
Information Leakage
in Wearable Applications

Babatunde Olabenjo(B) and Dwight Makaroff

University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
b.olabenjo@usask.ca, makaroff@cs.usask.ca

Abstract. Wearable apps, specifically smartwatch apps, require permis-
sions to access sensors, user profiles, and the Internet. These permissions,
although not crucial for many mobile apps, are essential for health and
fitness apps, as well as other wearable apps to work efficiently. Access
to data on wearable devices enables malicious apps to extract personal
user information. Moreover, benevolent apps can be utilized by attack-
ers if they send private information insecurely. Many studies have exam-
ined privacy issues in smartphone apps, and very little has been done
to identify and evaluate these issues in wearable smartwatch apps. Since
wearable apps can reside either on the phone and watch or both, with all
devices capable of accessing the Internet directly, a different dimension
to information leakage is presented due to diverse ways in which these
devices collect, store and transmit data.

This study classifies and analyzes information leakage in wearable
smartwatch apps and examines the exposure of personal information using
both static and dynamic approaches. Based on data collected from thou-
sands of wearable applications, we show that standalone wearable apps
leak less information compared to companion apps; the majority of data
leaks exist in tracking services such as analytics and ad network libraries.

Keywords: Privacy · Smartwatches · Information leakage · Tracking ·
Wearable apps · Android

1 Introduction

Wearable devices enable unobtrusive real-time sensing in a comfortable and
portable way that has influenced the medical field and other fields, such as recre-
ation and navigation over the past decade. Researchers have proposed numerous
ways that wearable devices could be used by patients and health care providers
to address various healthcare challenges [1]. One of the driving forces of wearable
device adoption is the smartwatch, due to its popularity and applications extend-
ing the features of mobile phone devices such as receiving push notifications on
the watch, issuing voice controls, and monitoring vital signs conveniently.

Android WearOS and Apple WatchOS apps are made up of (1) standalone
apps for the smartwatch only, (2) companion apps that run on the mobile phone
and (3) embedded apps that run on the smartwatch [9]. Third-party smartwatch
c© Springer Nature Switzerland AG 2019
G. Wang et al. (Eds.): SpaCCS 2019, LNCS 11611, pp. 211–224, 2019.
https://doi.org/10.1007/978-3-030-24907-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24907-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-24907-6_17


212 B. Olabenjo and D. Makaroff

device manufacturers, such as Fitbit, provide companion apps on mobile phones
to pair with the smartwatch, facilitating data collection via multiple sources.
Data collected from these devices such as heart rate, temperature, or location in
real-time allows users to view their overall health information easily [4].

Privacy concerns arise when a wide range of sensitive data is released without
the user’s knowledge or consent [17]. Many users are aware that some of their
information might be used to provide better services or collected by third-parties,
but many are unaware of the type or precision of such data. For example, some
users might allow their current location to be collected, but they do not know the
details of the specific items released, such as GPS location, city, home address,
and most visited places. As the amount of data handled by medical wearable
devices grows, there is a higher risk of sensitive data exposure either during data
transmission to the cloud or while data is stored locally on the device [13].

Paul and Irvine [12] investigated and compared privacy policies of wearable
device services in order to understand the extent to which these services protect
user privacy. Many services were found to not follow existing legislation regarding
the privacy of health data. In this study, we investigate and classify information
leakage in wearable smartwatch apps. We make the following contributions:

– collection and analysis of 4,017 free apps for Wear OS on Google Play store
(1,894 companion and embedded, 229 standalone) and providing detailed
descriptive statistics on information leakage.

– static analysis on each app’s Dalvik bytecode to identify potential unsafe
behaviours that may leak data, and dynamic analysis to identify information
leakage via network activity tracing between wearable devices, their compan-
ion apps and the Internet.

– a comparison of information leakage in standalone, companion and embedded
wearable apps based on nine potential malicious activity categories.

This paper is organized as follows. Section 2 provides a summary of related
work on privacy and security in mobile and wearable apps. In Sect. 3, we give
details on the dataset collection and experimental work. Section 4 provides a
detailed analysis of the study done. Finally, we discuss our empirical results and
draw conclusions in Sects. 5 and 6.

2 Related Work

Previous studies discussed several issues with privacy in wearable apps. Lee et
al. [7] explored various vulnerabilities in wearable services and identified mul-
tiple security vulnerabilities in smart bands that enabled them to extract pri-
vate information using three main attack scenarios (illegal device pairing, fake
wearable gateway, and insecure code-based attack). Commercial smart bands
expose personal and health information from both the device and the server due
to wearable device misconfiguration, and if device pairing is enabled without
authentication, attackers can use this to obtain user’s health data.

Chauhan et al. [2] tested several wearable apps to uncover information leak-
age. They focused on traffic inspection and revealed that unique identifiers, loca-
tion, credentials, and health data are transferred to the Internet. Between 4%



Information Leakage in Wearable Applications 213

and 11% of apps send smartwatch-specific user activities to third-party trackers,
with Google Analytics as the top tracking platform. This is due to the lack of
specific permissions requirements for tracking libraries with regards to the kind
of data that should be sent. Their study primarily focuses on dynamic analysis,
without identifying application categories and the distribution of these leaky
applications; however, results show that the majority of leakage comes from
third-party advertisement and tracking libraries. Moonsamy et al. [10] confirms
this by examining the effect of third-party ad libraries on personal information
leakage in Android mobile apps, showing most personal information is sent via
ad libraries. Their results show that 10% of all apps that leaked information in
their study had a third-party ad library embedded in them.

Mujahid et al. [11] also studied wearable app permission problems in Android
Wear apps and reviewed the effect on the functionality of the app. Many wearable
apps have a permission mismatch problem that allows malicious apps to request
permission to access personal information not required for app functionality.
In other cases, a permission mismatch between the wearable device and the
companion mobile app can lead to the disclosure of personal information via the
mobile device without the user’s proper consent on the smartwatch.

This study improves on the related work by providing a more detailed analysis
of the type and categories of leaky activities by identifying 47 potential leaky
activities in static and dynamic analysis. Also, we provide further insight into
the distribution, category and popularity of apps with potential leaky activities
in standalone, companion and embedded apps.

3 Dataset Overview

3.1 Data Collection

Figure 1 illustrates the data collection process for this study. Using a data scraper
written in Python, we extracted 4,980 WearOS1 apps from the Goko store [6]
and 4,809 apps from AndroidWearCenter.2 We then removed duplicate apps for
a total of 5,599 apps. The scraper collects various app characteristics, such as
package name and Google Play URL to the downloadable app which allowed us
to download the APK files directly from the Google Play Store using GPlayCli.3

In order to have access to download APK files, 2,590 free apps were selected.
Approximately 1000 apps were last updated in 2015, 2017, and 2018, respectively.
Only 650 apps were last updated in 2016, and very few were older than 2015.
The year of update is important as it shows recent development/maintenance.
We removed 457 apps that do not have a wearable component or run only on
the mobile phone, leaving a total of 2,133 apps: 1,903 companion/wearable-
embedded and 230 standalone apps.
1 Wear OS: The essential guide: https://www.wareable.com/android-wear/what-is-

android-wear-comprehensive-guide (Accessed: 2019-01-29).
2 Android Wear Center — Apps, Games, News & Watchfaces for Android Wear.

http://www.androidwearcenter.com/ Accessed 2019-01-29.
3 Matlink: https://github.com/matlink/gplaycli. (Accessed: 2019-02-03).

https://www.wareable.com/android-wear/what-is-android-wear-comprehensive-guide
https://www.wareable.com/android-wear/what-is-android-wear-comprehensive-guide
http://www.androidwearcenter.com/
https://github.com/matlink/gplaycli


214 B. Olabenjo and D. Makaroff

Fig. 1. Data collection and APK extraction

3.2 Extracting APKs

The publishing model for WearOS apps is by either providing a standalone
APK or embedding a wearable APK inside a handheld APK.4 In order to
identify a standalone wearable app, first we unpack the APK and decode the
resources using APKTool [14]. Next, we decode the manifest file and check for
hardware.type.watch feature and wearable.standalone fields used in Wear
2.x to identify standalone wearable apps.

To identify embedded APKs, we checked the Manifest file to get the resource
value. Next, we identify the path to the wearable APK from the XML file and
then extract the wearable APK file. In some cases, identifying the paths was
challenging; in such cases the MANIFEST.MF file in the META-INF folder available
in all Java apps gives more details.5

Using regular expressions, we search through the manifest file to identify
tags such as *.apk, wear, wearable to extract the path to an embedded APK and
match the package ID with the handheld APK package ID. Furthermore, the
Manifest file in the extracted APK was examined for features indicating watch
capability using APKTool. Of the 1,903 embedded wearable APKs extracted
from their companion APK, we removed 16 handheld apps that had no embedded
APKs, 51 APKs that had no watch feature, and 390 APKs that were designed
for mobile phones only, but used the Android Wear notifications feature [16].

4 Analysis

To understand how personal information can be leaked we performed Static and
Dynamic analysis. Static analysis reveals potential leaky activities directly from
the source code without executing the app, while dynamic analysis executes the

4 Package and distribute Wear apps: https://developer.android.com/training/wear-
ables/apps/packaging (Accessed: 2019-01-12).

5 https://docs.oracle.com/javase/tutorial/deployment/jar/defman.html (Accessed:
2019-01-12).

https://developer.android.com/training/wear-ables/apps/packaging
https://developer.android.com/training/wear-ables/apps/packaging
https://docs.oracle.com/javase/tutorial/deployment/jar/defman.html


Information Leakage in Wearable Applications 215

apps and observes actual information leakage. We explicitly separated apps into
three main categories consistent with previous studies [9]:

1. Companion/Handheld Apps that operate on a mobile device; they usually do,
however, require access to a smartwatch app to operate efficiently.

2. Embedded/Dependent Apps that cannot function properly on smartwatches
without companion apps on mobile phones. Internet access, specific watch
functions or sending data using the mobile phone.

3. Standalone Apps that operate independently and access the Internet directly.

We were able to perform static analysis on 1,894 of the 1,903 companion
and embedded apps and all 229 standalone apps using APKTool. Figure 2 shows
our analysis process. We used the smali/baksmali code files obtained by dis-
assembling the Dalvik executables (.dex files). Potential leaky activities were
analyzed by identifying specific tags in their smali code file [5]. Dynamic analy-
sis used automated testing and collected network traffic data using Pymiproxy,6

a lightweight Python micro interceptor proxy.

Fig. 2. Analysis process

4.1 Static Analysis

Categorizing Potential Leaky Activities. We used AndroWarn7 as the basis
for identifying activities that apps could perform which can lead to information
leakage. This data was extracted from their smali source code to identify Android
class methods used to collect location information from various providers [8].
These activities have been classified into nine different categories as follows:

6 pymiproxy - Python Micro Interceptor Proxy - https://github.com/allfro/pymi-
proxy.

7 AndroWarn: https://github.com/maaaaz/androwarn (Accessed: 2018-11-12).

https://github.com/allfro/pymi-proxy
https://github.com/allfro/pymi-proxy
https://github.com/maaaaz/androwarn


216 B. Olabenjo and D. Makaroff

– Device/Mobile/PIM Data: Activities that collect telephone information such
as unique device IDs, phone numbers or serial numbers. Other activities
include making calls, sending SMS messages and reading contacts or SMS.

– App Information: Log data can be accessed by background processes allowing
malicious apps on older Android versions to extract personal information [15].
Also, we identify attempts to collect information about other apps on the
device.

– Geolocation Information: Data from WiFi or GPS.
– Connection Information: Connection information activities such as WiFi cre-

dentials, Bluetooth addresses and the current state of the network.
– Audio/Video Data: Activities that use the microphone and/or camera.
– Remote Connection: Remote access via URI parsing and URL connection.
– Memory Operations: Activities that include reading/writing of files.
– Arbitrary Code Execution: Executing system commands, particularly on

rooted devices such as loading of native libraries and execution of UNIX-like
commands.

– Sensor Hardware Access: Several wearable apps capture sensor data. Activi-
ties in this category include registering sensor access and reading sensor data
without declaring proper permission.

Companion/Handheld Apps. Companion apps have the largest number of
potential leaky activities. About 93% (1,762) of apps log data, and most leaks
are of the most popular types such as getting package information, reading files,
opening URL connections, and listening for sensor events. The top four leaky
activities make up 44.7% of the total leaks found in companion apps. Figure 3
shows the distribution of leaky activities in descending order of frequency, with
a cumulative line as a percentage of the total number of apps.

Approximately 85% (1,620) of apps either read the current network connec-
tions or generate HTTP requests to an external service, while 19% (376) make
socket connections to remote services. This is more common than with embed-
ded apps because almost all embedded apps rely on the mobile phone to send
watch activity to remote servers. Surprisingly, just over 11% (208) of apps get
unique identifications from the device, and about 4% (84) get location informa-
tion. The low percentage of apps collecting location information may be since
most apps are personalization. Further analysis shows that no apps read WiFi
credentials or intercept SMS messages. However, 15 apps send SMS messages,
43 apps access the mobile phone number, and 67 apps read the user’s phone
contacts. These are significant numbers compared to those for standalone apps.

Embedded/Standalone Applications. About 19% (364) of embedded apps
still had some form of remote connection access. Although 13% (254) of embed-
ded apps require sensor access, this is surprisingly lower than companion apps
(19% (369)). This difference can be as a result of several apps using the mobile
phone’s sensor hardware as a primary sensor device and the watch sensor
hardware as a fallback device. Also, the most popular sensor hardware is the



Information Leakage in Wearable Applications 217

Fig. 3. Companion app leak distribution

accelerometer, available on both devices, but accessed mostly on the phone.
Further analysis shows that very few embedded apps (1%) access geolocation
information compared to companion apps (5%) and standalone apps (2%).

The top hardware feature used in standalone apps is the GPS with 29 apps,
while just one app used the step counter feature leading to very few other sensor
activities. Embedded apps, on the other hand, had the accelerometer as the top
used feature (13 apps), including the step counter and heart rate features (6 and
2 apps, respectively).

Remote connections are made by 29% of standalone apps, which is much lower
than companion apps (55%). This large gap is due to the limited resources avail-
able on smartwatches, because of higher bandwidth connection options available
on mobile phones. A limited number of standalone apps require Internet access to
operate (55%). Furthermore, 3% of apps perform device/mobile/PIM data leaks,
and 16% of apps request sensor access. Table 1 highlights leakage activities from
analyzed data on embedded/standalone apps.

Trackers. Using 140 tracker signatures collected from Exodus,8 we identified
over 80 different trackers from all extracted classes in each app. Google Ana-
lytics9 was the most popular tracker used (59%). Other tracking activities were
also discovered, such as ad networks, of which GoogleAds10 was the most pop-
ular (48%). Table 2 shows the percentage of trackers identified in the three app
categories in both static and dynamic analysis. An average of 3 trackers were
8 Trackers: https://reports.exodus-privacy.eu.org/trackers/ (Accessed: 2018-11-20).
9 Google Analytics: https://analytics.google.com/ (Accessed: 2018-12-10).

10 Google Ads: https://www.google.com/admob/ (Accessed: 2018-12-10).

https://reports.exodus-privacy.eu.org/trackers/
https://analytics.google.com/
https://www.google.com/admob/


218 B. Olabenjo and D. Makaroff

Table 1. Embedded and standalone wear app analysis

Analysis Embedded
apps (events)

PCT Standalone
apps (events)

PCT

Device/Mobile/PIM data leaks 733 2 147 3

Apps information and logs 3, 645 96 424 93

Geolocation information leakage 17 1 5 2

Connection information leakage 1, 495 20 181 20

Audio/video leaks 1 0 0 0

Remote connection establishment 1, 090 19 199 29

Memory operations 707 19 169 37

Arbitrary code execution 196 5 15 3

Sensor hardware access 507 13 74 16

identified per app for companion apps, with some apps having as many as 22
trackers. Embedded apps however, had an average of 0.5 trackers, with 34 apps
having 3 or more trackers. Standalone apps had similar averages as embedded
apps, with a maximum number of 4 trackers per app, compared to embedded
apps and companion apps with maximums of 8 and 22, respectively.

This data gives insight into the practice of embedding multiple ad network
libraries and trackers to target ad marketing precisely. Several ad libraries use
the same permissions, which prevents users from knowing exactly how many ad
networks request unique permissions in the app.

Privacy Leak Distribution. To identify the distribution of apps with poten-
tial leaky activities on Google Play Store, we selected apps with Internet permis-
sion and grouped leaky apps into three main categories based on the distribution
of leaky activities with a mean of 8.1, 4.4 and 5.3 and a standard deviation of
4.3, 2.4, and 2.6 for 1,894 companion, 1,894 dependent and 229 standalone apps
respectively. The lower bound selected for moderate leaky activity was the aver-
age of all the means in companion, standalone and dependent apps, while the
upper bound was the ceiling of the highest mean.

– Low (L): fewer than six leaky activities
– Moderate (M): between six and nine leaky activities
– High (H): over ten leaky activities.

Using the data collected from static analysis, we identified the categories
and popularity of companion/dependent/standalone apps with leaky activities,
shown in Fig. 4, disregarding 141 apps without Internet connectivity. The grey
scale shows the concentration of apps in each category (companion, dependent
and standalone) with darker shades representing higher numbers. Companion
apps had 48% of apps with high leaky activities compared to dependent apps
with 14.6% and standalone apps with 9.3%.



Information Leakage in Wearable Applications 219

(a) Category Distribution (b) Popularity Distribution

Fig. 4. Category and popularity distribution of leaky apps

Personalization had more apps overall, while Communication, Finance,
Health & Fitness, Music & Audio, Travel & Local and Weather had the largest
proportion of apps with a high number of leaky activities per category (Fig. 4a).
Dependent apps had fewer categories containing apps with a high number of
leaky activities with Arcade Games as the top category. Interestingly, depen-
dent apps had a low number of leaky activities compared to companion apps
as dependent apps rely on their companion apps to compute, aggregate and
transmit data. Standalone apps, however, had few apps with a high number of
leaky activities per category, but more apps with a moderate number of leaky
activities (75% in the personalization category).

Quantifying the popularity of vulnerable apps presents an insight into the
issue of privacy leakage. In Fig. 4b, we identified the popularity of the low, mod-
erate and high leaky activities in apps based on the number of downloads. Our
results show that there were several moderate leaky activities in companion apps
with low popularity; moderate to high popularity apps had higher ratios of apps
with a high number of leaky activities. In addition, two apps with a high number
of leaky activities were very popular. Just because there are leaky activities in
apps doesn’t mean the app is problematic. These activities must be used in the
operation of the app, and further analysis is needed to quantify the vulnerability.
The categorization of leaky activities here gives an insight into what categories
of apps have potentially more leaky activities than others.



220 B. Olabenjo and D. Makaroff

Dependent apps had a higher percentage of apps with low leaky activities
and reasonably high popularity. Although very few dependent apps have low
leaky activities, they require a companion app installation which increases the
risk of information leakage. Among apps with more than 50 million downloads,
15/18 (83%) had a high number of leaky activities.

4.2 Dynamic Analysis

Inspecting network traffic generated by the apps allows us to check if personal
information is being sent to an external source. We executed each companion
app along with their embedded versions simultaneously on a mobile device, and
an Android wear device for 15 s with 10 random touch interactions to simulate
a more realistic action and allow time for network requests to be made during
the touch events.

The handheld/companion app was executed on a Google Pixel XL with 2
dual-core Kyro processors, 128 GB storage capacity, 4 GB RAM running Android
8.0 while the wearable app was executed on a paired Motorola Moto 360 Sport
with Quad-core 1.2 GHz Cortex-A7, 4 GB, 512 MB RAM running WearOS 2.0.
Standalone apps were executed independently on the smartwatch and network
packets were captured including HTTPS traffic.

A Python script was written with the use of MonkeyRunner11 to execute both
apps on the mobile phone and smartwatch devices while Pymiproxy was used to
intercept and extract network traffic for inspection. We executed 463 apps that
had 10 or more potentially leaky activities discovered from static analysis with
android.permission.INTERNET12 set in their Manifest file.

Our tests showed that 73% of companion apps selected made substantial
Internet requests (five or more GET/POST requests including socket connec-
tions) while 8% of embedded apps sent requests to remote servers. This low
number of embedded apps connecting to remote servers is not surprising because
embedded apps depend on companion apps to send traffic to remote servers [2].
We further evaluated 128 out of the 229 standalone apps with Internet access
permission and identified 13% made connections to remote servers.

Trackers. Network traffic generated by the apps were inspected and over 30
trackers were identified. Several companion apps sent data to more than one
tracker with Google CrashLytics, Google DoubleClick and Google Analytics as
the top trackers actually used. 43%, 33% and 27% of apps sent requests to
Google CrashLytics, Google DoubleClick, and Google Analytics respectively. In
addition, 22% of apps sent data to Facebook Login, Facebook Analytics, and
Facebook Ads.

11 Google Developer Support - Monkeyrunner: https://developer.android.com/studio/
test/monkeyrunner/ (Accessed: 2019-02-20).

12 Google Developer Support - Connect to the network: https://developer.android.
com/training/basics/network-ops/connecting (Accessed: 2018-11-21).

https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/training/basics/network-ops/connecting
https://developer.android.com/training/basics/network-ops/connecting


Information Leakage in Wearable Applications 221

Table 2. Top trackers, analytics and Ad networks

Static Analysis Dynamic Analysis

Companion/Handheld Dependent/Embeded Standalone Companion/Handheld Dependent/Embeded Standalone

Trackers Apps % Trackers Apps % TrackersApps % Trackers Apps % Trackers Apps % Trackers Apps %
Google
Analytics

1116 59 Google
Analytics

489 26 Firebase
Analytics

53 23 Google
CrashLytics

147 43 Google
CrashLytics

16 42 Google
Analytics

8 47

Google Ads 904 48 Google Ads 68 4 Google
CrashLytics

16 7 Google
DoubleClick

112 33 Google Ads 14 37 Google
CrashLytics

6 35

Google
DoubleClick

834 44 Firebase
Analytics

68 4 Google
Analytics

15 7 Google
Analytics

93 27 Google
Analytics

5 13 Google
Ads

2 12

Firebase
Analytics

735 39 Google
DoubleClick

67 4 Google
Ads

8 3 FB Login 74 22 Flurry 2 5 FB
Analytics

1 6

Google
CrashLytics

262 14 Google
CrashLytics

31 2 Google
DoubleClick

8 3 FB Analytics 74 22 Unity3d
Ads

1 3 FB
Audience

1 6

Flurry 168 9 Flurry 22 1 FB
Analytics

1 0.4 FB Ads 74 22 FB
Notifications

1 6

FB Login 144 8 ChartBoost 19 1 AppsFlyer1 0.4 FB Share 74 22 FB Login 1 6
FB Share 137 7 FB Analytics 3 0.2 Flurry 1 0.4 FB Places 74 22 FB Ads 1 6
FB Analytics 132 7 FB Share 3 0.2 FB Audience 74 22 FB Places 1 6
Inmobi 108 6 FB Login 2 0.1 FB

Notifications
74 22 FB Share 1 6

FB Ads 93 5 FB Places 2 0.1 Google Ads 27 8
Twitter
MoPub

77 4 Demdex 2 0.1 Flurry 25 7

FB Places 55 3 ComScore 2 0.1 Unity3d Ads 24 7
Amazon
Advertisement

49 3 AppNexus 1 0.1 Yandex Ad 11 3

ChartBoost 42 2 Urbanairship 1 0.1 AppMetrica 11 3
Unity3d Ads 40 2 Omniture 1 0.1 Urbanairship 10 3
Moat 30 2 AppMetrica 1 0.1 MixPanel 9 3
Millennial
Media

29 2 New Relic 1 0.1 Nexage 9 3

Adjust 23 1 Google Tag
Manager

1 0.1 Adjust 9 3

HockeyApp 22 1 Krux 8 2

Although few embedded apps made remote connections, Google Analytics
and Google Ads were top trackers, similar to their companion apps. Standalone
apps also had a similar percentage of trackers as the companion and embedded
apps. Table 2 provides a full breakdown of trackers, analytics and ad networks
identified in network traffic generated during dynamic analysis.

Companion apps had 2 trackers per app, on average, while embedded and
standalone apps had an average of 1, and 1.4. 21 companion apps had 10 or
more trackers while 1 embedded (com.sofascore.results) and 1 standalone
app (ch.pete.wakeupwell) had 2 and 8 trackers, respectively.

Personal Information Leakage. By inspecting the app traffic generated, we
classified personal information into four main groups as described below:

– Location: country code, IP address, GPS location data, e.g. GPS coordinates,
city, state, and network location data.

– UniqueID: Device unique IDs identified includes MAC addresses, device IDs,
IMEI codes and device hashes.

– Sensor Activity: step-count, device orientation, heart rate and sensor data.
– Personal Information: User’s personal information such as health data,

address, marital status, age, sex, date of birth, gender, email, income.

Figure 5a shows a sample data record captured from a single companion app
sending personal location information as well as app/battery usage. This data is



222 B. Olabenjo and D. Makaroff

mostly used by advertisers to improve ad targeting. However, very few users are
aware of the amount of data collected by advertisers [3]. Although few standalone
apps leaked personal information, 2/17 standalone apps that generated network
traffic tracked device location, and just one app collected unique IDs.

(a) Personal Information Leakage Example (b) Observed Information Leakage

Fig. 5. Companion app personal information leaks

Embedded apps did not, however, send any personal information to the Inter-
net because almost all data collected by embedded apps were forwarded to their
companion apps. Companion apps sent the majority of personal information as
shown in Fig. 5b. About 4.8% of companion apps sent personal information such
as email, age, gender and others while 4.5% of apps sent location information.
Also, 2.4% of companion apps sent unique IDs, and we identified about 1.3% of
apps sending sensor activities. The majority of sensor activities observed were
the accelerometer and device orientation data.

5 Discussion

By studying 4,017 (1,894 companion, 1,894 embedded, 229 standalone) apps
independently in the Android smartwatch market, we observed that the majority
of smartphone companion apps send more sensitive information compared to
standalone or embedded apps. Static analysis revealed that 12% of companion
apps, 11% of embedded apps, and about 9% of standalone apps register sensor
hardware in their manifest file. Many of these apps do not even use registered
embedded sensors in their code, as observed during static analysis due to third-
party libraries registering sensors despite not being required by the app, enabling
unauthorized access/transmission of associated data.

Third-party trackers are the major cause of personal information leakage, as
shown in Table 2. Additionally, apps with more leaky activities were popular in
companion apps, with over 1 million downloads, as seen in Fig. 4. We identified
over 84 different trackers in companion apps with standalone apps having the



Information Leakage in Wearable Applications 223

least number of trackers (8) due to the limited smartwatch developer ecosystem
compared to the smartphone market. Also, many ad networks are yet to develop
effective ad monetization schemes for developers on the smartwatch market.

Further classification was done based on the number of leaky activities apps
contain, and we identified both the popularity of these apps and their app cate-
gories on the Play Store. Our results show that there are specific categories with
more risky behaviors than others, as shown in Fig. 4, suggesting that the wear-
able app community should adopt further verification mechanisms in apps of
such categories such as Personalization, Health & Fitness, and Tools. Although
the number of leaky activities does not necessarily mean the app is potentially
dangerous, the fact that an app has high leaky activities should trigger a further
investigation into the app, its operation, and permissions, because such apps are
likely to leak more private information in actual operation.

Unlike mobile apps, wearable apps easily collect data regularly because they
are in close contact with the user, and with the help of a companion app could
potentially collect vast quantities of data and store them remotely which can
lead to the exposure of sensitive information without the user’s knowledge. Our
results show that leaky applications are currently popular, with many having
over 10 million downloads. With the growing number of potential leaky applica-
tions currently existing on the app store, simple privacy-preserving actions such
as disabling unnecessary app permissions, avoiding fingerprint authentication on
apps and encrypting phone data, can help users potentially reduce the amount
of information leaked.

6 Conclusion and Future Work

Static and dynamic analysis reveals that third-party tracking libraries account
for the bulk of information leakage in all categories, while companion apps
leak the most data. Due to the limited resources available in smartwatches and
the limited number of third-party tracking services developed for WearOS app
developers, standalone apps are less likely to send sizeable sensitive information
remotely. In this study, we classify leaky activities in wearable apps and identify
the popularity of leaky apps based on the number of downloads and category on
the app store, allowing researchers to identify where leaky apps are most likely
to exist. However, fine-grained analysis of each leak in the applications has been
left for future work and is beyond the scope of this study.

Further automated/manual testing is necessary to verify the degree to which
potential risk is correlated with actual damage. This challenge drives further
investigation on how information leakage can be mitigated by analyzing the
efficacy of tracking settings and permission models, enabling users to control
how their personal information is collected. If that is a practical approach, then
we can develop models to allow users to fully control access to their personal
information in real-time from wearable devices.



224 B. Olabenjo and D. Makaroff

References

1. Boillat, T., Rivas, H., Wac, K.: “Healthcare on a Wris”: increasing compliance
through checklists on wearables in obesity (self-)management programs. In: Rivas,
H., Wac, K. (eds.) Digital Health. HI, pp. 65–81. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-61446-5 6

2. Chauhan, J., Seneviratne, S., Kaafar, M.A., Mahanti, A., Seneviratne, A.: Char-
acterization of early smartwatch apps. In: PerCom Workshops, pp. 1–6. Sydney,
Australia, March 2016

3. Chen, G., Meng, W., Copeland, J.: Revisiting mobile advertising threats with
MAdLife. In: The World Wide Web Conference, WWW 2019, pp. 207–217, San
Francisco, CA, May 2019

4. Fafoutis, X., Marchegiani, L., Papadopoulos, G.Z., Piechocki, R., Tryfonas, T.,
Oikonomou, G.: Privacy leakage of physical activity levels in wireless embedded
wearable systems. IEEE Signal Process. Lett. 24(2), 136–140 (2017)

5. Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: HinDroid: an intelligent Android
malware detection system based on structured heterogeneous information network.
In: KDD 2017, Halifax, Canada, pp. 1507–1515, August 2017

6. Korner, J., Hitzges, L., Gehrke, D.: Goko Store: Home. https://goko.me/
7. Lee, M., Lee, K., Shim, J., Cho, S., Choi, J.: Security threat on wearable services:

empirical study using a commercial smartband. In: ICCE-Asia, Seoul, South Korea,
pp. 1–5, October 2016

8. Li, X., Dong, X., Liang, Z.: A usage-pattern perspective for privacy ranking of
Android apps. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS, vol.
8880, pp. 245–256. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13841-1 14

9. Liu, R., Lin, F.X.: Understanding the characteristics of Android wear OS. In: ACM
Mobisys, Singapore, Singapore, pp. 151–164, June 2016

10. Moonsamy, V., Batten, L.: Android applications: data leaks via advertising
libraries. In: International Symposium on Information Theory and its Applica-
tions, Melbourne, Australia, pp. 314–317, October 2014

11. Mujahid, S.: Detecting wearable app permission mismatches: a case study on
Android wear. In: 11th Joint Meeting on Foundations of Software Engineering,
Paderborn, Germany, pp. 1065–1067, September 2017

12. Paul, G., Irvine, J.: Privacy implications of wearable health devices. In: SIN 2014,
Glasgow, UK, pp. 117:117–117:121, September 2014

13. Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., Wang, G.: Security and privacy in the
medical Internet of Things: a review. Secur. Commun. Netw. 2018, 1–9 (2018)

14. Tumbleson, C., Winiewski, R.: Apktool - a tool for reverse engineering 3rd party,
closed, binary Android apps. https://ibotpeaches.github.io/Apktool/

15. Wu, S., Zhang, Y., Jin, B., Cao, W.: Practical static analysis of detecting intent-
based permission leakage in Android application. In: IEEE ICCT, Chengdu, China,
pp. 1953–1957, October 2017

16. Zhang, H., Rounte, A.: Analysis and testing of notifications in Android wear
applications. In: International Conference on Software Engineering, Buenos Aires,
Argentina, pp. 347–357, May 2017

17. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., Shen, X.S.: Security and privacy
in smart city applications: challenges and solutions. IEEE Commun. Mag. 55(1),
122–129 (2017)

https://doi.org/10.1007/978-3-319-61446-5_6
https://doi.org/10.1007/978-3-319-61446-5_6
https://goko.me/
https://doi.org/10.1007/978-3-319-13841-1_14
https://doi.org/10.1007/978-3-319-13841-1_14
https://ibotpeaches.github.io/Apktool/

	Information Leakage in Wearable Applications
	1 Introduction
	2 Related Work
	3 Dataset Overview
	3.1 Data Collection
	3.2 Extracting APKs

	4 Analysis
	4.1 Static Analysis
	4.2 Dynamic Analysis

	5 Discussion
	6 Conclusion and Future Work
	References




