VisCad: Flexible Code Clone Analysis Support For NiCad

Muhammad Asaduzzaman

Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science, University of Saskatchewan
Saskatoon, SK, Canada S7N 5C9

{md.asad, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT

Clone detector results can be better understood with tools
that support visualization and facilitate in-depth analysis.
In this tool demo paper we present VisCad, a comprehen-
sive code clone analysis and visualization tool that provides
such support for the near-miss hybrid clone detection tool,
NiCad. Through carefully selected metrics and visualization
techniques VisCad can guide users to explore the cloning of
a system from different perspectives.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering

General Terms
Measurement, Experimentation

Keywords

Code clones, analysis, visualization

1. INTRODUCTION

Clone detection and analysis becomes an integral part of
software maintenance due to possible threats imposed by
clones. Thus, over the past decade a great many clone de-
tection tools have been proposed [4]. However, identifying
important patterns of cloning requires tool support that an-
alyzes the result and provides a higher level of abstraction
with support for in-depth code-level analysis where neces-
sary. There are also a few visualization tools proposed in
the literature [4] to support such activities. However, most
of them work mainly with the clone detection tools that
detect only exact and renamed clones. Like several other re-
cent clone detection tools, NiCad [3] has high accuracy both
in terms of precision and recall in detecting exact, renamed
and near-miss gapped clones [2]. Although NiCad gives in-
teractive HTML output in addition to its XML textual out-
put, the results are difficult to analyze for large code bases.
To aid clone analysis with NiCad, we have developed VisCad
which not only visualizes clone detection results from NiCad
but also allows maintenance engineers to quickly locate and
inspect cloning regions from higher levels of abstraction to
the source code level. Although VisCad currently works with
NiCad, it can be easily plugged in to any other clone detec-
tion tool that returns textual output of the detected clones.

Copyright is held by the author/owner(s).
IWSC’11, May 23, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0588-4/11/05

77

VisCad

Clone Browser ’

Organizes clones in clone
groups and directory structure

Source Code
Browser

VisCad Architecture

Clone
Detection
Result

VisCad Core
Manages subject systems,
results and views

Diff Component

Figure 1:

In this tool demo, we will show how VisCad can be effec-
tively used for large scale clone visualization and analysis
with different visualization techniques and metrics.

2. VISCAD

VisCad works on top of NiCad and utilizes the results re-
ported by NiCad. The architecture of VisCad is shown in
Figure 1. Both the subject system code base and the clone
detection results from NiCad are required as input to Vis-
Cad. Clones can also be detected with VisCad’s graphical
user interface. VisCad organizes the detected results through
internal processing, and populates a set of GUI views and
metrics to facilitate developers investigating the cloning sta-
tus at different levels of abstraction. For instance, the source
code browser (see Figure 2) allows inspection of the clones at
the source code level. The changes between clone pairs can
be observed using the diff utility integrated with the tool. In
other cases where the cloning relationship is presented us-
ing different visualization techniques, the user can refer to
the actual source code by interacting with the views. Since
clone analysis is subjective in nature, manual removal of
clones is incorporated into VisCad in order to provide more
control to the user. At this time, VisCad supports scatter
plot, treemap and radial map views to visually describe the
cloning status of a system or a set of systems in the case of
inter-project clone visualization and analysis.

2.1 Scatter Plot

VisCad can generate scatter plots of a subject system
which is suitable for identifying cloning patterns difficult to
spot in other ways. A scatter plot consists of a two dimen-
sional matrix where each cell represents the cloning status



VisCag: Clone Analysis and Visualization Tool

Java
e java
fesColl

| KNI

ApplyDIff_ Cloned Fragments le PCID: 6203 Path:

Figure 2: Source Code Browser

of a pair of items. The items are labelled in the horizontal
and vertical axes and can be files or directories. The level
of cloning is represented using a colour heatmap. Users can
have a clear abstracted view of the cloning status and can
also select any cell. The source files, clone pairs or clone
classes corresponding to that cell can be obtained and in-
spected in the source code browser. The axes size can be
reduced by considering only those files or subsystems that
contain clones. Moreover, a zoom in feature can help devel-
opers look deeper. A variation of scatter plot, similar to the
one used by Gemini [5] is also available in VisCad.

2.2 Treemap

The treemap view shows the cloning status of directories
and files through rectangles while maintaining their hierar-
chical structures. The size and colour of a rectangle can
specify different data about the directory or file that the
rectangle represents. The treemap view can be used to iden-
tify the subsystems that contribute most to the total clone
pairs of a system. Often, part of a subsystem that contains
the most clones may not significantly contribute to the num-
ber of cloned lines of code(LOC) in the entire system. Vis-
Cad allows customization of the treemap to spot locations
that usually contribute to the number of cloned functions,
blocks or the cloned LOC. Figure 3 shows an example of
treemap created with VisCad for the Linux Kernel system.

2.3 Radial Map

The relationships among multiple subsystems can be ex-
plored using the radial map view, which also preserves the
hierarchical structure of the subject systems. Each subsys-
tem is represented by an arc and the length of the arc rep-
resents the level of cloning. An edge between subsystems
represents the sharing of clone pairs/classes, and the thick-
ness of an edge denotes the number of clone pairs or clone
classes shared between them. It is also possible to explore
such relationships for source files.

2.4 Metrics

VisCad populates a number of metrics including those dis-
cussed and empirically studied by Roy and Cordy [2], and
supports filtering based on the metric values. For example,
one particular metric named CRFM(Clone-Ratio of File for
Methods) refers to the percentage of cloned methods in a

78

Figure 3: Tree Map View

given file. Source files of a system can be filtered based on
the metric value to examine only those files where all meth-
ods are cloned. Such features yield opportunities for more
focused investigation.

3. CONCLUSION

Using a source code browser together with different visu-
alization techniques and metric values, VisCad can be effec-
tively used for analyzing near-miss clones of large systems.
Moreover, filtering or refinement of the result is also possi-
ble through VisCad. Thus VisCad meets the requirements of
a clone comprehension tool that were identified by Kapser
and Godfrey [1]. VisCad has been implemented in Java and
runs on systems with Java Runtime Environment (JRE) 6.
Due to a lack of space, we are unable to provide the details
about the views or the metrics. However, our experience
on the Linux Kernel system using VisCad suggests that the
tool is effective for analyzing and visualizing clones even for
large systems. In this tool demo, we will show all the differ-
ent features of VisCad with the Linux Kernel as the subject
system.

Acknowledgements: This work is supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

4. REFERENCES

[1] C. Kapser and M. W. Godfrey. Improved Tool Support
for the Investigation of Duplication in Software. In
ICSM, pp. 305 — 314, 2005.

[2] C. K. Roy and J. R. Cordy. Near-miss Function Clones
in Open Source Software: An Empirical Study. Journal
of Software Maintenance and Evolution 2(3): 165 — 189,
2010.

[3] C. K. Roy and J. R. Cordy. NiCad: Accurate Detection
of Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization. In ICPC, pp.
172 —181, 2008.

[4] C. K. Roy and J. R. Cordy. A Survey on Software
Clone Detection Research. Technical Report 2007-541,
115 pp., School of Computing, Queen’s University, 2007.

[5] Y. Ueda, T. Kamiya, S. Kusumoto and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In METRICS, pp. 67 — 76, 2002.



