
LRU-2 vs 2-LRU: An Analytical Study
Alireza Montazeri

Department of Computer Science
University of Saskatchewan

Saskatoon, Canada
Email: alm164@mail.usask.ca

Nicholas R. Beaton
School of Mathematics and Statistics

University of Melbourne
Melbourne, Australia

nrbeaton@unimelb.edu.au

Dwight Makaroff
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

Email:makaroff@cs.usask.ca

Abstract—Hierarchical caching enables users to obtain content
from one of (possibly) many caches between an edge router
cache and an origin server, reducing latency/overall network
traffic. This can be used in many network architectures, in-
cluding P2P networks and Content Distribution Networks. Of
particular interest are Information Centric Networks (ICNs),
which decouple content identifiers from specific network hosts
and explicitly consider universal caching (collaboration between
network routers) as a desirable feature.

Performance analysis of a large-scale hierarchy of caches
requires accurate mathematical models for various cache re-
placement algorithms. There is no previous study that models
LRU-k. This cache replacement algorithm is important since its
principle is the basis of recent algorithms such as k-LRU that
outperform LRU in many situations. We first model LRU-2 using
Che’s approximation, as a specific case of LRU-k for k = 2. We
also extend our model to a hierarchical network of LRU-2 caches.
The model is validated analytically and with simulation. The
experiments show that the proposed model approximates LRU-2
accurately. LRU-2 and 2-LRU are also compared analytically and
with simulations. The comparison between the two algorithms
illustrates that 2-LRU outperforms LRU-2.

I. INTRODUCTION

One of the key features of P2P Networks and Content
Distribution Networks (CDNs) is universal caching. The goal
of universal caching is moving the most popular data items
towards the network edges in order to decrease network
traffic, remove the single point-of-failure of servers, thereby
improving user-perceived experience. These features are also
of interest in emerging Information Centric Networks (ICNs)
as well as use in routers within mobile networks [1].

Cache replacement algorithms choose what data items to
evict from the cache, when the cache is full, in order to make
room for other data items. Algorithm ξ1 outperforms ξ2 if the
chosen data item for eviction is less likely to be requested in
the future, improving the probability of cache hits (i.e. hξ1 >
hξ2 ). With a cache capacity of C in an independent Reference
Model (IRM) environment (i.e. constant frequency of requests
for data items over time), the Least Frequently Used (LFU)
algorithm stores the C most popular data items in the cache
and provides optimal performance under IRM [2]. LFU evicts
the data item with the lowest frequency based on the history
recorded. In a non-IRM environment however, Garetto et al.
show that LFU is not optimal when popularity of data items
changes over time [3]. It adapts poorly to temporal locality in
practice, caching stale items with past high frequency [4].

Least Recently Used (LRU) is a popular replacement algo-
rithm with low run-time cost. Upon the arrival of data item i,
if i is at the lth spot in the LRU-sorted queue, LRU moves i
to the head of the queue and other data items, located between
the head and l−1th spot, one spot down. If i is not cached, the
data item at the tail of the LRU queue is evicted if required.
LRU keeps the most recently accessed data items closer to
the head of the queue. LRU however, caches singleton data
requests, potentially evicting popular data items that have a
temporary lull in requests.

O’Neil et al. proposed LRU-k, which modifies LRU to
keep track of the last k requests for each data item [5]. They
assume D = {1, 2, . . . , i, . . . , N} as a list of data items, and
request arrival for data items specified by a reference string
like r1, r2, . . . , rt, where rt = i ∈ D means that data item i
is requested at time t. Given a reference string r1, r2, . . . , rt,
the backward k-distance for data item i from time t, shown
by bt(i, k), is the number of references since kth most recent
reference for i:

bt(i, k) =


x if rt−x = i , and there are exactly k

references for i in time interval [t− x, t],
∞ if i does not appear k times.

LRU-k evicts the data item i with largest bt(i, k); LRU is
used if potential victims with bt(i, k) =∞ are already cached.
LRU-k results in a higher hit ratio compared to LRU, but its
implementation complexity is O(logC) since the meta-data
list must be kept sorted on each request arrival [6].

This inspired the design of cache replacement algorithms
that produce equivalent hit ratios while eliminating implemen-
tation overhead. O(1) algorithms LRU-2Q [6], k-LRU [3] and
Adaptive Replacement Cache (ARC) [7] have been proposed,
considering both recency and frequency of requests.

Garetto et al. proposed k-LRU with identical k − 1 virtual
LRU caches (i.e. storing the references of data items) and
one physical LRU cache [3]. Before insertion in the physical
cache (indexed k), requests have to go through k−1 preceding
virtual caches. After receiving a request for a data item, the
reference/data item can be stored in cache l > 1 only if its
reference is already stored in cache l−1. The k-LRU algorithm
is a generalization of LRU-2Q and ARC. Garetto et al. show
that k-LRU tends to LFU as k →∞ [3]. They also show that
a virtual cache before the LRU cache (2-LRU) provides a huge
benefit for small caches in IRM and non-IRM environments.



Having an accurate model to calculate the miss rates of
replacement algorithms is crucial for performance analysis
of large-scale interconnected caches. Previous analysis uses
Che’s approximation [8], initially proposed for LRU, and sub-
sequently other caching algorithms. Recent theoretical models
of different cache replacement algorithms such as FIFO [9],
LRU [10], q-LRU [9], LRU-2Q [11] and k-LRU [9], [12], have
been developed, but none for LRU-k. We believe this algorithm
is important since its main principle is used in the previously
mentioned improved replacement policies.

Our main contribution is a mathematical model for LRU-2,
leveraging Che’s approximation for LRU-2 as a specific case
of LRU-k. Values of k > 2 are not considered because (1)
LRU-3 results in only a slightly higher hit ratio compared
to LRU-2 and (2) LRU-3 is less responsive to temporal
locality since it needs to observe the reference history of
data objects over a longer period of time [5]. As the second
contribution, the LRU-2 and 2-LRU algorithms are compared
in synthetic and realistic topologies. LRU-2 is compared to 2-
LRU since they record the history of references and consider
both recency and frequency in their eviction process. Though
2-LRU outperforms LRU-2 in all simulations, the accuracy
of our LRU-2 model is superior to the 2-LRU model as Zipf
parameter α and cache size increase.

The rest of this paper is organized as follows. We begin
with related work in Section II. Section III models LRU-2 for
both a single cache and a hierarchy of caches. Our model is
validated analytically and with simulation in Section IV. This
section also compares LRU-2 and 2-LRU. Finally, Section V
concludes the paper and outlines future work.

II. RELATED WORK

Modelling the performance of cache networks is challeng-
ing; Dan and Towsley argue that the computational cost to
approximate the behaviour of a single Least Recently Used
(LRU) cache grows exponentially as a function of cache
size and population size [13]. Several models have been
proposed that approximate cache performance at an affordable
computational cost under IRM. Assuming C and N are the
cache and population size of cache respectively, Dan and
Towsley proposed an approximate technique with complexity
O(CN) for the LRU cache hit probability under IRM [13].
Psaras et al. propose a Markovian approach to compute the
miss probability upper bound in LRU caches under IRM [10].

Another approximation for LRU caches under IRM was
proposed by Che et al. [8]. Che’s approximation, recognized to
be very accurate [3], [14], has since been used to model other
caching algorithms. Garetto et al. [3] use Che’s technique to
model FIFO, q-LRU, Random and k-LRU. They show that
q-LRU and k-LRU tend asymptotically to LFU as q → 0
and k →∞, respectively. An open-form expression to model
the hit rate of LRU-2Q was found by Imai [15] and then
solved through a recursive algorithm. The closest work to our
modelling is Boyar’s paper that compares the performance
of LRU-k vs. LRU [16]. Boyar’s study is the only work
that studies LRU-2 and theoretically finds LRU-2’s superiority

over LRU [16]. They do not provide an analytical model to
approximate hit ratios.

In the context of a network of caches, ICN nodes deploy
cache replication algorithms because of a limited caching
capacity of the set of nodes. A cache replication algorithm
determines whether ICN node u should cache a data item upon
its arrival at u. ICN node u can make an independent decision
on caching the arrived data items. In Leave Copy Everywhere
(LCE) replication mechanism for example, ICN node u always
stores arrived data items. LCE is easy to implement, but results
in lots of redundant copies of a data item in ICN nodes on the
delivery path. On the other hand, ICN nodes may collaborate
with the other nodes on the delivery path to make replication
decision to optimize the placement of a data item on the
delivery path. Leave Copy Down (LCD) [17], Move Copy
Down (MCD) [18], ProbCache [19] and an age-based cache
algorithm proposed by Ming el al. [20] are examples of this
category.

An analytical investigation of network of caches needs to
model the arrival rate of users’ requests at intermediate ICN
nodes. Psaras et al. propose a Markovian approach to approx-
imate the behaviour of a hierarchy of LRU caches under IRM
[10]. The Markovian assumptions used in their approach make
it difficult to be extended to non-IRM traffic and other policies.
The models proposed by Rosensweig et al. [21], Carofiglio
et al. [22] and Dabirmoghaddam et al. [23] rely on cache
independence, and that requests at intermediate nodes satisfy
the IRM assumptions. This makes the hit ratio calculations
easier, but causes prediction error. Thus, others have used
TTL-based models for network of caches to calculate an
accurate approximation of caching behaviours, such as hit ratio
and miss rate [12], [24], [25]. The sophisticated mathematical
approach makes the models computationally costly.

Rosensweig et al. for example, propose a-NET, that approx-
imates the miss rates of data items in a network of LRU caches
where LCE is used a the cache replication mechanism [21].
Assuming λev,i and Pv,i as the exogenous request rate and hit
probability respectively for item i at ICN node v, λ′v,i as the
miss rate for data item i at node v, their a-NET algorithm
finds the request rate for item i at ICN node v, λv,i, through

λv,i = λev,i +
∑

u∈R(v)

λ′u,i and, (1)

λ′v,i = λv,i(1− Pv,i), (2)

in which, R(v) is the set of all v’s neighbouring ICN nodes
from which v may receive a request for i.

We expand Che’s LRU approximation for LRU-2. For
the sake of simplicity, Rosensweig’s mechanism is used to
calculate the hit ratio in a hierarchy of caches in which 2-
LRU/LRU-2 and Leave-Copy-Everywhere (LCE) are used as
replacement and replication algorithms respectively. LCE is
used so that a subsequent request that misses in an lower



cache may have a hit in an higher level cache on the path
to the server, if it has not been evicted.

III. MODELLING LRU-2

A. Che’s LRU Approximation

Requests for item i arrive as a Poisson process with rate λi.
If new item i is requested, the eviction policy inserts i at the
expense of the last item. Che et al. devise a mathematically
simpler model to approximate LRU. Instead of a fixed size
cache, in their model a fixed time τi is associated with item i,
and i is kept in the cache if time less than τi has elapsed since
its most recent request. They assume that τi is deterministic
and independent of i; this assumption has been shown to be
valid by Fricker et al. [14] with a Zipf popularity distribution.
Fricker et al. show that (1) the coefficient of variation of τi
vanishes as the cache size grows, and (2) τi ≈ τj (i 6= j)
when the catalogue is sufficiently large.

We thus set all τi equal to τ . The time-average probability
Pi that data item i is in the cache is then

Pi(τ) = 1− e−λiτ . (3)

To get the best approximation to regular LRU with cache size
C, we want the expected number of items in the cache to be
C. The value of τ should thus satisfy

N∑
j=1

Pj(τ) =

N∑
j=1

(
1− e−λjτ

)
= C. (4)

Now consider item i, arriving as a Poisson process with
rate λi, at times t1, t2, t3 . . . ; let ul = tl − tl−1 be the time
period between lth and (l− 1)th requests. Assume item i was
requested at time t = 0, and at that point it entered (or re-
entered) the cache. Furthermore, say n ≥ 1 is the smallest
value such that un > τ . We wish to know the expectation of
the sum S = u1+u2+· · ·+un, interpreted as the expected time
between two consecutive cache misses for item i. This can be
computed as follows: we must sample u1, with expected value
1
λi

. With probability e−λiτ we terminate there, otherwise we
sample again. What happens after that is independent of u1,
and so has expected sum E[S]. Hence

E[S] =
1

λi
+ (1− e−λiτ )E[S]. (5)

The miss rate expectation λ′i for item i is then defined to be

λ′i =
1

E[S]
= λie

−λiτ . (6)

B. Garetto’s and Gast’s Models for 2-LRU

Assuming τv/τp for the virtual/physical caches and requests
for data item i at both the virtual and physical caches arrive
according to a Poisson process of rate λi, Garetto et al. [3]
find the approximate value of item i’s hit probability to satisfy

[Pi(τv, τp) = (1− e−λiτp)[Pi + (1− e−λiτv )(1− Pi)]. (7)

However, the arrival process of requests for data item i at
the physical cache is an ON-OFF modulated Poisson process.

In the OFF phase, no request for item i is forwarded to the
physical cache since item i’s pointer is not stored in the
virtual cache. In the ON phase however, a request for item
i is forwarded to the physical cache. Gast’s model for 2-LRU
(Eq. 11) [12] considers this ON-OFF process and calculates
the hit probability as follows:

Pi(τv, τp) =
(1− e−λiτv )(1− e−λiτp)

1− e−λiτv + e−λiτp
. (8)

C. The LRU-2 Model

To adapt Che et al.’s approximation for LRU-2, we redefine
the cache to store item i if less than τi has elapsed since the
second-most recent request. The arrival process of item i is
presented in Figure 1. We set t0 to be a time at which a cache
miss occurs and causes the system to put item i into the cache.
Cache hits continue to occur at t1, t2, . . . , and in general a
request for i at time tl is a cache hit iff tl − tl−2 < τi.

We then set n such that tn is the first time after t0 at which
a cache miss occurs (because tn − tn−2 > τi). Then set t′i =
tn+i. Cache misses continue to occur at t′1, t

′
2, . . . . Finally,

m is defined such that t′m is the first time after t′0 at which
a request results in item i being placed back into the cache
(because t′m − t′m−2 < τi).

There is one cache miss in interval (t0, tn], while all
requests for item i end in a cache miss in the interval (t′0, t

′
m].

The expected number of misses in the interval [t0, t′m] is thus
λi(t

′
m − t′0), and we define the expected miss rate λ′i to be

λ′i =
λiE[t′m − t′0]
E[t′m − t0]

=
λiE[t′m − t′0]

E[t′m − t′0] + E[tn − t0]
. (9)

1) Calculating τi: As with LRU, we let ul = tl − tl−1.
For item i, {u1 + u2, u2 + u3 . . . } are identically distributed
Erlang random variables with pdf of f(t, λi) = λ2i te

−λit. The
time-average probability Pi that item i is in the cache is then
given by

Pi(τi) = 1− e−λiτi(1 + λiτi). (10)

We again assume that τi = τ is independent of i [8]. To model
LRU-2 with a cache size C, we want τ to satisfy

N∑
j=1

Pj(τ) =

N∑
j=1

(
1− e−λjτ (1 + λjτ)

)
= C. (11)

2) Calculating tn: For item i, we now have a sequence of
exponential random variables u1, u2, u3 . . . and we terminate
when two consecutive values add to more than τ . If un−1+un
is the first such pair, define S1 = u0 + · · · + un. However,
with the setup described above, it is not enough to know that
item i enters the cache at time t0: what happens after this
also depends on u0 = t0 − t−1. We must therefore take the
distribution of u0 into account.

We first determine the distribution of u−1, initially condi-
tioning only on u−1+u−2 > τ (because the request at t−1 was



Fig. 1: Arrival processes of data item i at an LRU-2 cache.

a cache miss). Write f∗u−1
(u) for this conditional distribution.

By Bayes’ theorem, it satisfies

f∗u−1
(u) =

λie
−λiuP[u−1 + u−2 > τ |u−1 = u]

P[u−1 + u−2 > τ ]

=


λi

1 + τλi
u < τ

λie
λi(τ−u)

1 + τλi
u > τ,

(12)

where the probabilities in the numerator and denominator
come from exponential and Erlang distributions respectively,
and have thus been computed exactly.

Given the distribution of u−1, we can get the distribution
f†u0

(u) of u0 in the same way, now conditioning on u0+u−1 <
τ (because the request at t0 results in i entering the cache):

f†u0
(u) =

λie
−λiuP[u0 + u−1 < τ |u0 = u]

P[u0 + u−1 < τ ]

=
λ2i e
−λiu(τ − u)

λiτ + e−λiτ − 1
for 0 < u < τ. (13)

This time the numerator (denominator) uses the distribution
of (12) (convolution of (12) with an exponential distribution).

We now condition on the value of u0. Given u0 = x, let
S1(x) be the time until the next cache miss. We first sample
u1 with expected value 1

λi
. If x > τ , we terminate there,

regardless of the value of u1. If x < τ , then with probability
e−λi(τ−x) we also terminate at u1. Otherwise, we must keep
going, but now what happens afterwards depends on u1. We
must integrate over the possible values of u1, to obtain

E[S1(x)] =
1

λi
+

∫ τ−x

0

λie
−λiuE[S1(u)]du. (14)

Let F (x) = E[S1(x)], and differentiate w.r.t. x to obtain

F ′(x) = −λie−λi(τ−x)F (τ − x). (15)

Solving (15), as shown in Appendix A, results in

E[S1(x)] =

1√
µ1
eµ1(x− τ2 ) − 1√

µ2
eµ2(x− τ2 )

λi

(
1√
µ1
eµ1

τ
2 − 1√

µ2
eµ2

τ
2

) (16)

in which µ1,2 depend on λi and τ and are defined in Appendix
A (specifically (31)). Finally, to compute E[tn− t0], we com-
bine (16) (conditioned on u0 = x) with (13) (the distribution
of u0), shown in (17).

3) Calculating t′m: Now say item i was requested at time
t = t′0, and at that point it was not in the cache. It then has
requests at times t′1, t

′
2, t
′
3, . . . , t

′
m with m the smallest value

such that t′m − t′m−2 = u′m + u′m−1 < τ . We again have a
sequence of exponential random variables u′1, u

′
2, u
′
3, . . . , but

this time we terminate when two consecutive values add to
less than τ . As before, what happens after t′0 also depends on
u′0, so we must calculate its distribution.

We first obtain the distribution of u′−1, conditioned on u′−1+
u′−2 < τ . By Bayes’ theorem, this conditional distribution is

f∗u′−1
(u) =

λie
−λiuP[u−1 + u−2 < τ |u−1 = u]

P[u−1 + u−2 < τ ]

=
λi(e

−λiu − e−λiτ )
1− (1 + λiτ)e−λiτ

for 0 < u < τ. (18)

Then, taking this distribution into account, we compute the
distribution of u′0 conditioned on u′−1 + u0 > τ :

f†u′0
(u) =

λie
−λiuP[u0 + u−1 > τ |u0 = u]

P[u0 + u−1 > τ ]

=


λie
−λiu(−λiu+ eλiu − 1)

λiτ + e−λiτ − 1
u < τ

λie
−λiu(−λiτ + eλiτ − 1)

λiτ + e−λiτ − 1
u > τ.

(19)

We now condition on u′0. Given u′0 = y, let S2(y) be the
time that elapses after t′0 until item i re-enters the cache. We
sample u′1 with expected value 1

λi
. If y > τ , we continue

and sample u′2, regardless of u′1’s value (see Appendix B). If
y < τ , with probability 1− e−λi(τ−y) the process terminates
after u′1. Otherwise we keep going, but now what happens
after depends on the value of u′1, so we integrate over the
possible values, to get

E[S2(y)] =
1

λi
+

∫ ∞
τ−y

λie
−λiuE[S2(u)]du. (20)



E[tn−t0] =
∫ τ

0

f†u0
(u)E[S1(u)]du =

e
3
2λiτ

(
e−λiτ (µ

3
2
1 e

µ1
τ
2 − µ

3
2
2 e

µ2
τ
2 ) + µ

3
2
2 e
−µ2

τ
2 (1− µ1τ)− µ

3
2
1 e
−µ1

τ
2 (1− µ2τ)

)
λ2i (λiτ + e−λiτ − 1)(

√
µ2eµ1

τ
2 −√µ1eµ2

τ
2 )

. (17)

Let H(y) = E[S2(y)], and differentiate w.r.t. y to get

H ′(y) = λie
−λi(τ−y)H(τ − y). (21)

Solving (21) (Appendix B), results in

E[S2(y)] =


H(y)

λi(1− e−τλi −Q)H(τ)
y < τ

1

λi(1− e−τλi −Q)
y ≥ τ,

(22)

where H(y) and Q are defined in (34) and (37) respectively.
Finally, to compute E[t′m − t′0], we combine (22) (which

is conditioned on u′0 = y) with (19) (the distribution of u′0),
shown in (23).

D. Hierarchy of Caches

Suppose cache c has a set of child caches denoted by L.
Then let λi,e be the exogenous requests coming from users
directly connected to cache c, and λ′i,l be item i’s miss rate
coming from child cache l ∈ L. We then use (14), (17) and
(23) to obtain τc, E[tn,c− t0,c] and E[t′m,c− t′0,c] respectively,
where Rosensweig et al. define λi,c = λi,e+

∑
l∈L λ

′
i,l as the

overall request rate for item i at cache c [21].
We do not model a DAG for the cache organization in which

an edge or intermediate node could have more than one parent
cache. This is done because the intent of universal caching
is to provide replication and reduction of latency between
the origin server and the requesting user. Direct connections
between siblings would lead to cycles in the cache network,
complicating the model and is beyond the scope of the current
work.

IV. MODEL VALIDATION/INSIGHTS

In this section, we first validate previously derived analytical
expressions against simulations using ccnSim [26], showing
the accuracy of our models based on different system/traffic
parameters. We study LRU-2 and 2-LRU in a benchmark
topology and further in four realistic topologies.

All caches have the same size, and edge caches have
identical exogenous request patterns, modelled as a Poisson
arrival distribution with λe =

∑
∀i λi,e = 2. Item i’s request

probability (pi), follows a Zipf distribution with α (pi ∝ 1
iα )

and λi,e = λepi. We use (9) to evaluate our model. The
simulations run for 9× 106 seconds (104 days) of simulation
time and N = 20000 so the unpopular data items have a non-
negligible request frequency.

We consider two scenarios:
• Scenario 1: C = 200, α ∈ {0.8, 1.0, 1.2, 1.4}, since there

is no consensus in the research community on the value
of α. Researchers found values of α between 0.6 [27]

and 2 [22] for Zipf distributions for different types of
data items.

• Scenario 2: α = 1.0, C ∈ {200, 500, 1000, 2000}.

A. Benchmark Evaluation of the LRU-2 Model

We consider a simple topology of a binary tree with
three caches. Only the two edge caches {c1, c2} have user
requests. We compare the miss rate per data item measured
by simulations and estimated by the proposed model.

In Scenario 1 (Figure 2a), we calculate τc1 and τc2 using
(11) to get the miss rate for each item. For edge caches,
λi,c1 = λi,c2 = λi,e, and τc1 = τc2 = 969, 1056, 1554, 2963
for the different values of α, respectively. Then, we calculate
the expectations of tn,c1 and tn,c2 using (17) and t′m,c1 and
t′m,c2 using (23), to find λ′i,c1 and λ′i,c2 through (9). The
request rate for item i at the root cache r is calculated as
in Section III-D which results in λi,r = λ′i,c1 + λ′i,c2 with
no exogenous requests at the root. Having τr calculated from
λi,r, we now calculate item i’s miss rates at the root (Figure
2b). The proposed model for LRU-2 provides an excellent
approximation of the cache miss rates. Scenario 2 is evaluated
in Figure 3 with similar results.

B. LRU-2 vs 2-LRU Evaluation

We next compare LRU-2 and 2-LRU with respect to miss
rate performance at each level of the cache hierarchy. LRU-2
simulation results are removed since they match the LRU-2
model precisely. In addition, Gast’s model (8) [12] for 2-LRU
is used since it calculates a more accurate approximation for
2-LRU compared to Garerrto’s model (7) [3].

The comparison between 2-LRU and LRU-2 for edge nodes
in Scenario 1 is demonstrated in Figure 4. The x-axis is cut off
at 2C, since all the remaining data items have 100% miss ratios
for both models. The miss rates for popular items is very low
as they are almost always in the cache. This figure shows that
the 2-LRU model has a lower miss rate prediction than LRU-2
in all cases, although 2-LRU model does not always match the
simulations. The LRU-2 and 2-LRU predictions converge as
α increases. In addition, the 2-LRU model underestimates the
miss rate as α increases. The same general behaviour at the
root cache is observed as shown in Figure 5. The comparison
for Scenario 2 is depicted in Figures 6 and 7. There is a close
match between the 2-LRU simulation and the LRU-2 model at
larger cache sizes; the 2-LRU model slightly underestimates
the miss rates.

Thus, it can be concluded that 2-LRU outperforms LRU-2.
Moreover, Gast’s LRU-2 approximation (8) underestimates the
miss rates in 2-LRU for larger α and cache size. In contrast, the
proposed model for LRU-2 calculates a better approximation
of 2-LRU behaviour for larger α and cache size.



E[t′m − t′0] =
∫ τ

0

f†u′0
(u)E[S2(u)]du

=
eλi

τ
2

(√
u2(µ1λiτ − µ2)e

µ1
τ
2 +
√
µ1(µ2λiτ − µ1)e

µ2
τ
2

)
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. (23)
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Fig. 2: LRU-2, Scenario 1 (log-log scale).
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Fig. 3: LRU-2, Scenario 2 (log-log scale).

C. Realistic Topologies

Apart from k-array tree topologies [10], [19], [23] which are
used to evaluate the performance of caching in ICNs, are ISP
topologies. To have a more realistic study of the behaviour
of in-network caching in ICNs, four publicly available ISP
topologies, shown in Table I are used in this paper, as used in
other studies [28], [29].

In these topologies, only edge caches are directly connected
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Fig. 4: LRU-2 vs 2-LRU, scenario 1, edge
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Fig. 5: LRU-2 vs 2-LRU, scenario 1, root
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Fig. 6: LRU-2 vs 2-LRU, scenario 2, edge

to users. The intermediate caches receive endogenous requests
from their children caches, with a single source node as the
gateway. We create a tree rooted at the source node and
compute the overall hit probability of the network with λe,
and α as before and various cache sizes. The overall hit
probability of the network is calculated as

(∑
∀c
∑
∀i(λc,i −

λ′c,i)
)
/
(∑

∀c
∑
∀i λc,i

)
.

Table II gives hit probability predictions for 2-LRU and
LRU-2 in Geant topology for Gast’s 2-LRU model and our
LRU-2 model respectively, and the corresponding simulations.
2-LRU provides a slightly higher overall hit ratio in both
simulation and modelling. Gast’s 2-LRU model has an er-
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Fig. 7: LRU-2 vs 2-LRU, scenario 2, root

TABLE I: Specification of topologies.

name inter-nodes edge-nodes depth max degree average degree
Level3 5 41 5 29 9.00

Dtelecom 7 61 4 52 9.57
Tiger 12 10 5 4 1.75
Geant 12 10 6 4 1.75

ror between (+0.4%,+5.2%) for the overall hit probabil-
ity, while the proposed LRU-2 model has an error between
(−0.5%, 6.0%). The results for Tiger (Table III), DTelecom
(Table IV) and Level3 (Table V) confirm this difference.

TABLE II: LRU-2 vs 2-LRU, Geant Topology.

C
2-LRU LRU-2

Sim Model (err) Sim Model (err) vs. 2-LRU Sim
α = 0.8

100 0.095 0.096 (+1.1%) 0.084 0.089 (+6.0%) -6.3%
500 0.169 0.173 (+2.4%) 0.156 0.165 (+5.8%) -2.4%

1000 0.220 0.227 (+3.2%) 0.206 0.218 (+5.8%) -0.9%
2000 0.293 0.305 (+4.1%) 0.281 0.297 (+5.7%) +1.4%
4000 0.407 0.428 (+5.2%) 0.398 0.422 (+6.0%) +3.7%

α = 1.0
100 0.223 0.226 (+1.4%) 0.210 0.215 (+2.4%) -3.6%
500 0.346 0.352 (+1.7%) 0.331 0.341 (+3.0%) -1.5%

1000 0.416 0.424 (+1.9%) 0.402 0.412 (+2.5%) -1.0%
2000 0.503 0.515 (+2.4%) 0.491 0.505 (+2.9%) +0.4%
4000 0.616 0.632 (+2.6%) 0.608 0.622 (+2.3%) +1.0%

α = 1.2
100 0.442 0.447 (+1.1%) 0.429 0.437 (+1.9%) -1.1%
500 0.608 0.614 (+1.0%) 0.596 0.605 (+1.5%) -0.5%

1000 0.682 0.689 (+1.0%) 0.672 0.673 (+0.2%) -1.3%
2000 0.756 0.764 (+1.1%) 0.749 0.753 (+0.5%) -0.4%
4000 0.832 0.841 (+1.1%) 0.828 0.831 (+0.4%) -0.1%

α = 1.4
100 0.687 0.692 (+0.7%) 0.678 0.684 (+0.9%) -0.4%
500 0.834 0.838 (+0.5%) 0.829 0.825 (-0.5%) -1.1%

1000 0.881 0.885 (+0.5%) 0.877 0.877 (+0.0%) -0.5%
2000 0.919 0.923 (+0.4%) 0.916 0.918 (+0.2%) -0.1%
4000 0.949 0.954 (+0.5%) 0.948 0.950 (+0.2%) +0.1%

For larger cache sizes, the 2-LRU model continues to
overestimate and the LRU-2 model is stable in nearly all cases.
For smaller values of α, both algorithms are relatively less
accurate. The last column in Tables II to V shows the fit
between the proposed model for LRU-2 and the simulation
results of 2-LRU. As in the synthetic cases, the LRU-2 model

with large cache and large α matches the 2-LRU simulations,
accurate to 2 (sometimes 3) decimal places. For Dtelecom
topology for example (Table IV), the proposed model for LRU-
2 approximates the hit ratio of the 2-LRU algorithm with 7.0%
error (absolute value of error) for α = 0.8 and C = 100,
that is larger than 2.6% error of Gast’s model. The error of
the LRU-2 model’s prediction for 2-LRU however drops to
1.8% for C = 4000 that is smaller than 4.9% error for Gast’s
approximation. One can also say that the 2-LRU’s hit ratio
estimated by LRU-2 gets more accurate as α gets larger; i.e.
for C = 100 for example, the error (absolute value of error) of
the LRU-2’s approximation for 2-LRU decreases from 4.1%
to 0.3% as α moves from 0.8 to 1.4.

The inaccuracy at smaller values is due to intermediate
node request patterns violating the IRM assumption and this
evaluation is part of future work.

TABLE III: LRU-2 vs 2-LRU, Tiger Topology.

C
2-LRU LRU-2

Sim Model (err) Sim Model (err) vs. 2-LRU Sim
α = 0.8

100 0.102 0.103 (+1.0%) 0.091 0.096 (+5.5%) -5.9%
500 0.181 0.184 (+1.7%) 0.167 0.175 (+4.8%) -3.3%

1000 0.234 0.239 (+2.1%) 0.220 0.230 (+4.6%) -1.7%
2000 0.308 0.319 (+3.6%) 0.296 0.309 (+4.4%) +0.3%
4000 0.423 0.440 (+4.0%) 0.414 0.430 (+3.9%) +1.7%

α = 1.0
100 0.239 0.241 (+0.9%) 0.225 0.230 (+2.2%) -3.8%
500 0.366 0.371 (+1.4%) 0.351 0.359 (+2.3%) -1.9%

1000 0.437 0.444 (+1.6%) 0.423 0.432 (+2.1%) -1.1%
2000 0.523 0.533 (+1.9%) 0.512 0.523 (+2.2%) +0.0%
4000 0.633 0.647 (+2.2%) 0.626 0.636 (+1.6%) +0.5%

α = 1.2
100 0.464 0.468 (+0.9%) 0.451 0.458 (+1.6%) -1.3%
500 0.629 0.634 (+0.8%) 0.618 0.624 (+1.0%) -0.8%

1000 0.700 0.706 (+0.9%) 0.691 0.690 (-0.1%) -1.4%
2000 0.771 0.778 (+0.9%) 0.764 0.766 (+0.3%) -0.7%
4000 0.842 0.874 (+3.8%) 0.839 0.842 (+0.4%) +0.0%

α = 1.4
100 0.706 0.711 (+0.7%) 0.697 0.699 (+0.3%) -1.0%
500 0.846 0.850 (+0.5%) 0.841 0.836 (-0.6%) -1.2%

1000 0.890 0.893 (+0.3%) 0.886 0.886 (+0.0%) -0.5%
2000 0.925 0.929 (+0.4%) 0.923 0.924 (+0.1%) -0.1%
4000 0.953 0.957 (+0.4%) 0.952 0.954 (+0.2%) +0.1%

V. CONCLUSION/FUTURE WORK

In this paper, we proposed a mathematical model for LRU-
2, extending Che’s approximation, as a specific case of LRU-
k for k = 2. The experiments validated the LRU-2 model
with respect to the miss rate of data items for LRU-2 caching
algorithms. Simulation results show that although 2-LRU
outperforms LRU-2 (both in single and hierarchical caches),
Gast’s 2-LRU model underestimates the miss rate as either
Zipf parameter (α) or cache size increases. Additionally, the
proposed model for LRU-2 calculates a better approximation
of 2-LRU behaviour as either α or cache size increases.

We focused on finding an analytical model for LRU-2 under
IRM. Studying our model for non-stationary requests is part
of our future work in addition to ICNs with off-path caching.
Off-path caching is a form of peer-based cache connections,
in which direct queries could be made to sibling caches or
more than one parent cache (arbitrary network configuration).



TABLE IV: LRU-2 vs 2-LRU, Dtelecom Topology.

C 2-LRU LRU-2
Sim Model (err) Sim Model (err) vs. 2-LRU Sim

α = 0.8
100 0.115 0.118 (+2.6%) 0.101 0.107 (+5.9%) -7.0%
500 0.200 0.207 (+3.5%) 0.184 0.193 (+4.9%) -3.5%

1000 0.256 0.266 (+3.9%) 0.240 0.252 (+5.0%) -1.6%
2000 0.335 0.350 (+4.5%) 0.321 0.335 (+4.4%) +0.0%
4000 0.453 0.475 (+4.9%) 0.443 0.461 (+4.1%) +1.8%

α = 1.0
100 0.264 0.269 (+1.9%) 0.248 0.255 (+2.8%) -3.4%
500 0.398 0.405 (+1.8%) 0.381 0.390 (+2.4%) -2.0%

1000 0.470 0.480 (+2.1%) 0.455 0.465 (+2.2%) -1.1%
2000 0.557 0.570 (+2.3%) 0.545 0.556 (+2.0%) -0.2%
4000 0.664 0.681 (+2.6%) 0.657 0.668 (+1.7%) +0.6%

α = 1.2
100 0.499 0.506 (+1.4%) 0.484 0.491 (+1.5%) -1.6%
500 0.661 0.668 (+1.1%) 0.649 0.656 (+1.1%) -0.8%

1000 0.729 0.736 (+1.0%) 0.720 0.722 (+0.3%) -1.0%
2000 0.795 0.803 (+1.0%) 0.789 0.787 (-0.3%) -1.0%
4000 0.860 0.870 (+1.2%) 0.857 0.859 (+0.2%) -0.1%

α = 1.4
100 0.735 0.741 (+0.8%) 0.726 0.718 (-1.1%) -2.3%
500 0.864 0.868 (+0.5%) 0.859 0.850 (-1.1%) -1.6%

1000 0.903 0.907 (+0.4%) 0.900 0.896 (-0.4%) -0.8%
2000 0.934 0.938 (+0.4%) 0.932 0.934 (+0.2%) +0.0%
4000 0.958 0.963 (+0.5%) 0.958 0.958 (+0.0%) +0.0%

TABLE V: LRU-2 vs 2-LRU, Level3 Topology.

C 2-LRU LRU-2
Sim Model (err) Sim Model (err) vs. 2-LRU Sim

α = 0.8
100 0.098 0.102 (+4.08%) 0.085 0.094 (+10.6%) -4.1%
500 0.173 0.183 (+5.8%) 0.158 0.172 (+8.9%) -0.6%
1000 0.225 0.239 (+6.2%) 0.209 0.227 (+8.6%) +0.9%
2000 0.299 0.321 (+7.4%) 0.284 0.308 (+8.5%) +3.0%
4000 0.415 0.448 (+8.0%) 0.403 0.430 (+6.7%) +3.6%

α = 1.0
100 0.231 0.237 (+2.6%) 0.214 0.226 (+5.6%) -2.2%
500 0.355 0.366 (+3.1%) 0.338 0.353 (+4.4%) -0.6%
1000 0.426 0.440 (+3.3%) 0.410 0.427 (+4.2%) +0.2%
2000 0.514 0.533 (+3.7%) 0.500 0.520 (+4.0%) +1.2%
4000 0.627 0.652 (+4.0%) 0.618 0.640 (+3.6%) +2.1%

α = 1.2
100 0.454 0.462 (+1.8%) 0.438 0.449 (+2.5%) -1.1%
500 0.619 0.629 (+1.6%) 0.606 0.617 (+1.8%) -0.3%
1000 0.692 0.703 (+1.6%) 0.681 0.690 (+1.3%) -0.3%
2000 0.765 0.777 (+1.6%) 0.757 0.763 (+0.8%) -0.3%
4000 0.839 0.852 (+1.6%) 0.835 0.842 (+0.8%) +0.4%

α = 1.4
100 0.698 0.707 (+1.3%) 0.687 0.696 (+1.3%) -0.3%
500 0.841 0.847 (+0.7%) 0.835 0.826 (-1.1%) -1.8%
1000 0.886 0.892 (+0.7%) 0.882 0.881 (-0.1%) -0.6%
2000 0.923 0.928 (+0.5%) 0.920 0.924 (+0.4%) +0.1%
4000 0.951 0.958 (+0.7%) 0.950 0.954 (+0.4%) +0.3%
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APPENDIX A
CALCULATION OF S1

Equation (15) is a differential-difference equation. To begin,
define G(x) = F (x+ τ

2 ), so that the equation becomes

G′(x− τ/2) = −λie−λi(τ−x)G(τ/2− x). (24)

Then with the change of variables y = x− τ/2,

G′(y) = −λie−λi(τ/2−y)G(−y). (25)

Unfortunately there is no standard formula for solving an
equation like this. However, with some educated guesses and
trial and error, we are able to obtain a solution.

Any function of the form aeby (for constants a and b) cannot
be a solution. The next step is to try a function of the form
a1e

b1y + a2e
b2y for constants a1,2 and b1,2. We guess that

b1 and b2 are two roots of a quadratic, and take the form
b1,2 = γ+−β for constants γ and β. Because there is only a first
derivative on the left side, simply substituting a1eb1y+a2eb2y

will give a linear equation in b1 and b2. One way to get a
quadratic in b1,2 is to set a1 = 1√

b1
and a2 = +−

1√
b2

. So (after
some trial and error), we settle on the general solution

G(y) =
1√
γ + β

e(γ+β)y +−
1√
γ − β

e(γ−β)y. (26)

We try the ‘−’ solution first. Substituting into 25,

0 =
e(λi+2γ)y−λi τ2√

γ2 − β2

×

(√
γ + βe(γ+β)y −

√
γ − βe(γ−β)y

)

×

(√
γ2 + β2e(2γ−λi)y+λi

τ
2 − λi

)
. (27)

The first term cannot be 0. The middle factor has no
dependence on λi, so we move to the third factor. γ and β
must be independent of y, and this can be achieved by setting
γ = λi/2. The third factor then reduces to√

(λi/2)2 − β2eλiτ/2 − λi, (28)

which has roots

β = +−
λi
2

√
1− 4e−λiτ . (29)

It does not matter which one we pick, so take the ‘+’ root.
Note that if we had taken the ‘+’ solution in (26), then we
would not have been able to solve the resulting equation, so
we made the right choice. The general solution is

G(y) =
1
√
µ1
eµ1y − 1

√
µ2
eµ2y, (30)

with
µ1,2 =

λi
2
(1+−

√
1− 4e−λiτ ). (31)

Thus

F (x) = G(x−τ/2) = 1
√
µ1
eµ1(x− τ2 )− 1

√
µ2
eµ2(x− τ2 ). (32)

This determines the solution to (15), up to a constant factor.
The solution we want is E[S1(x)] = RF (x) for some constant
R. We determine the appropriate value of R for our situation
via the boundary condition E[S1(τ)] =

1
λi

, implying

R =
1

λi

(
1
√
µ1
eµ1

τ
2 − 1
√
µ2
eµ2

τ
2

)−1
. (33)

APPENDIX B
CALCULATION OF S2

For now we assume that y < τ . Equation (21) is almost the
same as (15), the only difference being the lack of a minus
sign on the right side. Unsurprisingly, the same ideas as before
all work. The only difference is at (26), where we take the ‘+’
solution instead of the ‘−’ one. The general solution is

H(y) =
1
√
µ1
eµ1(y− τ2 ) +

1
√
µ2
eµ2(y− τ2 ). (34)

This is the solution to (21), up to a constant factor, so that
E[S2(y)] = TH(y) for some T . Taking y → τ gives T =
E[S2(τ)]
H(τ) .
On the other hand, taking y → τ in (20) gives

E[S2(τ)] =
1

λi
+

∫ ∞
0

λie
−λiuE[S(u)]du. (35)

Consider the case that y > τ . It is impossible to terminate
after u′1; we are forced to sample (at least) u′2. Thus the time
at which we terminate is independent of y, and so too is S2(y).
Thus E[S2(y)] is a constant, and we have E[S2(y)] = E[S2(τ)]
for y ≥ τ . Splitting the integral of (35) into two parts,

E[S2(τ)] =

∫ τ

0

λie
−λiuE[S2(u)]du

+

∫ ∞
τ

λie
−λiuE[S2(u)]du+

1

λi

=

∫ τ

0

λie
−λiuE[S2(τ)]

H(τ)
H(u)du

+

∫ ∞
τ

λie
−λiuE[S2(τ)]du+

1

λi

=
1

λi
+QE[S2(τ)] + e−λiτE[S2(τ)] (36)

where

Q =

∫ τ

0

λie
−λiuH(u)

H(τ)
du

=
2

√
µ1eµ2

τ
2 +
√
µ2eµ1

τ
2

×

(
√
µ1 sinh

(µ2τ

2

)
+
√
µ2 sinh

(µ1τ

2

))
.

(37)

Simplifying (36) results in (22).


