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Abstract—
The Internet of Things (IoT) has transformed home automation,

industry, and agriculture, yet security remains a major challenge.
IoT systems comprise a wide range of devices generating vast and
heterogeneous data. This paper investigates device-specific and
device-type-specific anomaly detection models, highlighting the
potential of leveraging unique traffic patterns from heterogeneous
IoT devices. These models are compared to a single model trained
on data from all devices, using eight different supervised and
unsupervised One-Class Classifier (OCC) methods on two IoT-
collected datasets.

Typically, real-world IoT devices generate normal traffic prior
to any attack or intrusion. With an abundance of normal traffic
and no labelled attack data, unsupervised learning becomes a
suitable approach. The findings of this paper show that when us-
ing unsupervised methods, device-specific and device-type-specific
models outperform single models, particularly when the data
is dominated by one class. In this context, device/device-type
models can be more effective for real-time anomaly detection
by identifying attacks as deviations from the normal profiles
established for each device or device type.

Index Terms—Internet of Things (IoT), Intrusion Detection
System (IDS), Anomaly Detection, Device-based Model, One-Class
Classifier (OCC), Unsupervised Learning.

I. INTRODUCTION

The Internet of Things (IoT) aims to connect millions of
smart devices worldwide. Number of IoT devices is rapidly
increasing each year, but with this increase comes security and
privacy challenges. Solutions like Intrusion Detection Systems
(IDS) must adapt to IoT’s unique characteristics, such as low-
computation capabilities and diverse traffic types.

Traditional intrusion detection systems typically use a single
model to analyze all IoT traffic for anomalies. In contrast,
adopting a “Device-Specific” or “Device-Type-Specific” ap-
proach involves creating anomaly detection models for each
individual device (e.g., camera A and camera B) or device-
type (e.g., cameras and home assistants). The key research
question is whether Device-Specific or Device-Type-Specific
models improve an IDS’s ability to detect anomalies compared
to the conventional single model approach.

We build upon the premise that device-specific or device-
type-specific models, encapsulating the distinctive traits and
behaviours of individual IoT devices or those within specific
groups, are likely to exhibit enhanced accuracy in identifying
anomalous behaviour. The diversity in behavioural patterns
across different devices or device-types is anticipated to con-
tribute to a more effective intrusion detection system tailored
to the intricacies of IoT systems.

Throughout the literature, most studies have used a sin-
gle supervised or unsupervised model for anomaly detection;
however, few have focused on device-specific or device-type-
specific models in this area. A device-specific model is trained
on data from a single IoT device, while a device-type-specific
model is trained on collective data from several devices of the
same type, such as cameras.

Supervised learning approaches require attack data and
labelled datasets, which are costly and labour-intensive to
generate. In large real-world IoT systems, devices primarily
generate normal traffic. Unsupervised learning can leverage this
abundance of normal traffic for anomaly detection using single
or device-based models. This paper evaluates the accuracy
of both supervised and unsupervised learning methods for
anomaly detection using device-based models. We compare the
performance of single, device-specific, and device-type-specific
models using eight supervised Machine Learning (ML) and
Deep Learning (DL) methods with unsupervised OCC methods.
OCC methods, trained on normal traffic, detect anomalies
by identifying deviations from the normal profile and output
binary results, attack or normal. For comparison, supervised
methods are implemented for binary classification. We address
the following research questions:

1) What is the comparative accuracy difference between a
single model for all IoT devices versus utilizing device-
specific models tailored to individual devices?

2) Which modelling approach yields better accuracy out-
comes: device-specific models tailored for each IoT de-
vice or device-type-specific models that apply a model to
devices with similar type?



II. RELATED WORK

Fingerprinting device behaviour can be used for both device
identification and anomaly detection. Device identification has
been extensively studied, but device behaviour fingerprinting
for anomaly detection in IoT remains a relatively nascent field.

Only a few studies focused on profiling network traffic using
device/device-type models trained on normal device behaviour,
including one proposed by Sivanathan et al. [1], ComplexIoT
[2], and DÏoT [3].

Sivanathan et al. [1] proposed a system that classifies IoT
devices based on network activity, dynamically adapting to
changes like firmware updates. Key traffic attributes are iden-
tified, traffic instances are grouped using K-means clustering
and device behaviour is represented using unsupervised OCC
models. ComplexIoT [2] classifies IoT traffic by assigning a
trust score to each flow based on complexity and variance,
leading to more precise anomaly detection boundaries for
simpler devices, and generalized boundaries for more complex
devices.

DÏoT [3] leverages a device-type-specific anomaly detection
approach, comparing each device’s behaviour to a specific
device-type profile. The authors argue that a single model
for all devices can lead to high false positives or reduced
sensitivity due to IoT diversity. By employing dedicated models
for each device type, DÏoT more accurately captures behaviour
patterns, improving anomaly detection. This system uses Gated
Recurrent Units (GRUs) within a federated learning framework,
to aggregate profiles across devices. Comparing single vs.
device type models, false positive rates of 0.67% and 0%,
and true positive rates of 97.21% and 95.6% are achieved,
respectively.

Our implementations assess whether the normal profile of
a device or device-type is sufficiently precise for effective
anomaly detection and whether unsupervised OCC methods
outperform supervised learning.

III. METHODOLOGY

A. Learning Methods

This paper employs various state-of-the-art ML, DL, and
OCC methods. The investigated ML and DL algorithms are
Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), and Deep Neural Network (DNN), while the OCC
methods include iForest (Isolation Forest), One-Class Support
Vector Machine (OCSVM), Local Outlier Factor (LOF), and
Deep Support Vector Data Description (DeepSVDD) [4].

iForest is an ensemble anomaly detection method that iso-
lates anomalies by recursively partitioning the data to create a
forest of trees [5]. OCSVM is an unsupervised ML algorithm
designed for novelty detection that learns a decision boundary
to encapsulate normal data points and identifies deviations
as anomalies [6]. LOF is a density-based anomaly detection
method that estimates data point density by measuring distances
between points, identifying denser regions as normal and less
dense regions as outliers [5]. DeepSVDD is an OCSVM-
related technique that uses a hypersphere to separate data

samples, leveraging neural networks to learn useful feature
representations for anomaly detection [4].

B. Datasets

To assess IoT security solutions, datasets representing IoT
behaviour (including normal and malicious behaviour) are
needed. To implement the experiments, device IDs are required.
Only some datasets provide device IDs in their feature vector.
For others, the device IDs can be obtained from the provided
PCAP (Packet Capture) files, if available.

1) N-BaIoT dataset: The N-BaIoT dataset [7] is collected
from nine commercial IoT devices with scanning, junk spam,
UDP and TCP flooding, ACK and SYN flooding attacks. Be-
havioural snapshots of network flows are captured for multiple
time windows. There are 7,062,606 records, with 92% attack
records. The record distribution among devices in this dataset
is as follows: two devices hold approximately 5% of the data
each, while the remaining seven devices hold between 10% and
16% of the data each.

2) CICIoT2023-Packet dataset: The CICIoT2023 dataset [8]
was collected from 105 real IoT devices in a large IoT testbed,
and includes 33 distinct attacks, categorized into seven groups:
DDoS, DoS, reconnaissance, web-based, brute force, spoofing,
and Mirai. To create a dataset with Device IDs, we generated
CICIoT2023-Packet dataset from the PCAP files of this dataset,
using Tcpdump, Scapy, Socket, Numpy, and Pandas Python
packages with packet-level features. The generated dataset
was 820GB, thus subsampling was performed, reducing the
dataset to 9.8GB. All benign traffic was retained as the data
predominantly consisted of attack records. For each attack
subcategory, a maximum of 40,000 records were randomly
selected. The dataset was then cleaned and preprocessed.

The generated dataset comprises data from 69 devices,
with a highly non-uniform data distribution among different
devices. Some devices are predominantly composed of normal
records, while others are predominantly composed of attack
records. Devices with minimal or no normal records were
excluded because one-class classifiers need a sufficient amount
of normal traffic to establish normal behaviour profiles, and
ML/DL models require adequate samples from both normal and
attack classes. The final dataset includes data from 62 devices
belonging to seven groups. The data distribution is highly non-
uniform, with most devices holding less than 2% of the data,
while two devices hold 18% and 21%.

C. Performance Metrics and Experimental Design

We evaluate the performance of eight algorithms for binary
classification using metrics, such as accuracy, precision, recall,
and F1-score with a primary focus on accuracy and F1-score.
Accuracy indicates the ratio of correct classifications on the
entire test set, while F1-score is the harmonic mean of precision
and recall. These metrics are extensively described in related
works (e.g., [8]).

Records from each device (or device type) are randomly
split into 70% train set and 30% test set. Various ML/DL/OCC
algorithms are applied to the datasets. The binary classification



results, averaged over five independent runs, include both the
average and standard deviation. ML and DL methods are
trained on the entire train set, while OCC methods are trained
on the normal records from the train set. During evaluation,
records are classified as benign (normal) or anomalous.

IV. EXPERIMENT RESULTS

A. Device-Specific Models for Anomaly Detection

1) N-BaIoT Dataset: Nine device-specific models are
trained on data from each of the nine devices of the N-
BaIoT dataset using various supervised and unsupervised OCC
methods. The accuracy and F1-score of binary classification
for each of the nine models are averaged over five runs. The
accuracy results are displayed in a heatmap in Figure 1. We
observed the following results:

• ML/DL consistently outperformed OCC.
• Among OCC methods, DeepSVDD performed well across

all devices, especially #1 and #9.
• LOF ranked after DeepSVDD, with moderate performance

for most devices except #2 and #9.
• iForest showed the worst accuracy in almost all devices.

Fig. 1. Accuracy of Device-Specific Models (N-BaIoT dataset).

Table I presents the average scores of all device-specific
models implemented using various algorithms, showcasing
metrics along with their respective standard deviations (SD)
across the nine models.

To evaluate the effectiveness of device-specific models versus
a single model for all devices, the performance of the single
model is compared with the average of all device-specific mod-
els, presented in Table II, highlighting the improved metrics.
When using ML and DL algorithms, there were minor or no
differences in accuracy and F1-score between the two types of
models. However, significant differences emerged with OCC
methods. Specifically, iForest and OCSVM showed notable
improvements with device-specific models, with iForest’s ac-
curacy and F1-score nearly doubling, and OCSVM’s metrics

TABLE I
AVERAGE SCORES OF DEVICE-SPECIFIC MODELS (N-BAIOT DATASET).

Method Accuracy Precision Recall F1-Score
% SD % SD % SD % SD

LinearSVM 99.97 .0013 99.98 .0012 99.98 .0005 99.98 .0008
DT 100 .0002 100 .0001 100 .0001 100 .0001
RF 99.98 .0011 99.99 .0012 99.99 .0005 99.99 .0007
DNN 99.99 .0008 99.99 .0005 99.99 .0005 99.99 .0005
iForest 40.73 16.2 94.86 4.86 35.73 18.4 48.90 18.2
OCSVM 61.74 15.6 92.80 4.44 62.87 17.5 73.72 13.2
LOF 70.84 18.4 97.79 2.83 68.68 20.6 78.75 17.0
DeepSVDD 88.40 10.0 99.42 .0039 87.90 11.3 92.14 8.24

improving by 7.5% and 3%, respectively. In contrast, LOF
and DeepSVDD performed worse with device-specific models,
with LOF seeing a decrease in accuracy and F1-score by 29%
and 21%, and DeepSVDD experiencing a decrease of 4%
and 3%, respectively. Overall, ML and DL methods generally
achieved higher accuracy. LinearSVM and DNN showed slight
improvements with device-specific models, while other meth-
ods remained consistent. In terms of F1-scores, two algorithms
remained unchanged, RF improved, and DNN declined when
utilizing device-specific models.

TABLE II
SINGLE MODEL VS. AVERAGE OF DEVICE-SPECIFIC MODELS: N-BAIOT.

Method
Accuracy F1-score

Single Device Single Device
Model model Model model

Supervised

LinearSVM 99.96 99.97 99.98 99.98
DT 100 100 100 100
RF 99.96 99.98 99.98 99.99
DNN 99.99 99.99 100 99.99

Unsupervised

iForest 20.78 40.73 24.14 48.90
OCSVM 57.42 61.74 71.53 73.72
LOF 99.21 70.84 99.57 78.75
DeepSVDD 92.07 88.40 95.16 92.14

Figure 2 shows the performance comparison between single
and device-specific models by subtracting the accuracy of the
single model from the average accuracy of device-specific
models. Negative values (yellow to red) indicate the single
model’s superiority, while positive values (yellow to green)
indicate the device-specific models’ superiority. The results
revealed the following insights:

• The difference in performance between single-model and
device-specific approaches is minimal for ML/DL methods
but varies significantly for OCC methods.

• Device-specific models using iForest consistently outper-
formed the single model across all devices.

• Device-specific models using LOF performed worse than
the single model.

• When considering same-type devices, the algorithm type
plays a more significant role in determining the best
approach, rather than differences within the devices them-
selves.

2) CICIoT2023-Packet dataset: Models were trained on data
from 62 devices using ML/DL/OCC. Table III displays metrics
averaged over all device-specific models, along with standard



Fig. 2. Accuracy Difference: Single vs. Device-Specific Models (N-BaIoT).

deviations from the average across all models. Due to its
resource-intensive nature, the OCSVM algorithm was executed
on only 5% of the data for a single implementation; therefore,
no standard deviation is provided. Similar to the N-BaIoT
dataset results, ML and DL methods outperformed one-class
classifiers.

TABLE III
AVERAGE SCORES OF DEVICE-SPECIFIC MODELS (CICIOT2023-PACKET).

Method Accuracy Precision Recall F1-Score
% SD % SD % SD % SD

LinearSVM 81.56 10.3 84.53 15.3 55.18 31.2 61.79 28.5
DT 85.01 8.41 96.90 4.70 56.99 29.4 67.18 24.4
RF 84.01 8.78 94.04 6.61 56.47 30.0 65.59 25.4
DNN 81.88 10.1 55.35 30.9 61.30 28.5 77.65 23.9
iForest 62.90 14.7 58.95 23.5 39.01 17.7 43.78 17.9
OCSVM 58.98 - 55.02 - 77.46 - 60.06 -
LOF 77.38 14.5 95.51 11.0 44.12 26.8 56.29 24.8
DeepSVDD 74.64 14.8 83.35 23.2 39.47 28.2 49.18 28.0

Similar to the previous subsection, Table IV compares
device-specific models with a single model for all devices. The
results indicate that for ML and DL algorithms, a single model
outperforms device-specific models in both accuracy and F1-
score across all algorithms. However, for OCC, device-specific
models using iForest, LOF, and DeepSVDD achieved higher
accuracy than the single model, while only the device-specific
models using OCSVM showed lower accuracy.

Figure 3 denotes a comparison between the average of
device-specific models and the single model. The following
insights are derived:

• The single model based on ML/DL algorithms exhib-
ited higher accuracy across all device types except for
NextGeneration devices.

• For NextGeneration devices, holding 43% of all data
and also dominated by one class (i.e., attack class),
device-specific models consistently outperformed the sin-
gle model across all algorithms.

TABLE IV
SINGLE MODEL VS. AVERAGE OF DEVICE-SPECIFIC MODELS

(CICIOT2023-PACKET).

Method
Accuracy F1-score

Single Device Single Device
Model model Model model

Supervised

LinearSVM 83.92 81.56 86.85 61.79
DT 90.28 85.01 91.80 67.18
RF 84.55 84.01 87.80 65.59
DNN 87.89 81.88 89.64 77.65

Unsupervised

iForest 48.12 62.90 32.28 43.78
OCSVM 77.63 58.98 83.76 60.06
LOF 69.01 77.38 65.48 56.29
DeepSVDD 53.63 74.64 37.88 49.18

• Generally, device-specific models using OCC methods
outperformed the single model across all algorithms, ex-
cept for OCSVM.

Fig. 3. Accuracy Difference: Single vs. Average of Device-Specific Models
(CICIoT2023-Packet).

B. Device-Type-Specific Models

1) N-BaIoT Dataset: The N-BaIoT dataset includes nine
devices across five categories: two doorbells, one thermostat,
one baby monitor, four security cameras, and one webcam.
Device-type-specific anomaly detection models are trained on
data from each category. Below are the key observations
from these results on accuracy of device-type-specific models,
aligning with findings on device-specific models for the N-
BaIoT dataset.

• ML/DL methods consistently outperformed OCC meth-
ods, demonstrating superior performance.

• Among OCC methods, OCSVM and DeepSVDD per-
formed well across most device types, with OCSVM
achieving 92-94% accuracy and DeepSVDD exceeding
99% accuracy.

• iForest and LOF displayed notably low accuracy across
all types of devices.

Comparing device-type-specific models to a single model in
Figure 4, the difference is negligible for supervised ML/DL
methods. However, one-class classifiers showed significant



variation. Particularly, iForest and OCSVM models generally
performed better with device-type-specific models, sometimes
by a considerable margin. In contrast, LOF and DeepSVDD
showed higher accuracy with a single model.

Fig. 4. Accuracy Difference: Single vs. Device-Type-Specific Models (N-
BaIoT).

Figure 5 compares device-type-specific models to device-
specific models for categories with multiple devices, which are
doorbells (device #1 and #2) and security cameras (devices #5
to #8). The main insights are summarized as follows:

• Minimal difference is observed between these model types
with supervised ML and DL methods.

• For OCC methods, devices #1 and #2 had better accuracy
with device-type-specific models, while devices #5 to #8
performed better with device-specific models. Thus, the
optimal model choice depends on the device type.

Fig. 5. Accuracy Difference: Device-Type-Specific vs. Avg. of Device-Specific
models (N-BaIoT).

2) CICIoT2023-Packet Dataset: This dataset is comprised
of 62 devices in seven categories. There are seven audio
devices, 14 cameras, six Hub devices, 14 power outlets, eight
home automation devices, six lights, and seven next generation
devices.

A model per device type is trained and evaluated for each
of the seven device groups. Figure 6 shows the accuracy of
these device-type models using various ML/DL/OCC algo-
rithms. Due to difficulties with large training sets, OCSVM
results were not obtained for this dataset. Camera and NextGen
device groups performed exceptionally well across almost all
algorithms, likely due to their large data share (43% for
NextGen and 34% for cameras) and the dominance of one class,
99% attack records for NextGen and 84% normal records for
cameras. This data volume and class dominance enhanced OCC
method performance.

Fig. 6. Device-Type-Specific Model Accuracy (CICIoT2023-Packet).

When comparing single and device-type-specific models
(Figure 7), the NextGen and camera device groups performed
better with device-type-specific models. In other groups,
the single model excelled with supervised ML/DL methods,
whereas device-type-specific models outperformed with iForest
and DeepSVDD. Consistent with the N-BaIoT dataset results,
LOF resulted in outperforming the single model.

Fig. 7. Accuracy Difference: Single vs. Device-Type-Specific Models
(CICIoT2023-Packet).

Comparing device-type and device-specific models shows
varied performance by device group. In the camera group,
device-type models outperformed device-specific models across
all algorithms due to the high volume of data from devices
11 and 13. In contrast, device-specific models consistently
outperformed device-type models in the Hub device group
across all ML/DL/OCC methods.

V. DISCUSSION

The experiments presented in this paper provide insights into
the performance of various modelling approaches, including
single, device-specific, and device-type-specific models. Super-
vised ML and DL methods generally showed high accuracy in
anomaly detection for device-specific models. However, OCC



Fig. 8. Accuracy Difference: Device-Type-Specific vs. Device-Specific Models
(CICIoT2023-Packet).

methods yielded diverse results, with DeepSVDD and then LOF
performing acceptably across all datasets. DeepSVDD, which
is an integration of OCC and DL, and LOF excel in establishing
more accurate boundaries for normal profiles.

Comparing single vs. device/device-type models on the
N-BaIoT dataset revealed similar performance when using
ML/DL methods. On the CICIoT2023-Packet dataset, the single
model generally outperformed device/device-type models with
ML/DL methods, except for NextGen and camera devices. For
these two groups, which make up 77% of the dataset (NextGen
at 43%, camera at 34%), device/device-type models consis-
tently outperformed the single model. Both groups are domi-
nated by one class, 99% of NextGen data is attack records and
84% of camera data is normal. This suggests that device/device-
type models are particularly effective for anomaly detection
when devices have ample data and are dominated by a single
type of traffic pattern. The effectiveness of device-specific vs.
device-type-specific models depends more on device types and
their data rather than on the algorithm used.

The results differ between the two datasets due to their
distinct data distributions. The N-BaIoT dataset has a more bal-
anced data distribution among devices, while the CICIoT2023-
Packet dataset has significant data imbalances.

To overcome the cold start issue in distributed IDS for IoT
devices with limited initial data, a strategy involves preloading
devices with pre-trained models based on device types. These
models, initially trained on extensive data, undergo fine-tuning
using local data through transfer learning. Michau and Fink [9]
proposed an unsupervised transfer learning framework using
OCC for industrial applications.

VI. CONCLUSION AND FUTURE WORK

In pursuit of a practical Intrusion Detection System (IDS)
tailored to the needs of Internet of Things (IoT), device-specific
and device-type-specific models were evaluated and compared
with a single model for all devices. While a single model
requires less storage space, device/device-type models trained
on data from individual IoT devices or groups of similar devices

prove to be beneficial in IoT systems where heterogeneous
devices generate unique traffic patterns.

Device/device-type models are superior to single models
when either the data is dominated by one class or when using
one-class classifiers. IoT systems predominantly produce be-
nign traffic before any attacks occur. By training device/device-
type models on an IoT device’s stream of traffic, an IDS agent
can build a normal profile and then detect any deviations from
the normal profile as intrusions. In this context, use of One-
Class Classifier (OCC) methods emerges as a viable solution
instead of supervised Machine Learning and Deep Learning
methods, which rely on pre-generated and labelled datasets.
Attack traffic is usually scarce, and collecting attack data is
difficult and costly, making supervised methods impractical in
large IoT systems.

Future work will focus on the application of device/device-
type models in a Federated Learning (FL) setting to enable
knowledge sharing through model parameter weights while
preserving data privacy. Feature analysis will also be consid-
ered. Additionally, we also plan to evaluate OCC models on
a dataset dominated by normal traffic, contrasting with the
attack-dominant N-BaIoT and the imbalanced CICIoT2023-
Packet datasets, to assess their accuracy in detecting anomalies
in IoT systems with predominantly normal traffic.
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