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Abstract—Caching facilities can be deployed by all or some of
the ICN nodes on the path of delivering data items from a content
source to users. However, some inconsistent conclusions have been
made from different studies regarding the benefits of in-network
caching. To investigate the benefits of in-network caching, we
propose an analytical model that optimally distributes a total
cache budget among the nodes of a given ICN network in an
environment that does not follow the Independent Reference
Model (IRM).

The cache budget distribution problem is studied with respect
to optimizing system-centric and user-centric metrics, using a
small number of synthetic and realistic topologies as case studies.
Our findings reveal the benefits of in-network caching as well
as the optimal distribution of the cache budget in ICNs with
respect to our selected objective function. Although the efficiency
of in-network caching on user-centric metrics strongly depends
on topologies and the strength of temporal locality, in-network
caching is very helpful in optimizing the ISP-centric metrics for
all network and traffic settings.

I. INTRODUCTION

Hierarchical caches have attracted renewed interest since
they are fundamental to the efficient operation of Information
Centric Networks (ICNs). By storing data items close to users,
the cost of retrieval is reduced (server and network bandwidth
from the ISP’s point of view). Caching data items close
to users also reduces latency resulting in better quality of
experience (user’s point of view). The performance of such
in-network caching depends in part on cache replacement and
replication/placement algorithms.

Cache replacement algorithms (e.g. LRU, k-LRU [1] and
hybrid caching [2]) choose what data items to evict from
the cache when the cache is full. Cache replication/placement
algorithms, (e.g. LCE and LCD) on the other hand, determine
which nodes should cache a copy of a given data item.

In ICNs, a request for data item i from a user is forwarded
to the source hosting i. If ICN node l on this path has a
copy of i, l makes a copy of i and forwards that to the user.
Upon the arrival of i at intermediate ICN node k on the path
from l to the user, k may cache the data item. ICN node k
can decide whether to cache the item or not. In Leave Copy
Everywhere (LCE) replication mechanism for example, node k
always stores data items, but results in many redundant copies
of a data item in the network.

On the other hand, ICN nodes may collaborate with the
other nodes on the delivery path to replicate items to optimize
retrieval distance. Leave Copy Down (LCD) [3], Move Copy
Down (MCD) [4], ProbCache [5] and age-based replica-
tion/placement algorithms [6] are examples of this concept.
In LCD, for example, a request for item i hits at the cache of
ICN node k. A copy of data item i on the delivery path from
k is only cached at the node that follows k on this path. More
requests for i place copies at ICN nodes closer to users.

Caching facilities can be deployed by all [7] or some [8] of
the nodes on the delivery path. Some studies have investigated
the efficiency of ICN caching, both empirically [9], [10] and
analytically [5], which have inconsistent results. For example,
Danzig et al. [11] and Rossini et al. [12] believe that in-
network caching can be more effective than only caching at the
edge of the network. Fayazbakhsh et al. [9] and Psaras et al.
[13], on the other hand, believe caching closer to the network
edge brings more benefits compared to the benefits brought
by deploying cache at intermediate nodes. Furthermore, Chai
et al. show that selecting only some of the ICN nodes on the
delivery path increases profit further [8]. This suggests that
the ICN literature still lacks an empirical and analytical deep
understanding of the benefits brought by in-network caching.

We propose an analytical model that optimally distributes
a total cache budget of C among the nodes of ICN networks
under non-IRM environment. The cache budget distribution is
studied regarding optimizing the following metrics: 1) system-
centric metrics (e.g. total miss ratio representing server load),
user-centric metrics (e.g. average hop distance representing
latency), and 3) a combination of the above.

The rest of this paper is organized as follows: Related work
is covered in Section II. A mathematical expression for the
optimal cache distribution is given in Section III. Section IV
investigates the optimal cache distribution among the nodes of
an ICN for LRU cache replacement and LCE cache replication
algorithms for various topologies and network metrics. Finally,
Section V concludes this paper.

II. RELATED WORK

A. Modelling Caching Algorithms Under IRM

One distinguishing component of ICN nodes is in-network
caching. These connected ICN nodes then construct a hierar-



chy of caches for distribution/storage of content items from
particular publishing sources. Performance evaluation in a
large hierarchy of caches through simulations is extremely
costly. Garetto et al., for example, found that investigating
the caching performance in an ICN with 1365 nodes through
simulations needs substantial memory, high CPU usage and
long time to enter into steady state [1]. Modelling is much
less computationally expensive and does not depend on the
number of requests in the simulation.

The most accurate approximation to calculate the hit proba-
bility of data item i in a LRU cache under IRM was originally
proposed by Fagin [14] and further explored by Che et al.
[15]. With the notations in Table I, they define τk,i as the
characteristic time approximation of item i at cache k; the
time before Ck distinct data items (not including data item i)
are requested at node k. They also assume τk,i is independent
of i; this property is confirmed by Fricker et al. [16] with a
Zipf popularity distribution.

Having τk as τk,i independent of i, data item i is in cache k
at time t if and only if less than τk has elapsed since the last
request for item i at node k. Under a Poisson arrival process
assumption, the time-average probability P ink,i that data item i
with arrival rate λk,i is in cache k is given by P ink,i(τk) = 1−
e−λk,iτk . Assuming

∑N
j=1 P

in
k,j(τk) = Ck, Che et al. compute

the corresponding τk. As an immediate consequence of the
Poisson Arrivals See Time Averages (PASTA) property for
Poisson arrivals, P ink,i also represents the hit probability Phitk,i

[1]. Since τk is a function of Ck, P ink,i and Phitk,i are then shown
by P ink,i(Ck) and Phitk,i (Ck) respectively.

B. Modelling Caching Algorithms Under non-IRM

The IRM ignores temporal and geographical localities in
request sequences. Garetto et al. consider a 2-stage hyper-
exponential to apply temporal locality to users’ requests [1],
[17]. They assume the intensities of renewal processes are
modulated by a Zipf distribution. Then, they define the rates
of exponential stages as λ1k,i = λk,iz and λ2k,i = λk,iz

−1, in
which parameter z applies a temporal locality into requests
arrival process. The CDF of inter-request times of data item i
at node k is then calculated as Fk,i(t) = 1− γe−λ

1
k,it − (1−

γ)e−λ
2
k,it, in which γ = z/(z + 1). Thus, the average request

rate λk,i is then given by λk,i = 1/
( ∫∞

0

(
1− Fk,i(t)

)
dt
)
.

They extend Che et al.’s approximation [15] to model LRU
renewal traffic. They argue that under a general request process
P ink,i(Ck) and Phitk,i (Ck) are not equal since PASTA no longer
holds. Consequently, to compute P ink,i(Ck), they consider that
data item i is in cache k at time t if and only if the last request
for i arrived at node k in [t− τk, t). As a result, P ink,i(Ck) =
F̂k,i(τk), in which F̂k,i(t) = λk,i

∫ t
0
(1 − Fk,i(θ))dθ. On the

other hand, when computing Phitk,i (Ck), Garetto et al. condition
on the fact that a request arrives at time t. Thus, the probability
that the previous request for i arrived to cache k in [t− τk, t)
is equal to the probability that the last inter-request time is not
larger than τk. Therefore, Phitk,i (Ck) = Fk,i(τk).

In addition to temporal locality, data items may have ge-
ographically differential popularity. Large-scale systems must
satisfy smaller heterogeneous user communities having dif-
ferent interests. Studies on the local request frequency dis-
tribution show power-law properties [18], [19]. In addition,
other studies conclude that the global frequency of data item
requests also have power-law distributions [20]. In particular,
Zink et al. observe weak correlation between global and local
request frequency [21].

C. Modelling a Cache Hierarchy

We then need to model the arrival rate of users’ requests
at the intermediate ICN nodes. The models proposed by
Rosensweig et al. [22], Carofiglio et al. [23] and Dabir-
moghaddam et al. [24] rely on the independence assumption
among caches, assuming that requests arriving at each cache
satisfy the IRM assumptions. For intermediate ICN node k,
assuming λek,i is the exogenous request rate of item i at k
and Rk is the set of all k’s neighbouring ICN nodes from
which k may receive a request for i, Rosensweig et al. find
λk,i = λek,i+

∑
u∈Rk

λ′u,i and λ′u,i = λu,i
(
1−Phitu,i (Cu)

)
[22].

Rosensweig et al. identified the main potential sources of pre-
diction error that appears between the simulation results and
their model: the violation of the IRM (or Poisson) assumption
on the miss streams of LRU caches at intermediate ICN nodes
[22]. Despite this prediction error, we use Rosensweig’s model
for the request arrival process at intermediate caches due to
its simplicity.

TABLE I: Notations

N number of data items
pk,i item i’s popularity at ICN node k
λk,i arrival rate of data item i at ICN node k
λ′k,i miss rate of data item i at ICN node k
λk arrival rate at ICN node k
λ′k the overall miss rate of data items at ICN node k
dk,i average distance to retrieve data i from edge node k
τk characteristic time approximation at ICN node k
z temporal locality parameter
ki i’th immediate parent of k, e.g. k0 and k1 are node k itself

and k’s immediate parent respectively
Ck size of cache allocated to ICN node k
Lk set of all children of ICN node k
R set of all ICN nodes
E set of all ICN edge nodes
C the overall cache budge; C =

∑
∀k∈R Ck

D the depth of a overlay ICN tree

III. MODEL AND ASSUMPTIONS

In the rest of this paper, we assume the following:
1) There is one origin server/producer s for all data items,
2) ICN constructs an overlay tree consisting of all ICN

nodes, rooted at the source node, for the content delivery,
3) Users are only connected to edge ICN nodes, and

intermediate ICN nodes receive only endogenous traffic
(i.e. λk,i =

∑
u∈Lk

λ′u,i ∀k ∈ R− E),
4) Garetto’s model [1], [17] is used to apply temporal

locality (λk,i = 1/
( ∫∞

0

(
1− Fk,i(t)

)
dt
)
∀k ∈ E),



5) Users’ requests have geographical locality [25],
6) LRU and LCE are the cache replacement and placement

algorithms, respectively.
The goal is the optimal cache budget distribution among the

caches of the network considering the following metrics:
• Distance/Latency: data items should be cached as close

as possible to the user. Distance is measured based on
the number of hops, which is strongly correlated with
network latency. A full study of network protocol issues
and bandwidth is beyond the scope of this work.

• Miss ratio: A lower overall miss ratio in an ICN network
imposes a smaller load on the source node.

Having these two metrics, we optimize the following:

minimize
Ck∀k∈R

{∑
∀k∈E dk(Ck)

1∑
∀k∈R λk

∑
∀k∈R λ

′
k(Ck)

(1)

subject to

{∑
∀k∈R Ck = C

Ck ≥ 0 ∀k,
(2)

in which λ′k(Ck) is given by

λ′k(Ck) =

N∑
i=1

λk,i
(
1− Phitk,i (Ck)

)
∀k, (3)

and dk(Ck) is the average distance for retrieving data items
from node k, given by

dk(Ck) =

N∑
i=1

λk,idk,i(Ck) ∀k, (4)

where dk,i(Ck) as the average distance to retrieve data i from
edge node k is calculated as

dk,i(Ck) =

kl 6=s∑
l=0

l∏
j=0

(
1− Phitkj ,i(Ckj )

)
. (5)

Now, the two objective functions are combined as follows:

minimize
Ck∀k∈R

{
(1−w)

∑
∀k∈E dk(Ck)

D
+w

∑
∀k∈R λ

′
k(Ck)∑

∀k∈R λk

}
, (6)

in which D, the depth of hierarchical ICN tree, normalizes the
first objective and w is the weighting coefficient. Note that (6)
is a non-linear optimization problem since dk(Ck) and λ′k(Ck)
are both exponential functions of Ck.

IV. NUMERIC RESULTS

In this section, we report on results of allocating cache
according to 2 policies: Network Overall Caching (NOC) and
Edge-Only Caching (EOC). In the former, the cache budge is
distributed optimally among all nodes in the ICN tree. In the
latter, however, the cache budget is optimally distributed only
among the edge nodes of the ICN tree. The following two
metrics are considered to compare NOC against EOC:
• Relative benefit of NOC over EOC in terms of load on

the server: assuming hEOC and hNOC as the average
load on the server in EOC and NOC respectively, this

metric would be hEOC−hNOC

hEOC
. Server load is calculated

as λs =
∑
∀k∈Ls

λ′k(Ck).
• Relative benefit of NOC over EOC in terms of dis-

tance: assuming dEOC and dNOC as the average distance
in EOC and NOC respectively, this metric would be
dEOC−dNOC

dEOC
. The average distance to access data items

is calculated by the upper equation in (1).
In previous work [25], we proposed and developed an

algorithm to generate requests with geographical locality that
has Zipf properties in each region and combines to form a Zipf
distribution in the global region. The cache budget distribution
optimization is solved for the following three scenarios:
• geographical locality and strong temporal locality: to

apply the temporal locality, z = 10 is chosen for the
second order hyper-exponential process.

• geographical locality and weak temporal locality: to apply
the temporal locality, z = 2 is chosen for the second order
hyper-exponential process.

• geographical locality and no temporal locality: having
z = 1 for the second order hyper-exponential process
implies no temporal locality.

The request probability for item i at edge node k (pk,i),
follows a Zipf distribution with α and λk,i = λkpk,i. We
solve the optimization problem (6) with the constraints in
(2) in Matlab for N = 10000, the global request rate λ =∑
∀k∈E λk = 4, and various values of C, α and topologies.

The optimal solution for each case is a set of Ck for all ICN
nodes (∀k ∈ R). The optimal Ck are then used to calculate
hEOC , hNOC , dEOC and dNOC .

The analytical findings for realistic topologies in Section
IV-B, are validated by simulations using ccnSim [26]. The
optimal Ck values obtained are used as the cache size of ICN
nodes in simulations. Then, based on the simulation output
(e.g. average distance/server load), the relative benefit of NOC
over EOC is computed. The simulation results are the average
of five simulations runs.

A. Tree Topologies

In this section, the optimal cache budget distribution for
a ternary tree with depth of 4 and different values of Zipf
parameter α and C is solved: l = 1 shows the root of the tree
and largest value of l corresponds to the level of edge nodes.
Figure 1 shows the cache distribution among different levels
on this tree for different values of α. For α = 0.8 (Figure 1a),
as w moves from 0 to 1, (more weight is given to miss ratio), a
large fraction of cache budget is distributed among high level
intermediate nodes. For example, 45% of the cache budget
is allocated to the root of the tree for z = 1 and w = 0.
The fraction of cache budget allocated to the root however,
increases to 100% for z = 1 and w = 1.

The other point from Figure 1 is that, as stronger temporal
locality is applied (z = 10), allocated cache budget among
lower level caches increases. In case of α = 0.8 for instance,
95% and 5% of the cache budget is allocated to first level and
second levels of the tree respectively for w = 0.5 and z = 1.
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(a) α = 0.8
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(b) α = 1.0
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(c) α = 1.2
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Fig. 1: Optimal Cache Budget Distribution, C = 1000

The cache distribution for the levels changes to 57%, 27%,
14% and 2% for w = 0.5 and z = 10. With strong temporal
locality, caching items at the lower level ICN nodes results
in shorter latency as well as smaller load on the server. This
trend for w and z is also seen for other values of α.

Comparing Figures 1a, 1b, 1c and 1d with each other
illustrates the effect of α on the optimal distribution of the
cache budget. As α increases, a larger fraction of the cache
budget is scattered among lower level caches. When w = 0.50

and z = 1, no cache is allocated to the two lowest levels of the
tree for α = 0.8. The third and fourth levels however, consume
more than 60% of the cache budget together for α = 1.4.

Figure 2 represents the relative benefit of optimal in-network
caching over edge caching for average latency. Figure 2a
shows that the in-network caching optimization for z = 1 and
w = 0 decreases average distance by 5.5%, 8.3%, 9% and
10% when α equals to 0.8, 1, 1.2 and 1.4. This benefit rises
as temporal locality gets stronger; for z = 10 and w = 0, in-
network caching optimization decreases the average distance
by 11.4%, 11.3%, 13.7% and 18.3% when α equals to 0.8, 1.0,
1.2 and 1.4, respectively. Figure 2 also shows that the benefit
of in-network caching on distance decreases as w increases.
For w = 1.0, a high fraction of the cache budget is allocated
to the ICN nodes at higher level. However, the performance of
in-network caching does not get worse than edge-only caching
as the relative benefit of in-network caching over edge-only
caching is positive for all values of z and α.
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(b) z = 2
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(c) z = 10

Fig. 2: NOC vs. EOC, hops, C = 1000

Figure 3 depicts the influence of cache distribution opti-
mization on server load. Lower miss ratios reduce server load.
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(b) z = 2
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Fig. 3: NOC vs. EOC, average server load, C = 1000

The figure shows that the optimal in-network caching in the
tree provides at least 23.2% less load on the server (z = 1,
α = 0.8 and w = 0). This benefit goes up close to 80% for
strong temporal locality of z = 10 and α = 0.8, w = 1.0.

Having α = 1.0 and an equal weight w = 0.5, the optimal
in-network caching decreases the distance by 6.4%, 6.9% and
9.9% for z = 1, z = 2 and z = 10 respectively. The optimal
in-network caching however, decreases the average load on the
server by 43%, 42% and 62.9% for z = 1, z = 2 and z = 10.
While in-network caching may have a small influence on the
average distance (up to 9.9%), network caching can be very
effective on minimizing the load on the server (at least 42%).

Figure 4 represents the influence of C on optimal in-network
caching. Similar to Figure 1, a larger value of w allocates
a larger proportion of C to caches at intermediate levels;
in addition, stronger temporal locality requires more cache
budget at lower levels of the tree. In Figure 4, optimal in-
network caching distributes a larger fraction of C among lower
levels as C increases. When z = 2 and w = 1, more than 90%
of the cache budget is allocated to the first level of the tree

when C = 1000. The fraction of cache budget allocated to the
first level decreases to less than 70% when C = 5000.
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(b) C = 2000
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(c) C = 4000
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(d) C = 5000

Fig. 4: Optimal Cache Budget Distribution, α = 1.0

Figure 5 shows the benefits of optimal in-network caching
on average distance for different values of z. Strong temporal
locality causes a large difference in relative benefit of in-
network caching for different cache budgets. Having w = 0.5
and z = 10, in-network caching reduces distance by 22%
when C = 5000 compared to when C = 1000 (10%).
This difference becomes negligible when z = 1. A similar
behaviour is also seen for overall server load in Figure 6.
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(b) z = 2
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Fig. 5: NOC vs. EOC, average number of hops, α = 1.0

B. Realistic Topologies

Table II summarizes a number of realistic topologies used in
previous works (e.g. [27]). They vary in depth and intermediate
node degree.

TABLE II: Specification of topologies.

specifications
name inter-nodes edge-nodes depth max degree average degree

Level3 5 41 5 29 9.00
Dtelecom 7 61 4 52 9.57

Tiger 12 10 5 4 1.75
Geant 12 10 6 4 1.75

Figure 7a shows that optimal in-network caching in the
Geant topology may not allocate any cache to some inter-
mediate nodes, consistent with Chai et al. [8]. Minimizing the
distance (w = 0) for example, allocates more than 60% of C
to the edge nodes of the topology; no cache would be allocated
to any other levels, except level 2 that takes the remainder of
the cache budget. Similar to the synthetic topology, a larger
fraction of C is allocated to higher levels as w gets closer to
1; however, no cache budget is distributed to levels 3, 4 and 5
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Fig. 6: NOC vs. EOC, average server load, α = 1.0

for all temporal locality values when w = 1. Caching at some
levels of Geant topology brings no performance benefit.

Figure 7b depicts the influence of w on superiority of in-
network caching over edge-only caching for average distance.
The cache sizes obtained by (6) are used in the ccnSim
simulations and the relative benefits match very closely with
the analytical predictions. The maximum benefit brought by
in-network caching is less than 10% when w = 0. In-network
caching fails to be effective on minimizing the distance as w
gets greater than 0.75. Figure 7c on the other hand illustrates
the influence of w on superiority of in-network caching over
edge-only caching for overall load on the server. This figure
shows that the in-network caching provides the network with
at least 15% less load on the server when w = 0. This goes
up to at least 40% when w = 1. Choosing w here depends on
how relevant the reduced latency is perceived by users. For
instance, if less than 10% shorter distance has no influence of
users’ experience, w = 0.75 can be selected to guarantee at
least 30% less server load.

As in Section IV-A, an increase in w allocates more cache



 0

 20

 40

 60

 80

 100

Z=1
Z=2

Z=10
Z=1

Z=2

Z=10
Z=1

Z=2

Z=10
Z=1

Z=2

Z=10
Z=1

Z=2

Z=10

C
ac

h
e 

B
u

d
g

et
 D

is
tr

ib
u

ti
o

n

 

l=1
l=2
l=3

l=4
l=5
l=6

w=1w=0.75w=0.50w=0.25w=0

(a) Cache distribution

-10

-5

 0

 5

 10

 15

 20

 0  0.25  0.5  0.75  1

R
e
la

ti
v

e
 b

e
n

e
fi

t 
o

f 
N

O
C

 o
v

e
r 

E
O

C
 (

%
)

w

z=1, model
z=2, model

z=10, model
z=1, sim
z=2, sim

z=10, sim

(b) Average distance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.25  0.5  0.75  1

R
e
la

ti
v

e
 b

e
n

e
fi

t 
o

f 
N

O
C

 o
v

e
r 

E
O

C
 (

%
)

w

(c) Average load on server

Fig. 7: Geant cache distribution, α = 1.0, C = 1000

to higher levels of the distribution tree and lower level nodes
obtain more cache with stronger temporal locality. Similarly,
some tree levels receive no cache allocation. Figure 8 depicts a
similar distribution for Tiger to that for Geant. The results for
distance/server load are not shown, due to space limitations.
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Fig. 8: Tiger distribution, α = 1.0, C = 1000

Dtelecom (Figure 9) and Level3 (Figure 10) topologies
show different properties. Table II shows how they are dif-

ferent from Geant and Tiger. There are more edge nodes in
these topologies; in addition, there are intermediate nodes with
high degree. For the Dtelecom topology, Figure 9a shows that
a larger fraction of C is allocated to level 2 where the nodes
with higher degree are located; although the fraction of C that
is distributed among edge nodes increases as temporal locality
gets stronger. Figures 9b and 9c illustrate a benefit of in-
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Fig. 9: Dtelecom cache distribution, α = 1.0, C = 1000

network caching of at least 25% and 45% for average retrieval
distance and load on the server respectively. The benefit of
optimal in-network caching is constant over w. The reason is
the allocation of a larger fraction of C to one level that has
ICN nodes with high degree. Having w = 0.5 and z = 10
results in 36% shorter retrieval distance as well as 75% less
load on the server in case of optimal in-network caching. The
same story is true for Level3, except that the node with higher
degree is located at third level and its degree is much smaller
than the degree of the similar node in Dtelecom. The results
of influence of optimal caching on distance/server load for
Level3 are not shown, due to space limitations.
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Fig. 10: Level3 cache distribution, α = 1.0, C = 1000

V. CONCLUSION AND FUTURE WORK

This paper modelled the distribution of users’ requests in
a non-IRM environment in the network as an optimization
problem taking metrics from users’ and ISP’s point of view
into account. The solution for this problem depicts an optimal
distribution of cache budget C among the nodes in ICN
networks. Studying various settings for Zipf parameter for the
distribution of users’ requests (α), strength of temporal locality
(z), total cache budgets (C) and topologies shows
• Stronger temporal locality causes a larger distribution of

total cache budget among edge nodes.
• As total cache budget of C decreases, fraction of C that

is allocated to edge nodes shrinks.
• The benefit of in-network caching on distance strongly

depends on topologies and temporal locality. The relative
benefit of up to 10% is observed for z = {1, 2} in the tree,
Geant and Tiger topologies. On the other hand, an optimal
in-network caching in Level3 and Dtelecom topologies
ends in at least 20% shorter distance.

• In-network caching is very helpful in decreasing the
overall miss ratio for all settings. A lower overall miss
ratio in the system results in forwarding less traffic out
of the local ICN network (inter-network traffic) as well
as lower server load.

While the findings of this paper are based on LCE and LRU,
the optimal cache distribution for other cache replacement
algorithms (e.g. k-LRU [1] and LRU(m) [28]) and cache
replication algorithms (e.g. LCD [3]) is part of future work.
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