
UI Traces: Supporting the Maintenance of Interactive Software

Andrew Sutherland
Department of Computer Science

University of Saskatchewan
110 Science Place

Saskatoon, SK, Canada
andrew.sutherland@usask.ca

Kevin Schneider
Department of Computer Science

University of Saskatchewan
110 Science Place

Saskatoon, SK, Canada
kevin.schneider@usask.ca

Abstract

We propose a method to support the maintenance of in-
teractive software systems with user interface traces, that
involves: (1) collecting execution traces of an interactive
system, (2) segmenting execution traces into user interface
traces according to user interface activity, and (3) mapping
the user interface activity to the implementation activity.

To support our approach, we developed a tool that uses
aspect-oriented programming and load-time weaving to
collect user interface traces from an interactive system. The
tool allows us to browse the user interface traces and view
user interface related data such as: user input, display up-
dates, and thread activity. Using our tool, we demonstrate
how developers can orient themselves and identify the slice
of code relevant to performing common software mainte-
nance tasks.

1. Introduction

Maintaining interactive systems can involve significant
engineering and design challenges. The inclusion of a user
interface means that a balance must be maintained between
processing user input, performing computations, and pro-
viding appropriate feedback and updating the display. We
propose that software maintenance tasks on interactive sys-
tems benefit from tools that allow user interface activity to
be matched to implementation activity. For instance, click-
ing a button widget is a simple process from the user per-
spective, but there may be a great deal of computation that
occurs as a result. With current tools it is difficult to get an
impression of what occurs at the implementation level when
such an interface action does occur.

In this work, we discuss bridging the gap between the
“user interface perspective” and the “implementation per-
spective”. Our approach records execution activity when

specific actions occur in the user interface. We group the
execution activity associated with a specific action into a
user interface (UI) trace. These UI traces can be used to as-
sist a developer in navigating architectural components and
source code.

2. User Interface Traces

Execution traces generated during specific usages of a
target application are verbose and it is difficult to isolate the
portion of the trace that is of interest. To allow a developer
to effectively identify portions of an execution trace that are
related to user interface actions, we segment the raw exe-
cution traces according to interface actions. A user inter-
face action (UI action) is defined as a single event or group
of events that occurs on the user interface. This includes
mouse events (motion, drags, clicks), keyboard events (sin-
gle characters or blocks of text), and display updates. In
an execution trace, UI actions are represented as method
calls. Table 1 lists some of the UI actions found in a typi-
cal interactive system implemented in Java. Depending on
the specific implementation the method invocations may be
different as there are multiple ways to capture some of the
actions listed.

In an interactive system, UI actions result in or are a re-
sult of computation. For instance, mouse clicks that result
in a button widget being activated, typically have some ef-
fect or cause the state of the application to change. Display
updates are preceded by computation responsible for deter-
mining the new image or colour to be displayed, and possi-
bly for coordinating the swapping of display buffers. In our
approach, we segment the raw execution trace by locating
the interface actions, i.e. the corresponding method calls,
and grouping the computation that falls in between the in-
terface actions.

We define a UI trace as: (1) the user interface action
that initiates the user interface trace (e.g., a mouse press,
a key press, a display update, the application launch, or a

Table 1. Common UI actions and corresponding method invocations

UI Action Corresponding method invocation Associated Data
Mouse click mouseClicked(MouseEvent) Widget ID, x, y coordinates
Mouse move mouseMoved(MouseEvent) x, y coordinates
Key press keyTyped(KeyEvent) Key code, option keys
Display update paint(Graphics) Component painted
Cursor changed Cursor(String) Cursor name
Sound played AudioClip.play() File played
Thread Signals/Timers Thread.run(), Thread.sleep() Thread id
Application Launch main(String[])
Application Exit exit()

user interface related thread event), (2) data associated with
the user interface action (e.g., pointer location, modifier key
state, thread number), (3) a screenshot of the user interface
(or relevant portion of the user interface) when the user in-
terface action occurred, and (4) the execution activity re-
sulting from the user interface action (e.g., the sequence of
calls and the resource utilization from the time of the user
interface action until the next user interface action).

UI traces support software maintenance tasks in three
ways. They segment lengthy execution traces so that they
are more manageable. They map user interface activity to
the application’s implementation. Finally, they provide the
software maintainer with a ‘slice’ of the implementation
(e.g., code) that is specically related to the use case being
performed.

3. Prototype

To determine whether it is viable to support navigation
with UI traces we prototyped a tool that collects UI traces
in the manner we have described and provides a visual rep-
resentation of the architectural components that are active
during a UI trace along with a screen shot of the user in-
terface (cf. Figure 1). The source code corresponding to
the architectural entities can then be brought up in an editor
window with the appropriate sections highlighted.

In our prototype, we use an AspectJ [5] implementa-
tion to describe and capture the interface actions that oc-
cur in a target application. We have written a tracing aspect
that records when any method in the target application is
invoked. The tracing aspect also tags method invocations
that are associated with UI actions. These tags are used
to segment the entire execution trace by the UI actions. The
method invocations associated with a UI action can vary de-
pending on the application, however, the second column in
Table 1 lists the methods usually associated with the more
common UI actions.

Figure 1. Main interface of the prototype. Top
left panel: UI trace list. Bottom right panel:
recorded screen grab. Top right panel: activ-
ity and performance data

4. Tetris Example

To understand the benefit of segmenting traces based on
interface actions, consider a simple interactive piece of soft-
ware - Tetris. Tetris is a game where the player moves
falling games pieces (tetrominoes) of various shapes com-
posed of 4 square blocks to create contiguous horizontal
lines. When a contiguous horizontal line of blocks is cre-
ated, it is deleted and the blocks above move down. The
game pieces can be moved left and right by the player and
rotated into different orientations. The game ends when the
game pieces fill the game area. Although it is a relatively
simple application, there is actually quite a bit occurring in
terms of the user input, the system’s response in the form

Table 2. UI Traces for rotating a block in Tetris

UI Traces Associated Data
1 Launch
2 DisplayUpdate Component: GamePanel
3 DisplayUpdate Component: BoardComponent
4 MouseClick WidgetID: startButton, (24, 30)
5 DisplayUpdate Component: BoardComponent
6 ThreadSignal ThreadID: 12
7 DisplayUpdate Component: GamePanel
8 DisplayUpdate Component: BlockFigure
9 ThreadSignal ThreadID: 12

...
22 KeyPress Key code: SPACE
23 DisplayUpdate Component: GamePanel
24 DisplayUpdate Component: BlockFigure
25 ThreadSignal ThreadID: 12

...

of output, and the computation that is performed. During a
typical game, the user presses the left and right arrow keys
in order to move a falling game piece into the correct po-
sition before it reaches the bottom of the screen. They can
also press the down arrow key to immediately send the piece
to the bottom and start the next piece falling. Pressing an-
other key may rotate a game piece, pause the game, or quit
the game altogether. From the user’s perspective, pressing
the keys causes changes in the game.

From the implementation perspective, there is quite a bit
more occurring - input is being processed, computations
are being performed, threads are being spawned, and out-
put is being rendered. Depending on the particular imple-
mentation it is likely there exists a thread for gathering and
handling the user input, and another thread for timing the
progress of the game and the falling game pieces, and per-
haps another thread for drawing elements of the interface to
the screen. If software maintainers working on the Tetris
game wants to understand how rotation of a game piece
works from the implementation perspective, they might run
the application, rotate a piece, and examine the resulting ex-
ecution trace to get a sense of what components and source
code was exercised. A typical trace generated from the rota-
tion use case would consist of approximately 1500 method
calls. It is difficult to isolate in the lengthy trace which calls
had to do with the actual rotation of the block, and which
were related to other activities - such as setting up windows,
game state, game timers, etc.

If the execution trace is segmented by the UI actions we
have defined in Table 1, we get the list of UI traces seen in
Table 2. The Launch and Exit actions are self-explanatory.

Following the Launch action, two DisplayUpdate actions
occur, one associated with an object of type GamePanel,
and the other with an object of type BoardComponent. The
MouseClick action is recorded when the Start Button was
clicked. At several points a thread signal is recorded fol-
lowed immediately by DisplayUpdate actions. Later in the
trace a KeyPress action is captured. The key pressed was the
space bar, which is the key used to rotate the game pieces.

Each UI trace also has associated computation and data.
The computation is displayed as the method call tree that
occurs in between the beginning and finish of the UI action.
The associated data can consist of x, y coordinates, compo-
nent id’s, or thread id’s. The third column in Table 1 lists
some of the data associated with each UI action.

To determine whether our segmentation approach is use-
ful when performing typical maintenance tasks, we perform
the maintenance task of adding new functionality to the
Tetris game. Implementing a configurable difficulty setting
in the Tetris game will require the following steps: (1) Pro-
viding the user a way to manually set the difficulty via the
interface; (2) Causing the blocks to fall faster based on the
difficulty setting; and (3) Automatically determining when
the difficulty setting should be increased (based on total
lines cleared).

Loading the Tetris application into the tracing prototype
and running it, and playing a short game, generates a UI
trace containing a number of paint, thread, and key event
actions. UI traces for the launch and initial painting of the
user interface and its components are generated, along with
thread signal and paint UI traces for figures being generated
repeatedly as the game pieces fall. Scrolling through the UI
traces we can eventually find the UI trace for when a line
is about to be cleared. We can also find the UI trace where
the line was cleared by scrolling through the screen shots.
When we encounter a screen shot that has the line removed,
we know that somewhere in the last UI trace, a method was
called that cleared the line. These points in the program are
ones that will likely need to be altered in order to implement
a changeable difficulty setting. The prototype allows us to
quickly identify and navigate to these points with little to no
prior knowledge of how the Tetris game is implemented.

A raw execution trace taken from starting Tetris, and
playing up until a line is cleared is approximately 14500
method invocations of both native and non-native Java
methods. Segmenting this trace results in 1035 UI traces.
The Tetris game implementation consists of 11 classes and
85 methods written in 2,418 lines of code. The JDK li-
braries adds an additional 9 packages, 55 classes, and 1,084
methods. The source code for the Tetris game is available at
http://www.percederberg.net/software/tetris/.

5. Related Work

Tracing the execution of software systems has been used
for some time and many techniques for collecting and stor-
ing traces have been developed [6]. The majority of these
methods have been used to reduce the cost of collecting and
storing the large quantity of data associated with a typical
execution of a given program. There have been other ap-
proaches to using dynamic system data to understand and
visualize software architecture and behaviour. These ap-
proaches may describe architecture and the associated be-
haviour using visual languages [4] or visualize entire traces
in the context of the architecture [1, 2, 7]. Our approach is
different in that we allow the developer to focus in specific
points in a trace based on actions that occur in the inter-
face. Tools that use our approach may use visualizations to
present these trace segments.

Walker et. al. encode events in an execution trace that
allow them to be investigated from different architectural
viewpoints [9]. Events such as method execution, object al-
locations, and thread events are abstracted to types and in-
stances in the architecture. The efficiency of their approach
is demonstrated using a visualization tool and a query tool.
The way our approach collects execution data is similar to
their encoding scheme, however we also segment the col-
lected data based on actual behaviour of the system - the
user interface activity.

Eisenbarth et. al. used a combination of static and dy-
namic analysis similar to our approach for an improved
means of feature location in source code [3].

6. Future Work

We have also explored integrating the UI trace compo-
nent of our prototype with a visualization tool that allows
the software maintainer to view implementation activity us-
ing a visual model. The visual model augmented with UI
trace data provides the ability to navigate a large code base
while providing information regarding the system architec-
ture as well as details concerning a specific execution of the
application [8].

We have used our UI trace prototype on a variety of in-
teractive system maintenance tasks and preliminary indica-
tions show that the approach is promising. However, further
experimentation is necessary to determine whether the ap-
proach scales to larger interactive systems and is applicable
for other styles of interactive systems.

Further processing on the UI traces and examination of
the patterns that emerge during various uses of software
may show various architectural designs are better suited to
supporting specific tasks than others.

Integration of this approach into modern development
environments (e.g. as an Eclipse plugin) may allow for

more extensive evaluation of how navigation in software
development can be supported using execution data seg-
mented using interface actions. This may also allow us to
determine if the availability of tools using this approach will
influence development and architectural design.

7. Conclusion

We have presented an approach for navigating the archi-
tecture and source code of interactive software applications
based on actions that occur in the user interface. These ac-
tions may include user inputs and actions, display updates
and drawing operations, and certain processing events that
affect the user interface. Executing the target application
and tracing the computation that occurs produces large, un-
wieldy amounts of data. By connecting user interface ac-
tions to segments of computation in the trace we produce a
UI trace that is easier to navigate and manage. Additionally,
this UI trace can be used as a basis for viewing high-level
models of system activity. We demonstrate how this ap-
proach can assist in performing software maintenance tasks
such as implementing new functionality.

References

[1] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van
Wijk, and A. van Deursen. Understanding execution traces
using massive sequence and circular bundle views. In Proc.
15th Int. Conf. on Program Comprehension (ICPC), pages
49–58.

[2] P. Dugerdil and S. Alam. Execution Trace Visualization in
a 3D space. In Information Technology: New Generations,
2008. ITNG 2008. Fifth International Conference on, pages
38–43, 2008.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. Software Engineering, IEEE Transactions on,
29(3):210–224, March 2003.

[4] J. Grundy and J. Hosking. High-level Static and Dynamic
Visualisation of Software Architectures. Proceedings of
SEKE’98, IEEE CS, pages 18–20, 2000.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, pages 327–353, 2001.

[6] J. Larus. Efficient program tracing. Computer, 26(5):52–61,
1993.

[7] A. Malony, D. Hammerslag, and D. Jablonowski. Traceview:
A trace visualization tool. IEEE Software, 8(5):19–28, 1991.

[8] A. Sutherland and K. Schneider. Towards a framework for
software navigation techniques. In Proceedings of the 2008
international workshop on Cooperative and human aspects of
software engineering, pages 101–104. ACM New York, NY,
USA, 2008.

[9] R. Walker, G. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. ACM SIGPLAN
Notices, 33(10):271–283, 1998.

