
Mining a Software Developer’s Local Interaction History

Kevin A. Schneider, Carl Gutwin, Reagan Penner and David Paquette
Department of Computer Science, University of Saskatchewan

57 Campus Drive, Saskatoon, SK S7N 5A9 Canada
{kas, gutwin, rpenner}@cs.usask.ca, dnp972@mail.usask.ca

Abstract

Although shared software repositories are commonly
used during software development, it is typical that a soft-
ware developer browses and edits a local snapshot of the
software under development. Developers periodically check
their changes into the software repository; however, their
interaction with the local copy is not recorded. Local in-
teraction histories are a valuable source of information and
should be considered when mining software repositories.

In this paper we discuss the benefits of analyzing local
interaction histories and present a technique and prototype
implementation for their capture and analysis. As well, we
discuss the implications of local interaction histories and
the infrastructure of software repositories.

1. Introduction

We are interested in mining local interaction histories of
a software development team to help coordinate their activi-
ties and to coordinate the change and use of project artifacts.

A software developer’s interaction with a software repos-
itory includes editing source code but also involves actions
to browse or locate source code. We are interested in record-
ing and analysing this interaction, which we refer to as the
developer’slocal interaction history. Our principle motiva-
tion is to use this information to support awareness in team
based software development.

Developers normally change a local copy of the software
under development. Periodically, the developer will syn-
chronize their changes with the shared software repository.
Although a portion of the developers’ interaction with the
local software artifacts may be recorded for the purpose of
undoing changes and for recovering from previously saved
versions, the interaction is not recorded in the shared reposi-
tory and is incomplete when considering awareness support.

In our approach, as a developer changes software ar-
tifacts the different versions are recorded in a shared
‘shadow’ repository and analysed with respect to the struc-

ture of the software. Hierarchical containment of language
entities (the structure of the software) is modeled separately
so that we can track changes across the language entities.
For example, we can track changes to amethodacross
classesandpackages. We use this strategy to monitor API
(application programming interface) change and usage.

Mining local interaction histories has a number of poten-
tial applications, including:

• Coordinating team member activities. Monitoring
changes to an API and monitoring API usage may be
useful in supporting team awareness during software
development. (The focus of this paper and our current
prototype implementation.)

• Identifying refactoring patterns. Analysing local in-
teraction histories may be useful for identifying novel
refactoring patterns and coordinating refactorings that
affect other team members.

• Coordinating multiple file undos. Tracking changes
with respect to the structure of a software system may
provide software development guidance when undoing
a set of changes.

• Identifying browsing patterns. Local interaction his-
tory includes the developer’s searching, browsing and
file access activities. Analysing this browsing inter-
action may be useful in supporting a developer locate
technical expertise or exemplars.

• Project Management. Recording the changes a de-
veloper makes to software with respect to communica-
tion logs or project plans may prove to be fruitful for
organizing and managing a software project.

The next section discusses background and related work,
focusing on coordination and communication issues in soft-
ware development. Subsequent sections describe our ap-
proach and prototype. The implications of mining local in-
teraction histories and the infrastructure of software reposi-
tories is discussed with our future research directions in the
paper’s conclusion.

2. Background and Related Work

Collaborative software development presents difficult
coordination and communication problems, particularly
when teams are geographically distributed [6, 8, 10, 12, 13].
Even though projects can be organized to make individual
developers partly independent of one another, dependencies
cannot be totally removed [10]. As a result, there are of-
ten situations where team members duplicate work, over-
write changes, make incorrect assumptions about another
person’s intentions, or write code that adversely affects an-
other part of the project.

These problems often occur because of a lack of aware-
ness about what is happening in other parts of the project.
Unfortunately, current development tools and environments
do not make it easy to maintain awareness of others’ activ-
ities [1]. Awareness is a design concept that holds promise
for significantly improving the usability of collaborative
software development tools.

2.1. Collaboration in Software Development

Collaboration support has always been a part of dis-
tributed development – teams have long used version con-
trol, email, chat groups, reviews, and internal documenta-
tion to coordinate activities and give and gather information
– but these solutions generally either represent the project
at a very coarse granularity (e.g. CVS [3]), require con-
siderable time and effort (e.g. reading documentation), or
depend on people’s current availability (e.g. IRC).

Researchers in software engineering and CSCW have
found a number of problems that still occur in group
projects and distributed software development. They found
that it is difficult to: determine when two people are making
changes to the same artifacts [10]; communicate with others
across timezones and work schedules [6]; find partners for
closer collaboration or assistance on particular issues [12];
determine who has expertise or knowledge about the differ-
ent parts of the project [13]; benefit from the opportunis-
tic and unplanned contact that occurs when developers are
colocated [8]. As Herbsleb and Grinter [8] state, lack of
awareness – “the inability to share at the same environment
and to see what is happening at the other site” (p. 67) is one
of the major factors in these problems.

2.2. Group Awareness

In any group work situation, awareness of others pro-
vides information that is critical for smooth and effective
collaboration. This isgroup awareness: the understanding
of who is working with you, what they are doing, and how
your own actions interact with theirs [7]. Group awareness
is useful for many of the activities of collaboration – for

coordinating actions, managing coupling, discussing tasks,
anticipating others’ actions, and finding help.

In a software project, knowledge of others’ activities,
both past and present, has obvious value for project man-
agement, but developers also use the information for many
other purposes that assist the overall cohesion and effec-
tiveness of the team. For example, knowing the specific
files and objects that another person has been working on
can give a good indication of their higher-level tasks and
intentions; knowing who has worked most often or most re-
cently on a particular file indicates who to talk to before
starting further changes; and knowing who is currently ac-
tive can provide opportunities for real-time assistance and
collaboration.

On software projects, awareness information is currently
difficult to obtain from development environments: al-
though some of the facts exist (e.g. from CVS logs) there
are currently no low-effort means for gathering them. A few
research systems do show awareness information (particu-
larly TUKAN [12] and Plant́ır [11]), but little support exists
in more widespread environments.

3. Project Watcher

ProjectWatcher is a prototype system that gathers infor-
mation about project artifacts and developer’s actions with
those artifacts, and that visualizes this awareness informa-
tion in the Eclipse [5] development environment (Figure 1).
ProjectWatcher consists of two main parts – the mining
component and the visualization plugins.

As Herbsleb and Grinter [7] state, lack of
awareness – “the inability to share at the same
environment and to see what is happening at the
other site” (p. 67) is one of the major factors in
these problems.

2.2 Group Awareness
In any group work situation, awareness of others
provides information that is critical for smooth and
effective collaboration. This is group awareness:
the understanding of who is working with you,
what they are doing, and how your own actions
interact with theirs [11]. Group awareness is useful
for many of the activities of collaboration—for
coordinating actions, managing coupling,
discussing tasks, anticipating others’ actions, and
finding help.
 In a software project, knowledge of others’
activities, both past and present, has obvious value
for project management, but developers also use
the information for many other purposes that assist
the overall cohesion and effectiveness of the team.
For example, knowing the specific files and
objects that another person has been working on
can give a good indication of their higher-level
tasks and intentions; knowing who has worked
most often or most recently on a particular file
indicates who to talk to before starting further
changes; and knowing who is currently active can
provide opportunities for real-time assistance and
collaboration.

Staying aware of others is something that we
take for granted in the everyday world, but
something that has proven to be difficult in
computer-mediated settings. As a result, trying to
work together through computers is often
inefficient and clumsy. On software projects,
awareness information is currently difficult to
obtain from development environments: although
some of the facts exist (e.g. from CVS logs) there
are currently no low-effort means for gathering
them. A few research systems do show awareness
information (particularly TUKAN [2]), but little
support exists in more widespread environments.

3 Project Watcher
ProjectWatcher is a prototype system that gathers
information about project artifacts and developer’s
actions with those artifacts, and that visualizes this
awareness information in the Eclipse IDE (Figure
1). ProjectWatcher consists of two main parts – the
fact extractor and the visualization plugins.

Figure 1. ProjectWatcher in the Eclipse IDE;
visualizations are at lower left and upper right.

4.1 Fact extraction
The fact extraction component analyzes the source
code of a project to produce facts for use by the
ProjectWatcher visualization plugin. The fact
extractor gathers information on the structure of
the project and also on the current and historical
activity of the project team members (Figure 2).

Shadow
CVS

Repository

Project
CVS

Repository

User Edit
FactBase

User Edit Fact
Extractor

Auto-commits

User checkout and
commits

Shadow
CVS

Repository

Project
CVS

Repository

User Edit
FactBase

User Edit Fact
Extractor

Auto-commits

User checkout and
commits

Figure 2: User edit fact extraction

To be able to gather developer activity information,
a shadow CVS repository of the project is
maintained. User edits are auto-committed to the
shadow repository as developers edit source code
files. The user edit fact extractor analyzes the
shadow CVS repository to obtain facts about who
has been editing the class methods and when.

The visualization plugin shows
relationships between packages, classes, and
methods and the activities of project team
members with these entities. The relationships that
are currently extracted include: method calls,
imports, implements, and inheritance; the user edit
facts that are extracted include edits and API usage.

The fact extractor is implemented in two
stages (see Figure 3). Stage one uniquely names
all entities in the project while extracting the entity
and relationship facts. This process is

Figure 1. ProjectWatcher in Eclipse. Visual-
izations are at lower left and upper right.

The mining component analyzes the source code of a
project to produce facts for use by the ProjectWatcher visu-
alization plugin. The mining component gathers informa-
tion on the structure of the project and also on the current
and historical activity of the project team members.

To be able to gather developer activity information, a
shadow CVS repository of the project is maintained (Fig-
ure 2). User edits are auto-committed to the shadow repos-
itory as developers edit source code files. Although Eclipse
provides a local history of changes, we require that the
changes be available to other developers in the software
development team and so publishing them in the shadow
repository gives us that facility. As well, we are able to
record actions along with changes to software artifacts, and
we are able to commit changes at different time intervals.

As Herbsleb and Grinter [7] state, lack of
awareness – “the inability to share at the same
environment and to see what is happening at the
other site” (p. 67) is one of the major factors in
these problems.

2.2 Group Awareness
In any group work situation, awareness of others
provides information that is critical for smooth and
effective collaboration. This is group awareness:
the understanding of who is working with you,
what they are doing, and how your own actions
interact with theirs [11]. Group awareness is useful
for many of the activities of collaboration—for
coordinating actions, managing coupling,
discussing tasks, anticipating others’ actions, and
finding help.
 In a software project, knowledge of others’
activities, both past and present, has obvious value
for project management, but developers also use
the information for many other purposes that assist
the overall cohesion and effectiveness of the team.
For example, knowing the specific files and
objects that another person has been working on
can give a good indication of their higher-level
tasks and intentions; knowing who has worked
most often or most recently on a particular file
indicates who to talk to before starting further
changes; and knowing who is currently active can
provide opportunities for real-time assistance and
collaboration.

Staying aware of others is something that we
take for granted in the everyday world, but
something that has proven to be difficult in
computer-mediated settings. As a result, trying to
work together through computers is often
inefficient and clumsy. On software projects,
awareness information is currently difficult to
obtain from development environments: although
some of the facts exist (e.g. from CVS logs) there
are currently no low-effort means for gathering
them. A few research systems do show awareness
information (particularly TUKAN [2]), but little
support exists in more widespread environments.

3 Project Watcher
ProjectWatcher is a prototype system that gathers
information about project artifacts and developer’s
actions with those artifacts, and that visualizes this
awareness information in the Eclipse IDE (Figure
1). ProjectWatcher consists of two main parts – the
fact extractor and the visualization plugins.

Figure 1. ProjectWatcher in the Eclipse IDE;
visualizations are at lower left and upper right.

4.1 Fact extraction
The fact extraction component analyzes the source
code of a project to produce facts for use by the
ProjectWatcher visualization plugin. The fact
extractor gathers information on the structure of
the project and also on the current and historical
activity of the project team members (Figure 2).

Shadow
CVS

Repository

Project
CVS

Repository

User Edit
FactBase

User Edit Fact
Extractor

Auto-commits

User checkout and
commits

Shadow
CVS

Repository

Project
CVS

Repository

User Edit
FactBase

User Edit Fact
Extractor

Auto-commits

User checkout and
commits

Figure 2: User edit fact extraction

To be able to gather developer activity information,
a shadow CVS repository of the project is
maintained. User edits are auto-committed to the
shadow repository as developers edit source code
files. The user edit fact extractor analyzes the
shadow CVS repository to obtain facts about who
has been editing the class methods and when.

The visualization plugin shows
relationships between packages, classes, and
methods and the activities of project team
members with these entities. The relationships that
are currently extracted include: method calls,
imports, implements, and inheritance; the user edit
facts that are extracted include edits and API usage.

The fact extractor is implemented in two
stages (see Figure 3). Stage one uniquely names
all entities in the project while extracting the entity
and relationship facts. This process is

Figure 2. Capturing User Edits. A shadow
software repository is used to record the ac-
tivities of a software developer.

The user edits mining component analyzes the shadow
CVS repository to obtain facts about who has been edit-
ing the class methods and when. A version of a file is cre-
ated each time it is auto-committed to the shadow reposi-
tory. The mining component analyses the differences be-
tween versions to track API usage and API change.

The mining component is implemented in two stages
and may either be run on the shadow software repository
or on the shared software repository (Figure 3). Stage one
uniquely names all entities in the project while extracting
the entity and relationship facts. This process is accom-
plished with a TXL program using syntactic pattern match-
ing [2, 4]. At this point, the method call facts are not
uniquely identified since we do not have sufficient infor-
mation to identify which package or class the method being
called belongs to. This resolution is accomplished by stage
two, the method call resolver.

The method call resolver extracts facts from the project
source code and integrates them with the facts extracted
from stage one. Next, the method call facts are analyzed
to determine which package and class the method that was
called belongs to. This process involves resolving the types
of variables and return types of methods that are passed as
arguments to method calls. The types of all the arguments
are identified, and then scope, package, class, and method
facts are analyzed to determine which package and class the
method belongs to. To resolve calls to the Java library, the
full Java API is first processed by the ProjectWatcher min-

accomplished with a TXL [9] program using
syntactic pattern matching [10]. TXL is a
functional rule based language primarily used for
source code transformation. At this point, the
method call facts are not uniquely identified since
we do not have sufficient information to identify
which package or class the method being called
belongs to. This resolution is accomplished by
stage two, the Method Call Resolver.

Java API Facts

Complete
Factbase

Partial
Factbase

Java Project
Source Code

Fact Extractor
(TXL)

Method Call Resolver
(Java)

Java API Facts

Complete
Factbase

Partial
Factbase

Java Project
Source Code

Fact Extractor
(TXL)

Java API Facts

Complete
Factbase

Partial
Factbase

Java Project
Source Code

Fact Extractor
(TXL)

Method Call Resolver
(Java)

Figure 3: Fact extraction from Java projects

The Method Call Resolver extracts scope facts
from the project source code and integrates them
with the facts extracted from stage one. Next, the
method call facts are analyzed to determine which
package and class the method that was called
belongs to. This process involves resolving the
types of variables and return types of methods that
are passed as arguments to method calls. First, the
types of all the arguments are identified. Then
scope, package, class, and method facts are
analyzed to determine which package and class the
method belongs to. To resolve calls to the Java
library, the full Java API is first processed by the
ProjectWatcher fact extractor (this is only done
once for all projects).

The complete factbase contains uniquely
identified facts indicating all packages, classes,
methods, variables, and relationships for a Java
project and all user edits. These facts are used by
the visualization plugin to show activity and
proximity information. The time and space needed
for fact extraction and factbase storage depends on
the size of the code; for example, Java 1.4.1
contains 202 package facts, 5,530 class facts,
47,962 method facts, and 106,926 call facts.

4.2 Awareness visualizations
4.2.1 Awareness of activity
ProjectWatcher visualizes team members’ past and
current activities on project artifacts. The
visualization uses the ideas of interaction history

[12] and overviews: the interaction history is a
record all of the actions that a person undertakes
with a project artifact (gathered unobtrusively by
the fact extractor as people carry out their normal
tasks); the overview representation is a compact
display of all the project artifacts, that can be
overlaid with visual information about the
interaction history. Although some tools such as
CVS front-ends do limited visualization (e.g. by
colour on the project tree), our goal here is to
collect much more information about interaction,
and provide much richer visualizations that will
allow team members to gather more detailed
awareness information.
 ProjectWatcher plugins use the extracted fact
base to create a visual model of what each
developer is doing in that project space. In the
overview plugin (Figure 4), project artifacts are
shown in a simple stacked fashion that displays
packages, files, classes, and methods. Artifacts are
always stacked by creation date, so that their
location in the overview can over time be learned
by the user. On this basic (but space-saving)
representation, we overlay awareness information.
First, each developer is assigned a unique colour,
and this colour can be added to the blocks in the
overview based on a set of filters. Common filters
include who has modified artifacts most recently,
or modified them most often. Second, we show a
summary of the activity history for each artifact
with a small bar graph drawn inside the object’s
rectangle; bars represent amount of change to the
class since its creation. Finally, more information
about an artifact can be obtained by holding the
cursor over a rectangle: for example, the name of
the class and a more detailed bar graph, along with
details about the state of the class compared to the
CVS repository.

4.2.1 Awareness of proximity
Following on from a basic understanding of
others’ activities is the question of proximity – that
is “who is working near to me?” in terms of the
structures and dependencies of the software system
under development. Proximity is an important
concept in software development because
developers who are in close proximity form an
implicit sub-team whose concerns are similar and
whose interactions are more closely coupled.
Proximity groups are not defined in advance and
change membership as developers move from task
to task; therefore, it is often very difficult to
determine who is currently in the group.

Figure 3. Mining User Edits. In a two stage
process, package, class and method facts are
extracted and combined with Java API facts.
The facts are used by the visualization com-
ponent to convey API use and API change
information.

ing component (this is only done once for all projects). Not
all calls may be resolved, however for our purpose the ac-
curacy of the method call resolver is adequate.

The complete factbase contains uniquely identified facts
indicating all packages, classes, methods, variables, and re-
lationships for a Java project and all user edits. These facts
are used by the visualization plugin to show activity and
proximity information. The time and space required for fact
extraction and factbase storage depends on the size of the
code. For example, ProjectWatcher has been tailored for
Java, and mining the Java Development Kit 1.4.1 results in
202 package facts, 5,530 class facts, 47,962 method facts,
and 106,926 call facts.

4. Awareness Visualization

4.1. Activity Awareness

ProjectWatcher visualizes team members’ past and cur-
rent activities on project artifacts. The visualization uses
the ideas of interaction history [9] and overviews: the in-
teraction history is a record all of the actions that a person
undertakes with a project artifact (gathered unobtrusively
by the mining component as people carry out their nor-
mal tasks); the overview representation is a compact display
of all the project artifacts, that can be overlaid with visual
information about the interaction history. Although some
tools such as CVS front-ends do have limited visualization
(e.g. by colour on the project tree), our goal here is to col-
lect much more information about interaction, and provide
much richer visualizations that will allow team members to
gather more detailed awareness information.

ProjectWatcher plugins use the extracted fact base to cre-
ate a visual model of what each developer is doing in that

Figure 4. Project overview plugin showing
packages (grey bars) and classes within each
package (coloured blocks). Colour indicates who
edited the class most recently. Black marks inside
class blocks chart edits since project start.

The notion of distance to another person in this
dependency space has not been studied extensively,
although it has been explored previously in
Schümmer’s TUKAN [2,3]. We have developed a
visualization tool (Figure 5) that makes it easier to
see proximity-based groups. The visualization is
based on a dependency graphs derived from the
extracted factbase and from the fine-grained
recording of interaction history. Once actions are
mapped to the dependency structure, the graph is
presented in visual form with people’s locations
and proximities made explicit.

Figure 5. ProjectWatcher graph view showing
packages, classes, methods, and call dependencies.
When the user holds the cursor over a class, the
dependencies for individual methods appear.
Graph nodes are coloured (by developer colour)
according to recency of edit.

4 Conclusions & future work
We have presented a system to address some of
the awareness problems experienced in distributed
software development projects. The system
observes user activities in an IDE and records
those actions in relation to the artifact-based
dependencies extracted from source code.
Visualization plugins represent this information
for developers to see and interact with. Although
our prototypes have limitations (particularly in
terms of project size), they can provide developers
with much-needed information about who is
working on the project, what they are doing, and
how closely linked two developers are.
 Our future plans with the system involve both
improvements and new directions. With the
current system, we plan to continue refining our
representations and filters to determine how the
information can be best presented to developers.
Second, we currently visualize source code that is

Figure 4. Project overview plugin showing
packages (grey bars) and classes within each
package (coloured blocks). Colour indicates
who edited the class most recently. Black
marks inside class blocks chart edits since
project start.

project space. In the overview plugin (Figure 4), project
artifacts are shown in a simple stacked fashion that dis-
plays packages, files, classes, and methods. Artifacts are
always stacked by creation date, so that their location in the
overview can over time be learned by the user. On this basic
(but space-saving) representation, we overlay awareness in-
formation. First, each developer is assigned a unique colour,
and this colour can be added to the blocks in the overview
based on a set of filters. Common filters include who has
modified artifacts most recently, or modified them most of-

ten. Second, we show a summary of the activity history for
each artifact with a small bar graph drawn inside the object’s
rectangle; bars represent amount of change to the class since
its creation. Finally, more information about an artifact can
be obtained by holding the cursor over a rectangle: for ex-
ample, the name of the class and a more detailed bar graph,
along with details about the state of the class compared to
the CVS repository.

4.2. Proximity Awareness

Following on from a basic understanding of others’ ac-
tivities is the question of proximity – that is “who is working
near to me?” in terms of the structures and dependencies of
the software system under development.

The notion of distance to another person has not been
studied extensively, although it has been explored previ-
ously in Scḧummer’s TUKAN [12]. We have developed
a visualization tool (Figure 5) that makes it easier to see
proximity-based groups. Once actions are mapped to the
dependency structure, the graph is presented in visual form
with people’s locations and proximities made explicit.

Figure 4. Project overview plugin showing
packages (grey bars) and classes within each
package (coloured blocks). Colour indicates who
edited the class most recently. Black marks inside
class blocks chart edits since project start.

The notion of distance to another person in this
dependency space has not been studied extensively,
although it has been explored previously in
Schümmer’s TUKAN [2,3]. We have developed a
visualization tool (Figure 5) that makes it easier to
see proximity-based groups. The visualization is
based on a dependency graphs derived from the
extracted factbase and from the fine-grained
recording of interaction history. Once actions are
mapped to the dependency structure, the graph is
presented in visual form with people’s locations
and proximities made explicit.

Figure 5. ProjectWatcher graph view showing
packages, classes, methods, and call dependencies.
When the user holds the cursor over a class, the
dependencies for individual methods appear.
Graph nodes are coloured (by developer colour)
according to recency of edit.

4 Conclusions & future work
We have presented a system to address some of
the awareness problems experienced in distributed
software development projects. The system
observes user activities in an IDE and records
those actions in relation to the artifact-based
dependencies extracted from source code.
Visualization plugins represent this information
for developers to see and interact with. Although
our prototypes have limitations (particularly in
terms of project size), they can provide developers
with much-needed information about who is
working on the project, what they are doing, and
how closely linked two developers are.
 Our future plans with the system involve both
improvements and new directions. With the
current system, we plan to continue refining our
representations and filters to determine how the
information can be best presented to developers.
Second, we currently visualize source code that is

Figure 5. ProjectWatcher graph view

5. Conclusion

We have presented a system for mining local interaction
histories to help address some of the awareness problems
experienced in distributed software development projects.
The system observes a software developer’s activities in a
software development environment and records those ac-
tions in relation to the artifact-based dependencies extracted
from source code. Visualization plugins represent this infor-
mation for developers to see and interact with. Although our
prototypes have limitations (particularly in terms of project
size), they can provide developers with much-needed infor-
mation about who is working on the project, what they are
doing, and how closely linked two developers are.

Our experience suggests a number of directions for min-
ing software repository research, including:

• Content. Research on awareness often monitors a
software development teams’ interaction with a shared
software repository. Unfortunately, the granularity of
check-in and check-out is usually too coarse to ade-
quately monitor change. This suggests that the content
of shared software repositories should also include lo-
cal interaction histories.

• Rapid incremental processing. For our purposes it
is important that the computation of source facts and
their resolution be relatively efficient to support inter-
active visualizations.

• Robustness.Our analysis may process source that is
currently being edited and so the source may not be
well-formed. We require that fact extraction and reso-
lution needs to support analysis under ongoing change.

Our future plans with the system involve both improve-
ments and new directions. With the current system, we plan
to continue refining our representations and filters to deter-
mine how the information can be best presented to develop-
ers. We currently visualize source code that is in the pro-
cess of being edited, and therefore the source code may be
inconsistent, incomplete and frequently updated. We are
investigating techniques for improving the robustness and
performance of the mining component and visualizing par-
tial information given these circumstances.

Longer range plans involve extensions to the basic ideas
of project artifacts and interaction histories. We plan to
extend our artifact collection to include entities other than
those in source code. Many other project artifacts exist, in-
cluding communication logs, bug reports and task lists. We
hope to establish additional facts to model these artifacts
and to use the new artifacts and their relationships in the
awareness visualizations.

We can also extend our use of the interaction histories
to other areas. For example, recording developers’ interac-

tion history and extracting method call facts from the source
code provides us with basic API usage information. We
can present this information in a future plugin to provide
awareness of technology expertise. A developer wishing to
know how to use a particular Java API feature may be pre-
sented with a list of developers who have used the feature
frequently or recently. Alternatively, the visualization plu-
gin may present this information overlaid on the project’s
dependency structure.

Acknowlegment

The authors would like to thank IBM Corporation for
supporting this research.

References

[1] M. C. Chu-Carroll and S. Sprenkle. Coven: brewing better
collaboration through software configuration management.
In Proceedings of the 8th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 88–
97. ACM Press, 2000.

[2] J. R. Cordy, T. R. Dean, A. Malton, and K. A. Schnei-
der. Source transformation in software engineering using
the TXL transformation system.Journal of Information and
Software Technology, 44(13):827–837, October 2002.

[3] CVS. Concurrent Versions System. Available online at
http://www.cvshome.org/.

[4] T. R. Dean, J. R. Cordy, K. A. Schneider, and A. Malton. Us-
ing design recovery techniques to transform legacy systems.
In ICSM, pages 622–631, 2001.

[5] Eclipse. Available online at http://www.eclipse.org/.
[6] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geogra-

phy of coordination: dealing with distance in r&d work. In
Proceedings of the international ACM SIGGROUP confer-
ence on Supporting group work, pages 306–315, 1999.

[7] C. Gutwin and S. Greenberg. A descriptive framework of
workspace awareness for real–time groupware.Computer
Supported Cooperative Work, 11(3):411–446, 2002.

[8] J. D. Herbsleb and R. E. Grinter. Architectures, coordina-
tion, and distance: Conway’s law and beyond.IEEE Soft-
ware, pages 63–70, 1999.

[9] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless.
Edit wear and read wear. InProceedings of CHI’92, pages
3–9. ACM Press, 1992.

[10] R. E. Kraut and L. A. Streeter. Coordination in software de-
velopment.Communication of the ACM, 38(3):69–81, 1995.

[11] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: raising
awareness among configuration management workspaces.
In Proceedings of ICSE 2003, pages 444–454, 2003.

[12] T. Scḧummer. Lost and found in software space. InPro-
ceedings of the 34th HICSS, 2001.

[13] B. Zimmermann and A. M. Selvin. A framework for assess-
ing group memory approaches for software design projects.
In Proceedings of the conference on Designing interactive
systems, pages 417–426. ACM Press, 1997.

