copies corrupted by Gaussian noise;
bottom: the corresponding sharpness maps. TLBP = 0.016.

Table I shows a comparison of the runtime of mLBP and
comparator metrics. Where available, author-supplied code for
calculating the metrics was used, otherwise our own imple-
mentations were used. All implementations were in MATLAB
and were unoptimized. 10 randomly selected images with
approximate size of 640 × 480 pixels were tested on a Mac
with 2.66 GHz intel core i5 and 8 GB memory. The average
runtimes are reported in Table I.

The sharpness maps, response curves, and runtimes provide
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Fig. 10: Our metrics’ response to the sample patches shown
in Figure 1. As the same as in Figure 2, an aggregate response
on 8000 sharp patches is also shown with the thick red curve
showing the mean response and the dashed red curve showing
the higher and lower quartile.

Sharpness Metric Avg. Runtime
gradient histogram span (mGHS ) [43], [28] 273.19s
kurtosis (mK ) [43] 11.57s
singular value decomposition (mSVD ) [44] 38.66s
total variation (mTV ) [51] 50.00s
average power spectrum slope (mAPS ) [43] 22.89s
our LBP-based metric (mLBP ) 3.55s
our LBP-based metric (mLBP , mex imp.) 26.5ms

TABLE I: Runtime comparison of various metrics. Note that
the speed of our metric can be boosted by using integral image
which makes the complexity independent of the size of local
region.

strong qualitative and quantitative evidence that our metric is
superior. In the next section we present a blur segmentation
method that achieves the state-of-the-art results by employing
this metric.

IV. NEW BLUR SEGMENTATION ALGORITHM

This section presents our algorithm for segmenting
blurred/sharp regions with our LBP-based sharpness metric;
it is summarized in Figure 12. The algorithm has four main
steps: multi-scale sharpness map generation, alpha matting ini-
tialization, alpha map computation, and multi-scale sharpness
inference.
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original image

ground truth

SVD (mSVD )local kurtosis (mK)

total variation (mTV )

gradient hist. span (mGHS )

avg. power spectrum (mAPS ) local binary pattern hist. (mLBP )

Fig. 11: Metric responses for a sample image for different sharpness metrics.

A. Multi-scale Sharpness Map Generation

In the first step, multi-scale sharpness maps are generated
using mLBP . The sharpness metric is computed for a local
patch about each image pixel. Sharpness maps are constructed
at three scales where scale refers to local patch size. By using
an integral image [50], sharpness maps may be computed in
constant time per pixel for a fixed P and R.

B. Alpha Matting Initialization

Alpha matting is the process of decomposing an image into
foreground and background. The image formation model can
be expressed as:

I(x, y) = αx,yF (x, y) + (1− αx,y)B(x, y) (16)

where the alpha matte, αx,y , is the opacity value on pixel
position (x, y). It can be interpreted as the confidence that a
pixel is in the foreground. Typically, alpha matting requires a
user to interactively mark known foreground and background
pixels, initializing those pixels with α = 1 and α = 0,
repectively.

Interpreting “foreground” as “sharp” and background as
“blurred”, we initialized the alpha matting process automat-
ically by applying a double threshold to the sharpness maps
computed in the previous step to produce an initial value of
α for each pixel:

masks(x, y) =


1, if mLBP (x, y) > Tm1

.

0, if mLBP (x, y) < Tm2 .

mLBP (x, y), otherwise.
(17)

where s indexes the scale, that is, masks(x, y) is the initial
α-map at the s-th scale.

C. Alpha Map Computation

The α-map was solved by minimizing the following cost
function as proposed by Levin [25]:

E(α) = αTLLLα+ λ(α− α̂)T (α− α̂) (18)

where α is the vectorized α-map, α̂ = maski(x, y) is one
of the vectorized initialization alpha maps from the previous
step, and LLL is the matting Laplacian matrix. The first term is
the regulation term that ensures smoothness, and the second
term is the data fitting term that encourages similarity to α̂.
For more details on Equation 18, readers are referred to [25].

The alpha matting was applied at each scale as shown in
Figure 12. The final alpha map at each scale is denoted as
αs, s = 1, 2, 3.

D. Multi-scale Inference

After determining the alpha map at three different scales, a
multi-scale graphical model was adopted to make the final
decision [43]. The total energy on the graphical model is
expressed as:

E(h) =
3∑
s=1

∑
i

|hsi − ĥsi |+

β

 3∑
s=1

∑
i

∑
j∈Nsi

|hsi − hsj |+
2∑
s=1

∑
i

|hsi − hs+1
i |


(19)

where ĥsi = αsi is the alpha map for scale s at pixel location i
that was computed in the previous step, and hsi is the sharpness
to be inferred. The first term on the right hand side is the unary
term which is the cost of assigning sharpness value hsi to pixel
i in scale s. The second is the pairwise term which enforces
smoothness in the same scale and across different scales. The
weight β regulates the relative importance of these two terms.
Optimization of Equation 19 was performed using loopy belief
propagation [30].

The output of the algorithm is h3 which is the inferred
sharpness map at the largest scale. This is a grayscale image,
where higher intensity indicates greater sharpness.
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Fig. 12: Our blur segmentation algorithm. The main steps are
shown on the left; the right shows each image generated and
its role in the algorithm. The output of the algorithm is h1.

V. BLUR SEGMENTATION ALGORITHM EVALUATION

Our blur segmentation algorithms were tested using a public
blurred image dataset consisting of 704 partially blurred
images and accompanying hand-segmented ground truth im-
ages [42] . Each image was segmented into sharp and blurred
regions using the processes described in Section IV. Sharpness
metric mLBP was computed with TLBP = 0.016. The sharp-
ness map scales were square local regions of 11×11, 15×15,
and 21× 21 pixels. The thresholds used in the alpha matting
step were Tm1

= 0.3 and Tm2
= 0.01. Weight β = 0.5 was

used in the multi-scale inferencing step.
We compared our algorithm to six comparator methods

briefly mentioned in Section II of which we now remind the
reader. Su et al. simply calculated a sharpness map using
mSVD [44]; Vu combined both spectral and spatial sharpness
(as called S1 and S2 in the original paper) using a geometric
mean [51]. Shi14 used all of mGHS ,mK ,mLDA,mAPS to-
gether with a naı̈ve Bayes classifier and multi-scale inference
model [43]. Shi15 formed a sparse representation of image
patches using a learned dictionary for the detection of slight
perceivable blur [20]. Zhuo computed a depth map based
on edge width [57]. Zhu estimated the space-variant PSF by
statistical modelling of the localized frequency spectrum of

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

recall

pr
ec

is
io

n

Ours mLBP Shi15 [20]
Vu [51] Shi14 [43] Su [44]

Zhuo [57] Zhu [56]

Fig. 13: Precision and recall curves for different methods on
the blur dataset. The curves were obtained by thresholding the
sharpness maps with threshold varying in the range of [0, 255].
Note that our method achieves the highest precision when
recall is larger than 0.8. This comparison might be unfair for
Zhu since their segmentation is based on graph cut rather than
thresholding of the depth map. Therefore we compared their
graph cut segmented binary map in the F -measure section.

the gradient field [56].
All the output of these methods are grayscale images where

greater intensity indicates greater sharpness, and all (except for
Zhu) use simple thresholding, Tseg , as a final step to produce a
segmentation, as in our own algorithm. The parameters for the
comparator algorithms were to the defaults as in their original
code. Since we were unable to get the original code for Zhu’s
algorithm [56], which belongs to Adobe Systems Inc., the
results shown here were produced by our own implementation
of the algorithm as described in the published paper. The depth
map was normalized by 8 (since the coherence labels are in
the range of [0,8]) and inverted to get the sharpness map.

A. Precision and Recall

Precision and recall curves were generated for each algo-
rithm by varying the threshold used to produce a segmentation
of the final sharpness maps (i.e. similar to [43]).

precision =
R ∩Rg
R

, recall =
R ∩Rg
Rg

(20)

where R is the set of pixels in the segmented blurred region
and Rg is the set of pixels in the ground truth blurred region.
Figure 13 shows the precision and recall curves for each
method with the threshold Tseg sampled at every integer
within the interval [0, 255]. Our algorithm achieves higher
precision than the comparator algorithms when recall is above
0.8. Moreover, the proposed sharpness metric alone achieves
results comparable to Shi15.

Figure 14 shows the sharpness maps (prior to final thresh-
olding) for each algorithm for a few sample images. Our
method is superior than the others under various background

http://www.cse.cuhk.edu.hk/~leojia/projects/dblurdetect/dataset.html
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Fig. 14: Results achieved by different blur detection methods. Final sharpness maps, prior to thresholding for segmentation,
are shown.
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Fig. 15: Precision, Recall and F -measure for adaptive thresh-
olds. The result of Zhu is achieved by using graph cut instead
of simple thresholding as suggested in their paper. Note that
by using a smaller threshold (i.e. Tseg = 0.3), our method
can achieve comparative performance (precision = 0.863,
recall = 0.868, F -measure = 0.864) with Zhu.

and blurs. We attribute errors mainly to the shortcomings of
the sharpness metrics used by local based methods–Shi14, Vu,
Su (Section II). Moreover, our detection maps contain mostly
high- or low-confidence values which can be more correctly
thresholded.

B. F -measure

In another experiment, we used an image dependent adap-
tive threshold proposed by [1] for the segmentation with the
threshold defined as:

Tseg =
2

W ×H

W∑
x=1

H∑
y=1

I(x, y) (21)

where, W,H are the width and height of the final sharpness
map I . Then, similar to [35], the weighted harmonic mean
measure or F -measure of precision and recall was computed
for comparison. The definition is as follows:

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

(22)

Here, β2 was set to 0.3 as in [35], [1].
Note that, the segmentation map of Zhu was produced

by graph cut instead of simple thresholding of the depth
map. The parameters we used were the same as suggested
in their paper which are λ0 = 1000, σλ = 0.04, τ = 2.
Exemplar segmentation maps of images in Figure 14 is shown
in Figure 16.

The reason our performance is worse than Zhu in Figure 15
is that the adaptive threshold is not the best threshold for
our method. The best precision and recall we can achieve,
as can be seen in Figure 13, is precision = 0.863, recall =
0.868 which is comparative with the one Zhu have achieved.
However, even if only the adaptive-thresholded results were
compared, our method ranked first among the comparators.

Blur segmentation Avg. Runtime
Ours 27.75s
mLBP 40ms
Shi15 [20] 38.36s
Vu [51] 19.18s
Shi14 [43] 705.27s
Su [44] 37s
Zhuo [57] 20.59s
Zhu [56] 12min

TABLE II: Run time comparison of different blur segmenta-
tion methods. The time for our method is based on a mex
implementation of mLBP .

A run time comparison of the complete segmentation algo-
rithms is shown in Table II. The same setup was used for
the measurement of runtime as in Table I. Given mLBP ’s
performance in the precision and recall curve and F -measure,
it has a significant speed advantage over the others. The time
for our complete segmentation algorithm is mostly spent on the
matting and multi-scale inference. It ranks the fourth among
all these methods.

Finally, we give some examples of our algorithm applied to
images other than those in our evaluation data set. Microscopy
optics often have low depth of field and form an important
class of images for blur detection. Figure 17 shows examples
of our algorithm applied to such images. The first is a plant
seed [39] whose roughly spherical shape results in a ring-
shaped in-focus region. The other image is a microorgan-
ism [37] in fresh water. The threshold TLBP for the sharpness
metric was set to 0.012 and 0.04 respectively. Note how well
our segmentation results conformed to the visual perception
of the image sharpness. Additional results can be seen in the
supplementary file.

C. Discussion

You may have noticed the jagged boundary of our seg-
mentation map when there is a distinctive depth discontinuity
between the foreground and background. This is because the
sharpness is measured locally. It is inevitable to incorporate
regions with various extents of sharpness by using a local
window, especially around edges where the depth discontinuity
occurs. Therefore, the sharp area is enlarged in the alpha
matting initialization step (step B). Zhu solved this problem
by taking smoothness and color edge information into consid-
eration in the coherence labeling step but would also fail in
cases where depth changes gradually.

There are certain situations that can cause our method
to fail. Our method has difficulty differentiating an in-focus
smooth region and a blurred smooth region since only a limited
small size of local neighbour is considered, but this is a
problem that will be inherently challenging for any algorithm.
If noise level in the image is low, this problem can be
overcome to some extent by reducing the TLBP threshold. In
addition, for object recognition purposes, this drawback would
not weaken the feature representation too much since smooth
regions contain little to no useful discriminating texture. An
example of this type of failure case and proposed remedy can
be seen in Figure 18(a).
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Segmentation of ours

Segmentation of Zhu [56]

Fig. 16: Binary segmentation map comparison with Zhu et al.

Another failure case occurs due to image noise, but it can be
mitigated by applying a noise reducing filter as mentioned in
section III. An example of this type of failure and the proposed
remedy is shown in Figure 18(b).

The selection of TLBP is essential for obtaining a satis-
factory segmentation. It controls how much sharp area would
appear in the final segmentation result. For a image with little
to no noise, TLBP 0.016 should produce a reasonable result.
Lowering the value would cause the inclusion of more low
contrast sharp regions. For a image corrupted by noise, a noise
reduction procedure should be employed.

The proposed metric was inspired by the statistical differ-
ence of local binary patterns of a set of partial blurred images.
Since the source of blurriness is mainly defocus blur, our
metric currently is only capable of detecting defocus blur.
Given that there are other type of blurriness such as those
introduced by low qualities of lens and materials in image
systems and motion blur, it would be worth studying the blur
model due to the properties of optical devices [24] and at
the same time exploring properties of different patterns such
as the non-uniform binary patterns and local ternary pattern
(LTP) [45] on blur regions of different type. Moreover, the
ideas used in noise-resistant LBP (NRLBP) [38], which treats
pixels susceptible to noise as having uncertain state and then
determines the corresponding bit value based on the other bits
of the LBP code, might worth borrowing if explicit handling
of noise in blur detection is desired.

VI. CONCLUSION

We have proposed a very simple yet effective sharpness
metric for defocus blur segmentation. This metric is based
on the distribution of uniform LBP patterns in blur and
non-blur image regions. The direct use of the local raw
sharpness measure can achieve comparative results to the
stat-of-the-art defocus segmentation method that based on
sparse representation, which shows the potential of local based
sharpness measures. By integrating the metric into a multi-
scale information propagation frame work, it can achieve
comparative results with the state-of-the-art. We have shown
that the algorithm’s performance is maintained when using
an automatically and adaptively selected threshold Tseg . Our
sharpness metric measures the number of certain LBP patterns
in the local neighbourhood thus can be efficiently implemented
by integral images. If combined with real-time matting algo-
rithms, such as GPU implementations of global matting [18],

Plant seed Microorganism

Fig. 17: Our algorithm applied to microscopy images. Top
row: original images; bottom row: final sharpness maps.

Original image Groundtruth
(b) failure due to noise

Our result Noise removal

Original image Groundtruth
(a) failure due to ambiguity of smooth regions

Our result Lower TLBP

Fig. 18: Blur segmentation algorithm failure cases and miti-
gation.

our method would have significant speed advantage over the
other defocus segmentation algorithms.
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