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NeighShrink is an efficient image denoising algorithm based on the decimated wavelet transform (DWT).
Its disadvantage is to use a suboptimal universal threshold and identical neighbouring window size in all
wavelet subbands. In this paper, an improved method is given, which can determine an optimal threshold
and neighbouring window size for every subband by the Stein’s unbiased risk estimate (SURE). Its deno-
ising performance is considerably superior to NeighShrink and also outperforms SURE-LET, which is an

up-to-date denoising algorithm based on the SURE. It is well known that increasing the redundancy of
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wavelet transforms can significantly improve the denoising performances. The proposed method is also
extended to the redundant dual-tree complex wavelet transform (DT-CWT). Experiments demonstrate
that the proposed method on the DT-CWT achieves better results than some of the best denoising algo-
rithms published currently.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

During the last decade, a lot of new methods based on wavelet
transforms have emerged for removing Gaussian random noise
from images. The denoising process is known as wavelet shrinkage
or thresholding. Both VisuShrink and SureShrink are the best-
known methods of wavelet shrinkage proposed by Donoho and
Johnstone (1994, 1995). For VisuShrink, the wavelet coefficients
w of the noisy signal are obtained first. Then with the universal
threshold T = /262 log(N) (o is the noise level and N is the length
of the noisy signal), the coefficients w = {w;};_ 12, . n are shrinked
according to the soft-shrinkage rule nj(w;) = sgn(w;) - (jwi| — T)..
and #5(w) is used to estimate the noiseless coefficients. Finally,
the estimated noiseless signal is reconstructed from the estimated
coefficients #}(w). VisuShrink is very simple, but its disadvantage
is to yield overly smoothed images because the universal threshold
T is too large. Just like VisuShrink, SureShrink also applies the soft-
shrinkage rule, but it uses independently chosen thresholds for
each subband through the minimization of the Stein’s unbiased
risk estimate (SURE) (Stein, 1981). SureShrink performs better than
VisuShrink, producing more detailed images.

After the seminal work of Donoho and Johnstone, many alterna-
tive methods have come forth. Cai and Silverman proposed two
different shrinkage methods NeighBlock and NeighCoeff for 1-D
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signals (Cai and Silverman, 2001). They threshold the wavelet coef-
ficients in overlapping blocks rather than individually or term by
term as VisuShrink or SureShrink. The basic motivation of block
thresholding remains: a coefficient is more likely to contain signal
if neighboring coefficients do also. Chen et al. applied NeighCoeff to
image denoising and their method is called NeighShrink (Chen
et al., 2005). NeighShrink outperforms VisuShrink and SureShrink.

For the other recent shrinkage methods, we cite the following
ones:

e BiShrink (Sendur and Selesnick, 2002a): This method uses a
bivariate shrinkage function which models the statistical depen-
dence between a wavelet coefficient and its parent. It needs to
estimate the marginal variance of the coefficient in a local neigh-
bourhood. The neighbouring window size is typically 7 x 7.

e ProbShrink (Pizurica and Philips, 2006a): This method uses a
probabilistic shrinkage function. Its core is estimating the prob-
ability that a given coefficient contains a significant noise-free
component. Then the wavelet coefficient is multiplied with the
probability.

e SURE-LET (Luisier et al., 2007a,b): This method directly paramet-
rizes the denoising process as a sum of elementary nonlinear
processes with unknown weights. It need not hypothesize a sta-
tistical model for the noiseless image while it minimizes an esti-
mate of the mean squared error between the noiseless image and
the denoised one by the SURE. Consequently, it computes the
unknown weights by solving a linear system of equations.

It is well known that increasing the redundancy of wavelet
transforms can significantly improve the denoising performances.
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BiShrink, ProbShrink and SURE-LET methods have all been devised
for both redundant and nonredundant wavelet transforms. In this
paper, we improve NeighShrink using the SURE (Stein, 1981; Fodor
and Kamath, 2003). The proposed method can estimate an optimal
threshold and neighbouring window size for NeighShrink in every
wavelet subband. It is also extended to the redundant dual-tree
complex wavelet transform (DT-CWT) from the decimated wavelet
transform (DWT). The experimental results demonstrate that the
proposed method not only outperforms NeighShrink, but also
delivers better results compared with three state-of-the-art meth-
ods: i.e. BiShrink, ProbShrink and SURE-LET.

2. Proposed adaptive algorithm

We give a brief introduction to NeighShrink algorithm before
we discuss the proposed method. For each noisy wavelet coeffi-
cient wy to be shrinked, it incorporates a square neighbouring win-
dow B; centered at it. The neighbouring window size can be
represented as L x L, where L is a positive odd number. Fig. 1 gives
a3 x 3 neighbouring window centered at the wavelet coefficient to
be shrinked.

Suppose S,-zj = Zk‘,eﬂijwf,, the NeighShrink shrinkage formula can
be represented as

0 = wiiB; M
where 0; is the estimator of the unknown noiseless coefficient,
Bii=(1- 22/51-2}-)+ and / is the universal threshold. (g). is defined
as (g)+ = max(g,0).

Different wavelet coefficient subbands are shrinked indepen-
dently, but the threshold /4 and neighbouring window size L keep
unchanged in all subbands. When Sizj summation has pixel indexes
out of the wavelet subband range, the corresponding terms in the
summation are omitted. The shortcoming of this method is that
using the same universal threshold 4 and neighbouring window
size L in all subbands is suboptimal.

The optimal 4 and L of every subband should be data-driven and
minimize the mean squared error (MSE) or risk of the correspond-
ing subband. Fortunately, Stein (1981) has stated that the MSE can
be estimated unbiasedly from the observed data. We will improve
NeighShrink by determining an optimal threshold and neighbour-
ing window size for every wavelet subband using the Stein’s
unbiased risk estimate (SURE). For ease of notation, we arrange
the N; noisy wavelet coefficients from subband s, wg = {wj;:ij € indi-
ces corresponding to subands}, into the 1-D vector w;={w:
n=1,...,Ng}. Similarly, we combine the N; unknown noiseless
coefficients {0;: i,j € indices corresponding to subbands} from sub-
band s into the corresponding 1-D vector 6s={6,: n=1,..., Ns}.
Stein shows that, for almost any fixed estimator 0, based on the
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Fig. 1. An illustration of the neighbouring window centered at the wavelet coeffi-
cient to be shrinked.
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According to Eq. (1), we have for the nth wavelet coefficient w,:
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The quantity
ﬂ 2z,
SURE(W:, 4,1) = Ns+ 3 g (wi) [ +2 ) 5 (6)
n n n

is an unbiased estimate of the risk on subband s where L is the
neighbourhood window size (L is an odd number and greater than

~ 2
05 — 0 2} = E{SURE(w, 2, L)}.

Then we choose the threshold 4° and neighbouring window size L*
on subband s which minimize SURE(ws, 4, L). Accordingly,

(2, = arg"ILnin SURE(ws, 4,L) (7)

1, for example, 3, 5, 7, 9, etc.): E{‘

where /° and L* are derived assuming the noise level ¢ = 1. For data
with nonunit variance, the coefficients are standardized by an
appropriate estimator ¢ before calculating the /° and L* with Eq.
(7). A good estimator for ¢ is the median of absolute deviation
(MAD) using the highest level wavelet coefficients (Donoho and
Johnstone, 1994).

median(|ws|)

7=""06745

(ws € subband HH) (8)

3. Results on the decimated wavelet transform

To verify the validity of the proposed method, we compared its
results with those of NeighShrink. In addition, we also compared it
with SURE-LET which is the latest method based on the SURE. The
DWT was used with Daubechies’ least asymmetric compactly-sup-
ported wavelet with eight vanishing moments with four scales.
SURE-LET Matlab package is available on the web (Luisier et al.,
2007b). The 512 x 512 standard test images, Lena, Barbara and
Mandrill, were chosen as the experimental dataset (Fig. 2). They
were contaminated with Gaussian random noise with standard
deviations 10, 20, 30, 50, 75 and 100. In all wavelet subbands,
NeighShrink used the universal threshold /= 0./2log(512) =~
3.53¢ and the default neighbouring window size 3 x 3 which is

Fig. 2. The original test images with 512 x 512 pixels: (a) Lena; (b) Barbara; and (c)
Mandrill.
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recommended by NeighShrink. The threshold and neighbouring
window size of the proposed method in every subband were calcu-
lated with Eq. (7). We assumed that the noise variances were
known in order to focus on the denoising techniques themselves.
Generally, noise variances are unknown, but they can be estimated
by Eq. (8). We measured the experimental results by the peak sig-
nal-to-noise ratio (PSNR) in decibels (dB), which is defined as

2
PSNR = 10 « logm% (dB) 9)

where MSE = >~ >/, (X(i.j) — X(i.j))% X is the original image, X
is the estimator of X, and I * J is the number of pixels. The denoised
image is closer to the original one when PSNR is higher. Table 1
shows the PSNR performance of the three denoising methods.

As expected, the PSNRs that the proposed adaptive method pro-
duces are substantially higher than those that NeighShrink does for
all noise levels. NeighShrink is also not robust. Its results become
inferior as noise levels increase. For Lena image, the largest PSNR
gain of the proposed method is approximately 2.8 dB. In most
cases, the proposed method performs slightly better than SURE-
LET except Barbara image. For Barbara, our method is superior to
SURE-LET in all noise levels.

4. Extension to complex wavelet coefficients

The DT-CWT (Selesnick et al., 2005) is a relatively recent
enhancement to the DWT. It is a slightly redundant transform with
a redundancy factor of only 2¢ for d-dimensional signals and ex-
pands an image in terms of a complex wavelet with complemen-
tary real and imaginary parts. Its basis functions have directional
selectivity property at £15°, +45°, and +75°, which the regular crit-
ically sampled transform does not have. The key advantages of the
DT-CWT over the DWT are its shift invariance and directional
selectivity. It means that the DT-CWT-based algorithms will auto-
matically be almost shift invariant, thus reducing many of the arti-
facts of the critically sampled DWT. The aforementioned adaptive
method can be extended to the DT-CWT. The procedure can be de-
scribed as follows. For the real parts of every subband, we first
compute the optimal threshold 4° and neighbouring window size
L° with Eq. (7). Then the real and imaginary parts of every subband
are shrinked separately using 2° and L° according to Eq. (1).

The proposed method on the DT-CWT was compared with three
state-of-the-art schemes: i.e. BiShrink (Sendur and Selesnick,

Table 1

Denoising results (PSNRs) for Lena, Barbara and Mandrill

a NeighShrink SURE-LET Proposed
Lena

10 34.51 34.56 34.72
20 31.05 31.37 31.53
30 28.90 29.56 29.70
50 26.05 27.37 2743
75 23.67 25.76 25.62
100 21.87 24.66 24.43
Barbara

10 32.83 32.16 33.02
20 28.75 27.96 29.09
30 26.48 25.82 27.01
50 23.76 23.72 24.63
75 21.76 22.54 22.99
100 20.34 21.81 21.94
Mandrill

10 29.96 30.13 30.30
20 25.80 25.92 26.20
30 23.70 23.88 24.16
50 21.44 21.86 22.03
75 19.92 20.71 20.69
100 18.87 20.09 19.95

2002a), ProbShrink (Pizurica and Philips, 2006a) and SURE-LET
(Blu and Luisier, 2007). ProbShrink and SURE-LET used the nondec-
imated wavelet transform (UWT) with four scales, but the former
employed Daubechies symmlet wavelet with eight vanishing
moments and the latter did Haar wavelet considering that Blu
et al. obtain the best results with Haar wavelet. BiShrink and the
proposed method used the DT-CWT with six scales. We still
assumed that the noise variances were known just as the last sec-
tion. ProbShrink and BiShrink Matlab implementations are avail-
able on the web (Pizurica and Philips, 2006b; Sendur and
Selesnick, 2002b). We also still chose the same images with the
same noise levels as the previous section. Table 2 illustrates the
PSNRs of the four denoising methods.

It is obvious that the proposed method almost consistently pro-
duces the highest PSNRs for the three test images in all noise levels.
Our method on the DT-CWT is also significantly superior to that on
the DWT. The largest PSNR gain of our method on the DT-CWT is
0.97 dB for Lena, 1.03 dB for Barbara and 0.49 dB for Mandrill
greater than that on the DWT (compare Table 2 with Table 1).

Table 2
Denoising results (PSNRs) with the UWT or DT-CWT for Lena, Barbara and Mandrill
for the four denoising methods

g ProbShrink BiShrink SURE-LET Proposed
(UWT) (DT-CWT) (UWT) (DT-CWT)
Lena
10 35.06 35.18 35.09 35.42
20 31.92 32.24 32.06 32.39
30 30.04 30.49 30.31 30.59
50 27.68 28.23 28.18 28.32
75 2593 26.42 26.54 26.59
100 24.71 25.18 2541 25.39
Barbara
10 33.45 33.51 32.61 33.82
20 29.50 29.86 28.42 30.12
30 27.18 27.77 26.21 28.01
50 24.45 25.29 24.12 25.54
75 22.78 23.54 22.96 23.81
100 21.94 2245 22.24 22.67
Mandrill
10 30.01 30.48 30.22 30.55
20 26.02 26.55 26.13 26.60
30 23.97 24.55 24.11 24.63
50 21.87 22.35 22.10 22.52
75 20.62 20.98 20.92 21.16
100 19.96 20.21 20.26 20.38
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Fig. 3. PSNR curves of the four methods for Barbara.
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Fig. 4. PSNR gain curves of the proposed method compared with the other three
methods for Barbara.

Fig. 5. Denoising results for Barbara: (a) Original image; (b) Noisy image with noise
standard deviation ¢ =60, PSNR = 2.57 dB; (c) Denoised image using ProbShrink,
PSNR =23.61 dB; (d) Denoised image using BiShrink, PSNR = 24.48 dB; (e) Denoised
image using SURE-LET, PSNR = 23.56 dB; and (f) Denoised image using the proposed
method, PSNR = 24.73 dB.

The curves of the PSNRs which the four methods produce for Bar-
bara are shown in Fig. 3. In order to demonstrate more clearly the
PSNR advantages of our method over the other three methods, Fig.
4 gives the PSNR gain curves of our method compared with the
other three methods for Barbara. It visualizes the PSNR improving
trends of our method as the noise level increases. The improve-
ment of the PSNRs which the proposed method yields is large for
Barbara compared with ProbShrink and SURE-LET. The largest
increments are 1.1 dB and 1.8 dB, respectively.

The visual quality is also better using our method (see Fig. 5f).
ProbShrink and SURE-LET suffer substantial blurring. The image

that ProbShrink produces is too smooth while the one that SURE-
LET does leaves over more noise. BiShrink and our method are con-
siderably superior to ProbShrink and SURE-LET. However, BiShrink
produces more disturbing artifacts than our method. Our method
also remains more texture details of the Barbara’s scarf. Our results
also demonstrate the effectiveness of the DT-CWT. As Reviewer 3
has pointed out, the advantages of our method in visual quality
and in PSNR are not only due to a different estimation rule but also
benefit from the good directional sensitivity of the DT-CWT.

5. Conclusion

In this paper, we improve NeighShrink proposed by Chen et al.
using the Stein’s unbiased risk estimate (SURE). Compared with
NeighShrink, the proposed method can determine an optimal
threshold and neighbouring window size for every wavelet sub-
band instead of using the suboptimal universal threshold and same
neighbouring window size in all subbands. The proposed method is
available on the DT-CWT. Thanks to the shift invariance and direc-
tional selectivity of the DT-CWT, the proposed method on the DT-
CWT exhibits an excellent performance. Our experimental results
indicate that it produces both higher PSNRs and better visual qual-
ity than three already published best denoising algorithms.

Acknowledgements

The authors would like to thank the anonymous reviewers and
the associate editor for their constructive comments and sugges-
tions to our paper.

References

Blu, T., Luisier, F., 2007. The SURE-LET approach to image denoising. IEEE Trans.
Image Process. 16, 2778-2786.

Cai, T.T., Silverman, B.W., 2001. Incorporating information on neighbouring
coefficients into wavelet estimation. Sankhya, Ser. B 63, 127-148.

Chen, G.Y., Bui, T.D., Krzyzak, A., 2005. Image denoising with neighbour dependency
and customized wavelet and threshold. Pattern Recognition 38, 115-124.
Donoho, D.L., Johnstone, .M., 1994. Ideal spatial adaptation via wavelet shrinkage.

Biometrika 81, 425-455.

Donoho, D.L., Johnstone, .M., 1995. Adapting to unknown smoothness via wavelet
shrinkage. J. Amer. Statist. Assoc. 90, 1200-1224.

Fodor, LK., Kamath, C., 2003. Denoising through wavelet thresholding: an empirical
study. SPIE ]. Electron. Imaging 12, 151-160.

Luisier, F., Blu, T., Unser, M., 2007a. A new SURE approach to image denoising: inter-
scale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16, 593-
606.

Luisier, F., Blu, T., Unser, M., 2007b. SURE-LET Matlab Codes. Located at the URL:
<http://bigwww.epfl.ch/demo/suredenoising/matlab.html>.

Pizurica, A., Philips, W., 2006a. Estimating probability of presence of a signal of
interest in multiresolution single- and multiband image denoising. IEEE Trans.
Image Process. 15, 654-665.

Pizurica, A., Philips, W., 2006b. ProbShrink Matlab Codes. Located at the URL: <ttp://
telin.ugent.be/~sanja>.

Selesnick, L.W., Baraniuk, R.G., Kingsbury, N.G., 2005. The dual-Tree complex
wavelet transform. IEEE Signal Process. Mag. 22, 123-151.

Sendur, L., Selesnick, LW., 2002a. Bivariate shrinkage with local variance estimation.
IEEE Signal Process. Lett. 9, 438-441.

Sendur, L., Selesnick, LW., 2002b. DT-CWT and BiShrink Matlab codes. Located at
the URL: <ttp://taco.poly.edu/WaveletSoftware/>.

Stein, C., 1981. Estimation of the mean of a multivariate normal distribution. Ann.
Statist. 9, 1135-1151.


http://bigwww.epfl.ch/demo/suredenoising/matlab.html
http://telin.ugent.be/~sanja
http://telin.ugent.be/~sanja
http://taco.poly.edu/WaveletSoftware/

	Image denoising with an optimal threshold and neighbouring window
	Introduction
	Proposed adaptive algorithm
	Results on the decimated wavelet transform
	Extension to complex wavelet coefficients
	Conclusion
	AcknowledgementAcknowledgements
	References


