
Blockchain-based Security for Heterogeneous IoT Systems
Kale Yuzik

Department of Computer Science,
University of Saskatchewan
Saskatoon, SK, CANADA

kay851@usask.ca

Dwight Makaroff
Department of Computer Science,

University of Saskatchewan
Saskatoon, SK, CANADA
makaroff@cs.usask.ca

ABSTRACT
The Internet of Things (IoT) is being deployed in industry, public
services, and even homes. These devices are making information
more available and allow for greater automation and efficiencies.
With the rapid growth this industry is experiencing, the security of
IoT devices has not been given the attention it needs. Many of these
devices leave sensitive information exposed or may allow for mali-
cious actors to take control of them. The Internet of Things uses a
vast range of hardware which has led to many different approaches
to security. Administering a network with such variability makes it
easy for insecure configurations to be overlooked.

This paper proposes the use of blockchain technology as the
backbone to a security framework to unify IoT devices of vary-
ing resource constraints under one system. Ethereum is used to
create a secure system that is Denial of Service resistant, store en-
cryption keys, store encrypted data, and manage trust of devices.
Using the Proof-of-Authority consensus method instead of the more
common Proof-of-Work, allows for more efficient use of resources.
This system features mechanisms to include the use of LoRa LP-
WAN technology, which is often used in IoT. Tests were run on
a small network of devices while recording processor utilization.
Latencies were also measured, showing that devices with fewer
resources showed significant latencies, and suggestions as to how
these latencies can be reduced are proposed.

CCS CONCEPTS
• Information systems → Information systems applications; •
Computer systems organization→Peer-to-peer architectures;
• Security andprivacy→Keymanagement; Security services;
• Networks→ Network services;
ACM Reference Format:
Kale Yuzik and Dwight Makaroff. 2020. Blockchain-based Security for Het-
erogeneous IoT Systems. In Proceedings of CASCON 2020 (CASCON’20).
ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION
The Internet of Things (IoT) is experiencing a rapid expansion in
growth. ARM predicts that one trillion IoT devices will be manu-
factured between 2017 and 2035, and world will see a $5 trillion
boost in G.D.P. due to the industrial use of IoT technologies by
2035 [27]. The Internet of Things offers great value for uses such
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honoured.
For all other uses, contact the owner/author(s).
CASCON’20, Nov. 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

as monitoring critical infrastructure, which will inevitably lead to
the deployment of these systems throughout cities. Manufacturers
are driven by economic factors and those fastest to market benefit
the most. This encourages manufacturers to cut corners and take
calculated risks and there is no exception when it comes to the
security of these products. Many of these IoT devices are deployed
in remote or inaccessible locations and use low bandwidth connec-
tions. This makes servicing or updating them far more challenging
than conventional computer networks. As the use of IoT systems ex-
pands, the risks involved with failure or security breaches become
increasingly severe.

IoT traffic lights have been developed to synchronize with other
traffic lights within road networks to minimize delays and reduce
congestion [1]. While the benefits of smart road infrastructure
are considerable, if targeted by an attacker, traffic collisions could
be caused, putting lives at risk. Commercially available, internet
connected cardiac implants were found to contain a critical secu-
rity vulnerability [28]. This not only exposed data collected by
the implants, but the administration of shocks by pacemakers and
defibrillators could be altered. This documented vulnerability is
irrefutable evidence that with the growing adoption of IoT tech-
nologies the benefits are immense, but the cost of breaches will be
financially expensive and may endanger lives. For these reasons, it
is critical these systems be secure at the time they are deployed.

Current approaches to IoT networks employ cloud-based services
to collect and process data from IoT devices. These cloud-based
IoT services (such as The Things Network1) introduce a single
point of failure by means of an external agency. Should the cloud
service become compromised, all guarantees of data confidentiality,
integrity, and availability are lost. This exposure may be acceptable
for some applications, but for critical services for which society may
come to depend upon, minimizing/eliminating these exposures is
vital. A blockchain-based security framework is proposed to address
these issues with cloud-based IoT services.

Due to the inexpensive and low-power hardware used for IoT
systems, five categories of constraints apply: compute power, mem-
ory capacity, persistent storage capacity, connectivity bandwidth,
and power source. Some limitations that may exist for one IoT de-
vice may not be an issue for another. Given this broad range of
devices, the question of how to design a security framework that
caters to the needs of these heterogeneous devices arises. Using
dissimilar solutions for devices of varying hardware resources is
not only cumbersome, but introduces security concerns itself. With
more solutions come greater potential for configuration errors and
complexity of administration.

1https://www.thethingsnetwork.org/

https://www.thethingsnetwork.org/

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

This paper explores the application of blockchain technology to
create a unified security framework for IoT devices with heteroge-
neous compute resources. The remainder of this paper is organized
as follows. Section 2 describes the component technology of the
problem domain, while Section 3 gives a brief overview of similar
previous work. Section 4 outlines the implementation and configu-
ration of the test environment, Section 5 provides proof-of-concept
results for the test network, and Section 6 draws some insight
and analysis. Section 7 provides a summary and suggests future
directions.

2 BACKGROUND
When assessing information security there are three fundamental
qualities that must be considered. These qualities form what is
referred to as the CIA triad: Confidentiality, Integrity, and Avail-
ability [18]. Confidentiality refers to the secrecy of data from those
who are not authorized to view or access it. Data can be kept confi-
dential using cryptographic techniques. Integrity is an assurance
that the data can neither be altered or forged. The integrity of data
can be protected through the use of digital signatures. These signa-
tures provide means to authenticate the origin of the data as well
as detect if the data has been altered. Availability is the property
that adversaries cannot prevent or hinder access to data or services
required to process/transmit/receive that data. This can be guarded
using peer-to-peer technologies to provide redundancy, thereby
increasing the availability of data.

Decentralized technologies such as blockchain present a unique
advantage over the traditional client-server model. They offer a
resistance to Denial of Services (DoS) and Distributed Denial of
Service (DDoS) attacks [19], owing to the lack of a single point of
failure [2] and distributed ledger containing the desired data. Cisco
has projected 15.4 million DDoS attacks will occur in 2023, nearly
double the 7.9 million which were expected in 2018 [12].

2.1 Blockchain
Dwork and Naor [15] first introduced the idea of Proof-of-Work, a
way of providing means for making an assertion without the need
of cryptographic trust, a precursor to Blockchain. Vishnumurthy
et al. [29] made use of the concept of Proof-of-Work by creating a
credit system to incentivize equal contribution of all nodes within
peer-to-peer systems. This system provided a public ledger of trans-
actions and involved the payment of “karma”, a digital token for
work performed by peers. Nakamoto [24] developed the idea of a
decentralized, anonymous digital currency, now known as Bitcoin.

Blockchain is essentially a distributed database [21] that consists
of chunks of data (blocks) that are linked together in a linear order.
Each block contains the cryptographic hash of the block prior [24].

In the Proof-of-Work (PoW) consensus scheme, miners assemble
a block with pending transactions. A miner assigns an arbitrary
value to the nonce (number used once) field and calculates the
hash of this proposed new block. The miners then check if the
hash is less than the difficulty value [3]. When a miner succeeds,
it broadcasts its newly mined block to connected peers, who then
verify its validity. If valid, the network accepts the block, and work
begins on the next block. Miners race with others to find values
which satisfy these criteria. The difficulty is adjusted to maintain a

predetermined duration of time between creation of new blocks,
which is called the “block time”.

A change in any block along the chain will result in one of
these hashes not matching. For an attacker to successfully alter an
existing portion of a blockchain, they must re-mine every block
from the victim block on until the length of their altered blockchain
exceeds the length of the currently accepted chain.

Finding a hash which meets the required difficulty parameter
involves continual computation [3], and because mining is a race
for the next block, it is only viable on hardware above a threshold
of computational power. For this reason, Proof-of-Work is an im-
practical solution for securing a blockchain running on a network
of low power IoT devices.

As an alternative to Proof-of-Work consensus, a voting-based
system known as Proof-of-Authority (PoA) [13] may be used, in
which blocks are approved (or rejected) by authorized accounts
known as signers. The use of a PoA consensus algorithm creates a
permissioned blockchain, whereas with PoW the blockchain would
be permissionless. De Angelis et al. [13] analyzed permissioned
blockchain consensus algorithms in terms of the CAP (Consis-
tency/Availability/Partition tolerance) theorem [16] and perfor-
mance. The implementations of PoA known as Aura and Clique
were examined, as well as Practical Byzantine Fault-Tolerant (PBFT)
schemes. While there were trade-offs in terms of the CAP theorem,
Clique requires the least number of messages to achieve consensus,
thereby making it advantageous for use on resource constrained
systems.

On PoA, signers approve blocks by signing them with their cryp-
tographic key and for a network to consider a block as valid, it must
be signed by a majority of the authorized signers. Upon genesis of
the blockchain, initial signers are defined. Accounts which main-
tain the transaction process of the blockchain accumulate positive
reputation. Thus, signers can be voted in or out, based on their
reputation within the blockchain network. This system eliminates
the computationally demanding operations required by the Proof-
of-Work scheme. Additionally, PoA allows for the block time to be
explicitly set, thus allowing for some degree of control over the
latency of contract functions which mutate the contract state and
by extension, the latency in our proposed system.

2.2 Ethereum and Smart Contracts
Blockchain is best known for its use in implementing cryptocur-
rencies, but its applications are far more broad. Smart contracts are
compiled code that is uploaded to the blockchain [30, 31]. These
contracts contain functions that may be executed in a distributed
manner as required. Contracts can contain persistent state informa-
tion that is global to all devices on the blockchain. In order for the
results of contract execution to be accepted by the network, there
must be consensus on the postconditions of execution.

Smart contracts, as they are referred to in the context of Ethereum,
contain functions which are divided into two groups: those that
modify the contract state and those that do not. They have substan-
tially different performance properties. Contract functions modi-
fying the contract’s state are called by sending a transaction [30].
This is done by broadcasting the transaction data to other devices

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

mining on the blockchain, for which the outcome state of the con-
tract must be agreed upon by the miners. The mining nodes execute
the function and must come to a consensus, introducing a latency
which is primarily dependent upon the block time. Contract func-
tions that do not modify the state variables of a contract need only
be executed locally on the device. There is no need to come to a
consensus on the result of this computation, as it does not modify
public information in any way, so the latency is imperceptible.

The Ethereum Virtual Machine (EVM) is used to execute smart
contract functions. EVM allows for looping, and thus introduced
the possibility of poorly written or malicious code to invoke an
infinite loop. As a remedy, the concept of “gas” is introduced. Each
instruction depletes a finite quantity of gas allotted to a transaction.
The sender of a transaction may choose the initial amount of gas
available; the spent gas determines transaction fees charged to the
account from which the transaction originated.

Ethereum accounts each possess their own pair of cryptographic
keys that are used to sign transactions. These same keys are used
to sign blocks when using Proof-of-Authority consensus.

2.3 Cryptography
Symmetric cryptography uses the same key to both encrypt and de-
crypt information for both parties, whereas asymmetric cryptogra-
phy involves both actors having different cryptographic knowledge
and abilities [17]. Asymmetric ciphers are more computationally
expensive and a solely asymmetric approach to encryption is not
feasible in many domains. Algorithms such as Diffie-Hellman allow
for a shared key to be derived only from knowledge of one’s own
key-pairs and the partner’s public key, preventing third parties
from determining the shared key. Another unique advantage with
asymmetric cryptography is the possibility for data to be digitally
signed and verified [17], providing a very high degree of confidence
that the data originated from the believed source (the actor which
possesses the specific key-pair).

Both Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptog-
raphy (ECC) are asymmetric cryptographic systems. They both
provide the same functionality, but differ in underlying mathemat-
ics, computation difficulty, and security [22]. As keys become larger,
the security the cipher provides increases. When an ECC key be-
comes larger, RSA keys must grow at a disproportional rate to be
able to match the level of security [20]. ECC can offer an equal level
of security with a much shorter set of keys.

The Advanced Encryption Standard (AES) symmetric cipher has
been heavily used since its acceptance by NIST in 2001 [25]. AES
uses keys of either 128, 192, or 256 bits, with 10, 12, and 14 rounds
respective of key length. There have been limitations and shortcom-
ings identified with AES in the intervening years. A cache timing-
based attack [6] on AES exposed the possibility of key recovery.
This not only breaks the confidentiality of the current ciphertext,
but all other messages that are encrypted with the same key.

The Salsa20 stream cipher [9] offers encryption that is consis-
tently faster than AES. Salsa20 may be applied using a differing
number of rounds, with Salsa20/20 (20 rounds) being the recom-
mended standard. Cryptanalysis of Salsa20 has shown Salsa20/8 or
fewer rounds to be vulnerable to attacks [5, 9].

The Salsa20 family of ciphers uses 3 operations: 32 bit addition, 32
bit XOR, and constant-distance 32-bit rotation. These instructions
are all CPU friendly, and therefore faster across a wider number of
platforms than other ciphers such as AES [9]. Due to the lack of
S-box lookup tables, Salsa20 also avoids the cache timing attacks
possible with AES.

XSalsa20 specifies a longer nonce than Salsa20 (128 bits vs. 64
bits) [8]. The nonce does not need to be secret; a third party ob-
taining the nonce does not compromise security of the cipher. The
longer nonce makes it safe to use a randomly-generated nonce.
XSalsa20 offers the exact same speed as Salsa20, with the minimal
extra cost of generating the larger nonce.

A cipher with a higher degree of diffusion does a better job in
hiding the relationship between plaintext and ciphertext. The fam-
ily of ChaCha ciphers [7] is based on the Salsa cipher and provides
improved diffusion. This modification does not increase the com-
putational expense, nor does it reduce the potential for parallelism.
In fact, ChaCha20 uses one fewer register than Salsa20, which on
some platforms may yield minor performance gains. Aumasson et
al. [5] performed a differential cryptanalysis of Salsa20 and ChaCha.
They found that while they could break up to 8 rounds of Salsa20,
they were only able to break up to 7 rounds of ChaCha (ChaCha7).
For symmetric encryption, XChaCha20 was selected due to its im-
proved strength against cryptanalysis over other variants in the
Salsa20 family, its imperviousness to side channel attacks, and CPU
friendly operations which allows for efficient operation on embed-
ded systems.

3 RELATEDWORK
Biswas and Muthukkumarasamy [10] conducted an analysis of
smart cities and how blockchain technology could be used to pro-
vide a security framework to protect them. These researchers point
out that IoT devices used in smart cities utilize various communica-
tion layer technologies such as Ethernet,Wifi, Bluetooth, 6LoWPAN,
3G, and 4G. They argue a security framework should support these
technologies and allow for communication between differing com-
munication systems. The recommendation for use of a permissioned
blockchain was made over an permissionless blockchain, due to
faster consensus and reduced potential for anonymous attacks.

Huh, Cho, and Kim [19] proposed an Ethereum-based system for
managing RSA public keys as an IoT management system. Their
proof of concept modelled electrical appliances and monitored
power consumption. Smart contracts provided an interface to set a
power usage limit when the devices would be automatically turned
off.

Özyilmaz and Yurdakul [26] investigated an Ethereum-based
IoT data collection system. Wireless nodes used LoRaWAN to com-
municate with a “smart proxy” that performed blockchain-related
functions. This work focused on blockchain technology for decen-
tralized storage and robust data availability, but did not employ
cryptography to ensure data confidentiality. Data was stored using
Ethereum’s SWARM storage service, a peer-to-peer data storage
system. Many of the design aspects of Özyilmaz’s work will be used
in the formulation of the system in this paper.

Minoli et al. [23] conducted an analysis of blockchain technology
in the scope of providing security for IoT. Proposals were made

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

for the different roles a “Network Element” (NE) may serve in the
greater scope of the network/blockchain. Some of these configura-
tions defer protection of data integrity to other more powerful de-
vices within a network to account for NEswhichmay be less capable
of securing the integrity on their own. These devices include gate-
ways, and concentration nodes (routers, switches, firewalls, etc.).
Additional uses for blockchain systems for IoT are also suggested,
including device configuration, data storage, micro-payments, auto-
mated payments between things to create a shared economy, Digital
Rights Management (DRM), history of ownership throughout the
supply chain, smart cities, device communication/synchronization,
and software rollout.

Dorri et al. [14], examined the design of the blockchain itself in
the context of smart home IoT. The authors highlighted barriers to
using cryptocurrency-based blockchain systems with IoT systems.
These issues include high consumption of system resources, latency,
and scalability problems arising from the need for consensus among
nodes. A layered design of the network is proposed, involving no
need for use of Proof-of-Work. In one layer, a private blockchain
is used to connect a group of devices within a home. One device
in the home with plenty of computational resources is designated
the Smart Home Manager (SHM), which acts as the miner. At the
top layer, smart homes are connected to a public blockchain (inde-
pendent from the private blockchain), for which the SHM relays
transactions, and communicates with cloud-based services. This
separation of blockchains greatly reduces the storage needs of the
resource constrained IoT devices, as well as reduces the bandwidth
and energy demands placed on them.

4 METHOD
Ethereum will be used as the underlying blockchain technology
due to the Turing complete virtual machine it makes available for
distributed computation. While other blockchain technologies such
as Bitcoin also make scripting possible, these alternatives are not
Turing complete [11, 19], as looping is not possible. This design
choice greatly limits their practicality for use in our framework.

The resource constraints of the IoT devices restrict our design
parameters. In order to encompass this range of devices into one
system, a proxy is built into the design. This allows devices that
are incapable of running an Ethereum client to participate in the
network. The programming language used must allow for efficient
use of hardware, and allow for multiple threads to make best use of
resources. We chose C++ with a custom system to manage commu-
nication with our selected Ethereum client (Geth, see Section 4.2)
and its JSON API through Unix domain sockets, as the commonly
used Web3.js library is written for JavaScript.2 This keeps resource
consumption as low as possible.

A conceptual overview of the proposed system is found in Fig-
ure 1. Three different types of devices exist: devices running a
Geth client, without LoRa (Section 4.5.1), devices running a Geth
client and operating as a LoRa proxy (Section 4.5.2), and devices
not running Geth with LoRa, requiring the services of a proxy
(Section 4.5.3).

2https://web3js.readthedocs.io/en/v1.2.6/

IoT devices not running Ethereum client

Geth client

Blockchain

IoT Security
Framework

smart contract

Program using IoT
Security FrameworkLoRa radio

Other client #n

Other client #1

LoRa radio IoT Security Framework
communications code IoT device program

IoT devices running Ethereum client
LoRa Gateways

Figure 1: Architecture of the network

4.1 Design Considerations
4.1.1 Compute Power. Embedded systems generally possess low
compute power. This amplifies the trade-offs when selecting crypto-
graphic algorithms. The trade-offs between computational latency
and security become far more pronounced than on devices with
faster processors. Security will be prioritized when reasonable,
while minimizing computational complexity.

4.1.2 Memory and Storage. On some devices, memory and storage
become severely limited, in some cases as low as tens of kilobytes.
Offloading much of the work to a proxy/gateway will minimize the
memory footprint of the compiled binary for these platforms.

4.1.3 Network Bandwidth. Many IoT devices use wireless commu-
nications to perform their functions. One such common technology
is LoRa [4]. LoRa allows for throughput ranging from 0.3 Kbps to 50
Kbps, depending on configuration and regional differences [21]. The
proxy solution must operate over these low bandwidth connections,
while maintaining a high degree of security.

4.1.4 Power Source. Very often, IoT devices have limited power
supply such as batteries or solar power. Both the processor and
wireless radios can be significant consumers of energy; minimizing
power consumption is important for the feasibility of a solution.

4.1.5 Cryptographic Functions. The required cryptographic func-
tions consist of public/private key generation, Diffie-Helman key
exchange, a symmetric key cipher, and signature creation and verifi-
cation. ECC was selected over RSA, due to both its smaller key size
without compromised security and computational speed, which is
well suited to embedded systems [22].

4.2 Ethereum
The blockchain security frameworkwas tested on a private Ethereum
network, using Proof-of-Authority as the method of consensus. Us-
ing PoA over PoW allows for more devices to participate in the
voting process, as compared to the mining process in PoW. This
makes the security of the blockchain dependent on the quantity
of signers, rather than the mining compute power. In general, this
lends itself well to a network of IoT devices, since such networks

https://web3js.readthedocs.io/en/v1.2.6/

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

often consist of hundreds or thousands of devices. Additionally, con-
trol over block time is an advantage since this will directly impact
the latency of data sent by devices on the network.

A block time of 5 seconds was used, as it provides lower la-
tency than the block time of 12 seconds used on Ethereum’s public
blockchain which uses PoW consensus. While 1 second would re-
sult in even lower latency, the rate at which storage costs grow
must also be weighed. A test was carried out with an Ethereum
blockchain, a 5 second block time, 1 signer, and no transactions
being made. The size of chain data on the filesystem was recorded
at 5 second intervals, which showed the chain grew at an average
rate of 3465 bytes per block.

4.3 Go Ethereum Client
We selected the Go Ethereum client (Geth).3 The implementation of
Proof-of-Authority used in Geth is known as Clique. Geth provides
many options and modes which allow for control over the extent
that the blockchain is stored and verified locally. These settings
allow for some adjustment over the use of system resources, such
as processor, memory, storage, and bandwidth. It has three different
modes of operation/communication: full sync, fast sync, and light
sync.

In full sync mode, Geth stores the entire blockchain on the
device and verifies every block created and transaction contained
within the blocks. This is the most resource demanding mode of
the three. As the blockchain adds blocks to the chain, the costs of
storing the chain increases. Fast sync mode, like full sync mode,
obtains all blocks since genesis and verifies all blocks, but does
not verify transactions, until a set number of blocks behind the
present head of the blockchain.4 This mode trades some processing
power for bandwidth. Once a fast sync client has obtained the
entire chain, it functions the same as full sync mode. Light sync
mode consumes the least amount of system resources, with the
exception of bandwidth. In this mode, all block headers and data are
downloaded, but transactions are not obtained. Geth only randomly
validates blocks in light sync mode. The use of light mode requires
full sync mode devices on the network to serve light clients which
must be explicitly enabled on the full sync client.

4.4 Contract Design
The smart contracts will be used to store the following information
for each device:
• Human friendly name,
• Numeric ID (“device ID”),
• Device creation timestamp,
• Public encryption key,
• Public signature key,
• Encrypted data & nonce,
• Timestamp of when data was last received,
• Numeric ID of the decrypting device ("data receiver"), and
• whether this device is managed by a gateway/proxy (T/F)
("gateway managed").

3https://geth.ethereum.org/
4Szilágyi, Péter. October, 2015. eth/63 fast synchronization algorithm #1889. https:
//github.com/ethereum/go-ethereum/pull/1889

The contract facilitates the allocation of new devices, removal of
devices, changing of cryptographic keys, and storage and retrieval
of encrypted data. Some of these are administrative functions that
should only be callable by authorized Ethereum accounts. The
contract allows for an arbitrary number of Ethereum accounts to
be granted access to call such functions.

Each device is assigned a partner device which may decrypt
the sender’s data, termed a “data receiver”. Allowing for a specific
data receiver to access data from one or more devices permits
data privacy even with multiple users within a blockchain security
framework. This limits potential damage if a cryptographic key
becomes compromised.

4.5 Devices
The hardware utilized in the test network consists of 3 types Rasp-
berry Pi devices and AdaFruit Feather M0 devices5 as described
more fully in Table 1. In addition to the information in the table,
the Raspberry Pi 2B+s are equiped with a Dragino LoRa (SX1276)
& GPS HAT. One AdaFruit Feather M0 device uses a 1200mAh LiPo
battery and the other devices are mains powered. All LoRa chips are
of the RF9X family, operating in the 915MHz frequency range. All
Raspberry Pis ran Raspbian on a headless installation. The devices
were run in a network as illustrated in Figure 2.

4.5.1 Devices Running Geth Client, without LoRa. Devices which
are connected to the Internet and have sufficient system resources
will run the Go Ethereum client locally. The blockchain security
framework will communicate with Geth through Unix domain
sockets to request services of the smart contract. Only devices with
more capable hardware will run Geth in full sync mode as a signer.
Other devices will be tested in light sync mode.

4.5.2 LoRa Gateways/Proxies. Devices operating as a LoRa gate-
way constantly listen for transmissions from broadcasting LoRa
devices and run a local instance of Go Ethereum. When the gate-
way receives an incoming message, it retrieves the public signature
key that corresponds to the device ID in the LoRa packet from the
smart contract. If the signature is verified as valid using the public
key, the gateway can be confident the message originated from
the claimed device. Since the gateway is already registered on the
blockchain, the smart contract implicitly trusts the gateway and
the gateway may forward the already encrypted message payload
to the blockchain. In order for the smart contract to permit the
gateway acting on the behalf of the device, the device must be
registered on the blockchain as “gateway managed”. Any gateway
is capable of pushing the data of any registered LoRa device to the
blockchain. This allows for geographic mobility of these devices.

4.5.3 LoRa Connected Devices. Systems using LoRa for connectiv-
ity do not possess the bandwidth necessary to run Go Ethereum
locally. These devices may also lack other resources to run Go
Ethereum. The Adafruit Feather M0 meets none of these require-
ments, as is true for a large portion of IoT devices; mechanisms for
this category of device must be included.

Since these devices cannot run Go Ethereum, this must be done
by proxy/gateway. A protocol was created to allow for a LoRa

5https://www.adafruit.com/product/3178

https://geth.ethereum.org/
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://www.adafruit.com/product/3178

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

Table 1: Test Devices (all ARM CPUs)

Device CPU Cores Frequency (MHz) RAM Network
Raspberry Pi 2B+ Cortex-A53 4 900 1 GB WiFi and LoRa
Raspberry Pi 4B Cortex-A72 4 1500 4 GB WiFi
Raspberry Pi Zero W 117676JZF-S 1 1000 512 MB WiFi
AdaFruit Feather M0 Cortex M0 ATSAMD21G18 1 1000 32 KB LoRa module (SX127X)

Wireless Router
802.11N

Raspberry Pi 4B

Raspberry Pi 2B+
Mains Power

Adafruit Feather M0
Mains Power

Adafruit Feather M0
Battery Power

Raspberry Pi Zero W Raspberry Pi 2B+
LoRa Gateway

WiFi

LoRa

Ethereum
Clients

Raspberry Pi Zero W

Figure 2: Configuration of test network

gateway to act upon a device’s behalf, while maintaining data con-
fidentiality and integrity. Devices communicating over LoRa must
be authenticated and cannot be implicitly trusted. Our protocol de-
tects forged/altered data and prevents eavesdropping as described
in Section 4.6.

The custom LoRa protocol allows for a payload of up to 154 bytes
which is three times larger than LoRaWAN and by extension, The
Things Network. The packet structure is as follows:

• Source and destination device ID (4 bytes each),
• Message ID (1 byte),
• Packet fragment number (1 byte),
• Flags (1 byte),
• Reserved (1 byte),
• Data length (1 byte),
• Message signature (64 bytes),
• Cryptographic nonce (24 bytes), and
• Encrypted data (max 154 bytes).

The “message ID” and “packet fragment number” are presently
unused, but are left in for future versions, to enable fragmented
messages, similar to packet fragmentation in IPv4.

When a LoRa device boots, it pre-calculates the shared key used
to encrypt data for its data receiver. This key is stored to avoid
having to recompute it, wasting processor cycles and power. Once
data is ready to be sent, it is encrypted (Section 4.6) and encapsulated
in a packet that is then digitally signed and transmitted.

4.6 Cryptography
The libSodium6 library provides the desired algorithms and sup-
ported all but one of the platforms being used for testing. Minor
changes7 were required to port the library to the ARM Cortex M0.

6https://libsodium.org
7Limited to removal of function pointers which permitted different functions to be
used. No alterations were made to functions which impact the integrity/security of
the cipher.

Since embedded LoRa devices do not run a local Go Ethereum
client, an external cryptography library will be used for digital sig-
natures in addition to key generation, key exchange, and symmetric
encryption. Digital signatures will utilize the Edwards-Curve Digi-
tal Signature Algorithm (ECDSA) using edwards25519 parameters.
This creates a 512-bit signature that the LoRa gateway can verify to
ensure the authenticity of the sender. Should the message have been
altered or corrupted after it is signed, it is discarded. libSodium’s
crypto_sign_init(), crypto_sign_update(), crypto_sign_final_create()
are used to create a signature and crypto_sign_final_verify() to ver-
ify a signature.8

Before data can be encrypted, the shared key must be computed
between the device and its data receiver using Elliptic Curve Diffie-
Hellman key exchange (ECDH). Once the shared key has been
determined, it is used with the symmetric XChaCha20 stream ci-
pher to encrypt the data being transmitted. A 192-bit, randomly
generated nonce is used during encryption and must also be trans-
mitted and stored on the blockchain. This nonce itself does not
need to be kept secret, but is required for decryption.

Data is encrypted on an end-to-end basis. Before a LoRa device
transmits data to a gateway, it is both encrypted and signed. Upon
receipt, the gateway verifies the signature. The gateway does not
decrypt the data, as it does possess the necessary key to do so, unless
it is designated as the data receiver for the originating device. In the
case of a device running its own instance of Geth, data is pushed to
the blockchain in encrypted format and the identity of the sender
is verified in the smart contract. Data remains in this encrypted
format while on the blockchain. A data receiver may choose to
subscribe to changes to new data on the blockchain for which they
are capable of decrypting. These notifications are implemented
through Ethereum’s event logs and Go Ethereum’s eth_subscribe
JSON API calls.

The public cryptographic keys of all devices are stored on the
blockchain and can be trusted as authentic. When a signed LoRa

8https://doc.libsodium.org/public-key_cryptography/public-key_signatures

https://libsodium.org
https://doc.libsodium.org/public-key_cryptography/public-key_signatures

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

message must be verified, the gateway retrieves the devices public
signature from the blockchain to perform the verification.

When a data receiver wishes to read encrypted data on the
blockchain, it obtains the public key of the device it is reading data
from, as well as the ciphertext, and nonce. The data receiver then
calculates the shared key using libSodium’s key exchange function
crypto_kx_server_session_keys() to perform ECDH key exchange.
This shared key is then used to decrypt the data.

5 RESULTS
In our experiments, devices pushed data to the blockchain every
6 seconds. This interval was selected so latency tests would not
be synchronized with the block time (5 seconds) and consequently
skewmeasurements. Data generated by each type of device consists
of the following:
• Adafruit Feather M0 (LoRa): power source voltage and uptime,
• RPi 2B+ (LoRa): `uptime`,
• RPi Zero W: `uname -a`, `nproc`, `uptime`, and `free -h`, and
• RPi 4B: `uname -a`, `nproc`, `uptime`, and `free -h`.

LoRa device transmissions have fewer bytes due to the limitations of
packet payload size, and for the Feather M0’s, the lack of a general-
purpose operating system. Since the Raspberry Pi Zero Ws are the
most resource constrained devices that run their own Go Ethereum
client, data was collected with Geth running in full sync and also in
light sync mode. Fast sync was not used as it only affects the speed
of joining a blockchain and not normal operation.

While attempting to run Geth in light sync mode on the Rasp-
berry Pi ZeroWs, issues withmemory usage arose. An initial --cache
value of 400 (MB) was used. This resulted in the system over-using
the swap space. The cache value was decreased to 128, but did
not alleviate the issue entirely. To further adjust for these memory
demands, the memory reserved for the GPU was decreased to 8
MB, all non-essential system services were disabled, and the system
“swappiness” value was set to 1. These changes resulted in stable
operation on the Raspberry Pi Zero Ws.

The LoRa gateway/proxy (Raspberry Pi 2B+) did not experience
any memory-related issues, as with the Raspberry Pi Zero Ws.
With 1GB of memory, the gateway is the second most memory
constrained device. This device was run with a --cache value of 512
(MB) and had a total of 969 MB of usable memory (the difference is
reserved for the GPU).

Latency was measured on The Things Network over LoRaWAN
using a Raspberry Pi 2B+ as a single channel gateway and the
other Raspberry Pi 2B+ as a LoRaWAN end node. The end node
also ran an MQTT client which subscribed to new data on this
The Things Network application. The node logged the UNIX epoch
time in milliseconds upon transmission and data notification. A
summary of the measured latencies is found in Table 2. The net-
work RTT from the LAN to The Things Network router was mea-
sured using the tcptraceroute utility, as the router does not reply
to pings. An average network latency of 63.9 ms was measured to
us-west.thethings.network:1883.

Figures 3 and 4 show latency under the experimental scenarios.
These measurements were made by transmitting text data. With
both The Things Network and the blockchain-based system, mes-
sages are subscribed to, and the time between transmission and

notification are recorded. The measurements on The Things Net-
work showed a mean latency of 353 milliseconds. Measurements on
the Raspberry Pi 4B, and Raspberry Pi Zero Ws with 1 light serve
node and 2 light serve nodes showed a mean latency of 3949 ms,
19488 ms, and 18934 ms respectively.

Figure 3: Measured Data Latency: The Things Network

Figure 4: Measured Data Latency: RPi 4B Full Sync and RPi
Zero W Light Sync

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

Latency measurements made on the Raspberry Pi 4B in full
sync mode showed a larger standard deviation (529.2) than the
measurements from The Things Network (13.8), however, it showed
no outlier values. This is likely due to the lack of a dependence
on an external system to process the request and transport over
the public internet. The Raspberry Pi Zero Ws also resulted in
many larger outliers in both tests. The large variance in latency
observed on the Raspberry Pi Zero Ws may be an issue for some
IoT applications. Cloud-based services such as The Things Network
offer considerably lower latencies than the blockchain-based system
in all configurations examined.

From the latency measurements, it is clear that a blockchain-
based system introduces a considerable latency. This latency is
exacerbated when using Go Ethereum’s light sync mode to reduce
processor and memory requirements. Since IoT tends to run on
abundant, inexpensive hardware, it is clear that more IoT devices
would be likely to run an Ethereum client in a light sync mode over
full sync mode. This would restrict these devices to applications
where latencies of approximately 19.5 seconds is permissible. This
cannot rival cloud-based services, such as The Things Network,
for fast delivery of data. Even on devices with sufficient resources
to use full sync mode, the latencies will clearly exceed those of
cloud-based services.

The second latency test conducted on the Raspberry Pi Zero
Ws had an additional Raspberry Pi 4B on the test network (not
shown on Figure 2). Both Raspberry Pi 4Bs were run in full sync
mode and served the Raspberry Pi Zero Ws in light sync mode.
The measurements of this experiment are shown in the right-most
boxplot of Figure 4. The additional light serve node did not reduce
the average latency, but did reduce the variance in latency. Both of
these scenarios did, however, have a substantial number of outliers.

To assess the demand on the compute resources of the devices,
the load averages were sampled over time. Data from the first 16
minutes of each experiment was discarded to eliminate any startup
effects. The Raspberry Pi Zero W load averages were sampled at
intervals reflecting the observed latency whilst the other devices
were sampled every 6 seconds.

While running the Raspberry Pi 4B in full sync mode (Table 3)
and serving light clients, the load averages were well below the
systems total load capacity of 4.0. The demand on this client will
increase as additional light clients would be added to the blockchain.
It has the capacity to service more light sync clients, but how many
cannot be concluded without larger scale evaluation.

The Raspberry Pi 2B+ operating as a LoRa gateway/proxy was
run as a a full sync node with signing autority for the Proof-of-
Authority consesus scheme. The load averages measured on this
device during operation are found in Table 4. This device was
configured to not serve light sync clients at any point. Despite the
fact that this device has less compute power than the Raspberry
Pi 4B, it experienced less load on its processor due to the lack of
serving light clients.

In full sync mode, the Raspberry Pi Zero Ws (Table 5) were
observed to have load averages well above their capacity of 1.0.
On a single core device this indicates the system is overloaded.
The Raspberry Pi Zero W is therefore not capable of running Go
Ethereum as a full sync node. When tested as a light sync node
(Table 6), on average it did not overload the processors, although

the maximum load averages do indicate periods in which they were
overloaded.

Go Ethereum exhibited periodic bursts of heavier processor uti-
lization (Figure 5) on the Raspberry Pi 4B in full sync mode (Table 3).
This behaviour was not present on the Raspberry Pi Zero W in full
sync mode, which may be attributed to the system being overloaded.

Figure 5: Load Average: RPi 4B Full Sync Node, Light Serve

6 DISCUSSION
For IoT devices which provide real-time data, such as a security
camera, this system may not offer data storage, but other services
can be rendered by the blockchain. These services include a cryp-
tographic key management system, a registry of the devices IP
address, and a remote device administration platform.

The use of a private network allowed for greater control of
blockchain parameters. These included a degree of control over
latency, avoiding need for transaction fees, and the use of Proof-of-
Authority consensus over Proof-of-Work. This also allowed for the
inclusion of some IoT devices in the security of the blockchain itself
through the voting process used in Proof-of-Authority. This could be
further leveraged in scaled up networks through the use of multiple
segregated blockchains to limit blockchain growth rate, reduce the
network throughput on each device, and increase security through
isolation.

Although the Raspberry Pi Zero Ws did manage to run the
blockchain IoT security framework as a light client, it used the
vast majority of their resources and may border on being imprac-
tical. Due to the broad range of hardware used in IoT systems, an
all-encompassing system will require more modes of operation to
best tailor the system to the needs of each device. Future designs
for a blockchain-based IoT security framework could account for
such devices (IPv4/IPv6 connected, but limited compute or memory
resources), by extending the concept of the proxy used for LoRa
devices to devices over IP networks. This would not only serve to
shift a considerable amount of the demands on the processor and
memory to a more capable device, but also reduce the latency closer
to those measured on the Raspberry Pi 4B.

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

Table 2: Measured Data Latencies (ms)

System N Min Max Mean Std. Deviation
The Things Network 310 341 507 353 14
RPi 4B Full Sync 249 3,441 4,586 3,949 529
RPi Zero W Light Sync 104 16,706 24,364 19,488 1,689

Table 3: RPi 4B Load Avg as Full Sync, Light Serve

1 minutes 5 minutes 15 minutes
Mean 0.22 0.21 0.17
Minimum 0.00 0.00 0.00
Maximum 1.89 0.91 0.45

N = 1950 (after discarding)

Table 4: RPi 2B+ Load Avg as Full Sync, LoRa Gateway

1 minutes 5 minutes 15 minutes
Mean 0.10 0.10 0.13
Minimum 0.00 0.06 0.08
Maximum 0.34 0.18 0.18

N = 193 (after discarding)

Table 5: RPi Zero W x2 Load Avg as Full Sync

1 minutes 5 minutes 15 minutes
Mean 1.44 1.50 1.48
Minimum 0.43 1.00 1.04
Maximum 3.16 2.22 1.87

N = 2881 (after discarding)

Table 6: RPi Zero W x2 Load Avg as Light Sync

1 minutes 5 minutes 15 minutes
Mean 0.47 0.48 0.46
Minimum 0.00 0.21 0.21
Maximum 1.41 0.92 0.72

N = 1462 (after discarding)

Data in this system remains encrypted end-to-end. While the
data on the blockchain itself must be considered publicly visible,
data exists on the blockchain in encrypted form. The public keys
of devices also exist on the blockchain, and it is possible to pub-
licly determine the public key of the recipient device. Since the
blockchain is also an immutable ledger, this history will persist on
the blockchain. Although the cryptographic systems used are not
known to be insecure, it should be noted that if any of these ciphers
are broken, the history on the ledger will be exposed.

The integrity of data is maintained in two ways. Data that is
already on the blockchain remains immutable by virtue of the

design of the blockchain system itself. Secondly, data being sent to
the blockchain is validated for integrity either by the LoRa gateway
(which is trusted by the smart contract), or if the device is running
its own Go Ethereum client, the blockchain network will validate
the signature of the transaction sent to the contract. While the
gateways are not insecure, gaining control of a single gateway
would permit an attacker to exploit the smart contracts implicit
trust of the gateway. This would allow the attacker to submit data
to the blockchain on behalf of any LoRa device, but not devices
which do not use this proxy system. This level of exposure is due
to the design choice to allow any LoRa device to operate with any
LoRa gateway on the system to allow for geographic mobility of
devices. The alternative of this being each LoRa device may only
communicate with a specific gateway rendering nodes less mobile.

The availability of data that already exists on the blockchain is
extremely considerable, due to the distributed nature of blockchain
technologies. This makes the existing data almost impervious to
Denial of Service attacks. Individual nodes may be targeted and
temporarily disabled, but the greater system itself would continue
to function and previously received data from the victim device
would continue to be available.

The proposed system is vulnerable to jamming attacks by virtue
of the LoRa LPWAN technology itself. As with any wireless commu-
nications technology, a transmission can be disabled or interrupted
by overwheming the channel(s) with noise. LoRa is particulairly
succeptible to this due to its low transmission power and use of
license-free frequencies. While nothing can be done to eliminate
this vulnerability, monitoring of the most recent data timestamps
could provide an indication of potential communications issues.

Since the only devices that presently do not run their own
Ethereum client are devices communicating exclusively over LoRa,
these devices are the only class of device which cannot be implicitly
trusted. To address this, the use of digital signatures was used to
authenticate the sender. This addresses the potential issue of data
forgery, but the issue of replay attacks remains. While an attacker
cannot view the message due to it being encrypted, nor can they
alter the message due to the signatures, replaying the exact same
message will appear to LoRa gateways to be authentic. This can
be addressed by introducing a mechanism at the gateway which
examines a message identifier which must be incremented by the
sender.

While the system supports the changing of both encryption
and signature keys, issues exist regarding the communication of
new keys between LoRa-only devices and gateways. Since LoRa
is an unreliable communication network, this creates potential
inefficiencies/overhead when synchronizing keys between LoRa-
only devices and gateways. Should either class of device change one
of its keys, it would then need to inform the devices it communicates

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

with over LoRa of its new public key. Should this message not be
properly received, this would lead to the public keys being out of
sync and breaking communications between the pair of devices. A
reliable protocol for the exchange of keys is therefore required for
this system to be practical in real-world applications, as changing
of cryptographic keys is paramount to the ongoing confidentiality
and integrity of data.

7 CONCLUSIONS AND FUTUREWORK
The Internet of Things is a rapidly growing industry that can solve
many novel problems and improve the efficiency of others, but it
also exposes much risk if it is not properly secured. The dangers of
vulnerable IoT devices is not merely hypothetical; security flaws
have already been found which endangered lives [28]. Blockchain
technology can provide the backbone required to create a strong,
unified security framework for a network of heterogeneous IoT
systems. Utilizing a blockchain-based solution introduced longer
latencies, but did successfully consolidate a broad range of hard-
ware into one security framework. Through additional modes of
operation, such as a proxy over IP, the maximum latencies of the
system could be reduced. In addition, our system delivers a superior
resistance to the growing threat of Denial of Service attacks, by
virtue of the distributed nature of blockchain systems. The sys-
tem presented caters well to wireless sensor networks and other
delay tolerant applications, and with further development can be
significantly improved.

Our system as described and implemented is useful for a subset
of IoT applications and could offer other functionality in a Denial
of Service resistant manner. As part of future work, the system will
be extended to more classes of devices to provide a comprehensive
framework. Ways of improving the usage of system resources will
be further explored and compared to lower the threshold of capa-
bilities that are required of devices in order to participate in the
Proof-of-Authority voting process. The use of distributed storage
systems, such as SWARM and IPFS will be explored for the use of
data storage, opposed to the smart contract state. Metrics will be
gathered with these technologies and compared to determine the
most feasible solution for resource constrained systems.

Many additional mechanisms could be added to further harden
the security of this system and expand its utility. Security can be
improved by addressing the issues of LoRa replay attacks and chang-
ing cryptographic keys described in Section 6. Additional features
could include a registry of IP addresses, and a secure remote device
administration platform. It will also be necessary to evaluate these
systems at scale and examine the tails of response time distributions
in more detail, because of the need for IoT security to be deployed
in real-time.

REFERENCES
[1] D. R. Aleko and S. Djahel. 2019. An IoT Enabled Traffic Light Controllers Synchro-

nization Method for Road Traffic Congestion Mitigation. In 2019 International
Smart Cities Conference (ISC2). IEEE, Casablanca, Morocco, 709–715.

[2] Pelin Angin, Melih Burak Mert, Okan Mete, Azer Ramazanli, Kaan Sarica, and
Bora Gungoren. 2018. A blockchain-based decentralized security architecture for
IoT. In International Conference on Internet of Things. Springer, Seattle, WA, 3–18.

[3] A.M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, Sebastapol, CA.

[4] A. Augustin, J. Yi, T. Clausen, and W.Wm. Townsley. 2016. A Study of LoRa: Long
Range & Low Power Networks for the Internet of Things. Sensors 16, 9 (2016),

1–18. Article 1466.
[5] J. P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. 2008. New

features of Latin dances: Analysis of Salsa, ChaCha, and Rumba. In Fast Software
Encryption, Vol. 5086 LNCS. Springer, Lausanne, Switzerland, 470–488.

[6] Daniel J. Bernstein. 2004. Cache-timing attacks on AES.
[7] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. https://cr.yp.to/chacha/

chacha-20080128.pdf
[8] Daniel J. Bernstein. 2008. Extending the Salsa20 nonce. https://cr.yp.to/snuffle/

xsalsa-20110204.pdf
[9] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. Springer Berlin

Heidelberg, Berlin, Heidelberg, 84–97.
[10] K. Biswas and V. Muthukkumarasamy. 2016. Securing Smart Cities Using

Blockchain Technology. In 2016 18th International Conference on High Performance
Computing and Communications; 14th International Conference on Smart City;
2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, Sydney, Australia, 1392–1393.

[11] Vitalik Buterin. 2014. A next-generation smart contract and decentralized appli-
cation platform. (2014), 36 pages. White Paper.

[12] Cisco Systems Inc. 2020. Cisco Annual Internet Report (2018-2023) White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[13] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs Proof-of-Authority:
Applying the CAP Theorem to Permissioned Blockchain. In Italian Conference
on Cyber Security. CINI, Milan, Italy, 1–11.

[14] A. Dorri, S. S. Kanhere, and R. Jurdak. 2017. Towards an Optimized BlockChain
for IoT. In 2nd International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI). IEEE/ACM, Pittsburgh, PA, 173–178.

[15] Cynthia Dwork and Moni Naor. 1993. Pricing via Processing or Combatting
Junk Mail. In Advances in Cryptology — CRYPTO’ 92. Springer Berlin Heidelberg,
Berlin, Heidelberg, 139–147.

[16] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. SIGACT News 33, 2 (June
2002), 51–59.

[17] J. Hoffstein, J. Pipher, and J.H. Silverman. 2014. An Introduction to Mathematical
Cryptography. Springer New York, New York, NY.

[18] Sunghyuck Hong. 2017. Secure and light IoT protocol (SLIP) for anti-hacking.
Journal of Computer Virology and Hacking Techniques 13, 4 (01 Nov. 2017), 241–
247.

[19] Seyoung Huh, Sangrae Cho, and Soohyung Kim. 2017. Managing IoT devices
using blockchain platform. In 2017 19th International Conference on Advanced
Communication Technology (ICACT). IEEE, Phoenix Park, PyeongChang, South
Korea, 464–467.

[20] K. Lauter. 2004. The advantages of elliptic curve cryptography for wireless
security. IEEE Wireless Communications 11, 1 (2004), 62–67.

[21] Jun Lin, Zhiqi Shen, and Chunyan Miao. 2017. Using Blockchain Technology to
Build Trust in Sharing LoRaWAN IoT. In Proceedings of the 2nd International Con-
ference on Crowd Science and Engineering. Association for Computing Machinery,
Beijing, China, 38–43.

[22] Kerry Maletsky. 2015. RSA vs ECC comparison for embedded systems. (2015),
4 pages.

[23] Daniel Minoli and Benedict Occhiogrosso. 2018. Blockchain mechanisms for IoT
security. Internet of Things 1-2 (2018), 1–13.

[24] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[25] National Institute of Standards and Technology. 2001. FIPS PUB 197: Announcing

the ADVANCED ENCRYPTION STANDARD (AES). National Institute of Standards
and Technology, Gaithersburg, MD.

[26] K. R. Özyilmaz and A. Yurdakul. 2019. Designing a Blockchain-Based IoT With
Ethereum, Swarm, and LoRa: The Software Solution to Create High Availability
With Minimal Security Risks. IEEE Consumer Electronics Magazine 8, 2 (March
2019), 28–34.

[27] Phillip Sparks. 2017. White Paper: The route to a trillion de-
vices. https://community.arm.com/iot/b/internet-of-things/posts/
white-paper-the-route-to-a-trillion-devices

[28] US Food and Drug Administration. 2017. Cybersecurity vulnerabilities identified
in St. Jude Medical’s implantable cardiac devices and Merlin@ home transmit-
ter: FDA safety communication. https://www.fda.gov/MedicalDevices/Safety/
AlertsandNotices/ucm535843.htm

[29] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. 2003. Karma:
A secure economic framework for peer-to-peer resource sharing. InWorkshop on
Economics of Peer-to-peer Systems. Berkeley School of Information, Berkeley, CA,
1–6.

[30] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang. 2019. Blockchain-
Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 49, 11 (2019), 2266–2277.

[31] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. (Oct. 2014), 32 pages. https://ethereum.github.io/yellowpaper/paper.pdf.

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Ethereum and Smart Contracts
	2.3 Cryptography

	3 Related Work
	4 Method
	4.1 Design Considerations
	4.2 Ethereum
	4.3 Go Ethereum Client
	4.4 Contract Design
	4.5 Devices
	4.6 Cryptography

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

