IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

Seamless Resource Sharing in Wearable

Abstract—The prevalence of smart wearable devices is increasing exponentially and we are witnessing a wide variety of fascinating
new services that leverage the capabilities of these wearables. Wearables are truly changing the way mobile computing is deployed
and mobile apps are being developed. It is possible to leverage the capabilities such as connectivity, processing, and sensing of
wearable devices in an adaptive manner for efficient resource usage and information accuracy within the personal area network. We
show that app developers are not yet taking advantage of these cross-device capabilities, however, instead using wearables as passive
sensors or simple end displays to provide notifications to the user. We thus design Application Function Virtualization (AFV), an
architecture enabling automated dynamic function virtualization and scheduling across devices in a personal area network, simplifying
the development of the apps that are adaptive to context changes. AFV provides a simple set of APIs hiding complex architectural tasks
from app developers whilst continuously monitoring the user, device, and network context, to enable the adaptive invocation of functions

1393

Networks by Application Function Virtualization

Harini Kolamunna™', Kanchana Thilakarathna™, Diego Perino, Dwight Makaroff*, and Aruna Seneviratne

across devices. We show the feasibility of our design by implementing AFV on Android, and the benefits for the user in terms of
resource efficiency, especially in saving energy consumption, and quality of experience with multiple use cases.

Index Terms—Smart wearable devices, wearable computing, energy utilization, context monitoring, function virtualization

1 INTRODUCTION

MART wearable devices such as smartphones, tablets,

smartwatches and fitness bands enable mobile users to
form Personal Area Networks (PANs). Some of the devices
in the PAN are capable of providing the same functionality.
For instance, a fitness band, a smartwatch and a smartphone
are each likely to have an accelerometer, a gyroscope, and a
heart rate monitor. Similarly, a number of devices on the
PAN may have direct Internet connectivity, providing mul-
tiple network interfaces. Furthermore, some wearable devi-
ces will have sufficient computing resources to perform
functions such as data encoding, compression and encryp-
tion, while others may not.

Previous analysis of several popular wearable health and
fitness tracking apps [1] shows that app developers tend not
to leverage available resources on other devices. For example,
the smartwatch pedometer will still use its own accelerometer
when the battery level is low, despite an accelerometer being
available on a fully-charged smartphone. The primary reason

e H. Kolamunna and A. Seneviratne are with the School of EE&T, Univer-
sity of New South Wales, Sydney, NSW 2052, Australia, and Data61-
CSIRO, Eveleigh, NSW 2015, Australia.

E-mail: {h.kolamunna, a.seneviratne)@unsw.edu.au.

o K. Thilakarathna is with the School of Information Technologies, Univer-
sity of Sydney, Sydney, NSW 2006, Australia, and Data61-CSIRO,
Eveleigh, NSW 2015, Australia.

E-mail: kanchana.thilakarathna@sydney.edu.au.

e D. Perino is with Telefonica Research, Barcelona 28050, Spain.
E-mail: diego.perino@telefonica.com.

e D. Makaroff is with the University of Saskatchewan, Saskatoon, SK S7TN
5A2, Canada. E-mail: makaroff@cs.usask.ca.

Manuscript received 25 Sept. 2017; revised 1 Apr. 2018; accepted 23 July
2018. Date of publication 1 Aug. 2018; date of current version 2 May 2019.
(Corresponding author: Harini Dananjani Kolamunna.)

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2018.2861861

for relying on local resources only is the app developers reli-
ance on the APIs provided by the target device."

To harness the collective capabilities of PAN devices,
developers have to implement each app individually to
utilize the distributed device resources, managing the
cost of running these functions in each device and com-
munication costs explicitly. This requires developers to
have a wider understanding of distributed systems and
increases mobile app development complexity. Therefore,
an architecture that takes user and device context into
account, enabling app developers to utilize all PAN
resources easily is needed.

In this paper, we present such an architecture that
extends the concept of network function virtualization [2] to
device functions. We show the proposed architecture’s
advantages to users and app developers and make the fol-
lowing contributions:

e DProvide an architecture (AFV) that enables wear-
able/mobile app function virtualization for the deve-
lopment of adaptive wearable/mobile apps.

e Design AFV’s inter-device and intra-device commu-
nication protocols to minimize the overhead added
by the architecture and maximizes the advantages.

e Propose and evaluate a greedy heuristic algorithm
for adaptive function allocation across devices con-
sidering the available resources and dynamic context
of devices in the PAN.

e Demonstrate AFV’s ability to adapt to context chan-
ges dynamically and demonstrate user and perfor-
mance benefits of using AFV using a number of
apps, and their usage.

1. These APIs abstract a large spectrum of functions (e.g., sensing,
communication) actually implemented by the operating system or third
party libraries and executed in the device where the app is running.

1536-1233 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0761-529X
https://orcid.org/0000-0002-0761-529X
https://orcid.org/0000-0002-0761-529X
https://orcid.org/0000-0002-0761-529X
https://orcid.org/0000-0002-0761-529X
https://orcid.org/0000-0003-4332-0082
https://orcid.org/0000-0003-4332-0082
https://orcid.org/0000-0003-4332-0082
https://orcid.org/0000-0003-4332-0082
https://orcid.org/0000-0003-4332-0082
https://orcid.org/0000-0002-0049-4413
https://orcid.org/0000-0002-0049-4413
https://orcid.org/0000-0002-0049-4413
https://orcid.org/0000-0002-0049-4413
https://orcid.org/0000-0002-0049-4413
mailto:
mailto:
mailto:
mailto:

1394

7 Shoes & N

/7 4 X, \ Soles / p

{ & I,
etextile . ¢

Framework |

Wristbands &
Rings

el il "\ Earbuds &

2 | headsets

NN/ Body
“ Implantables

Fig. 1. An overview of an personal wearable network.

The rest of this paper is organized as follows. We first
present the AFV architecture, describing each module of
AFV followed by the context-aware adaptive function alloca-
tion algorithm. Next, we show the realization of AFV with an
Android implementation and experimental calibrations. Per-
formance evaluation via simulation and experiments are pre-
sented in detail with the experimented use cases of AFV.
Finally, we overview related work and complementary sys-
tems, and provide conclusions with future work.

2 AFV: APPLICATION FUNCTION VIRTUALIZATION

Current PAN devices can be divided into two broad catego-
ries, which we refer to as Tier 1 and Tier 2, depicted in Fig. 1.
Tier 1 devices, (e.g., smartglasses, smartwatches, smart-
phones), are relatively more resourceful than Tier 2 devices.
Tier 2 devices, (e.g., smartshirts and bio-patches) simply carry
out sensing functions. In contrast to Tier 2 devices, Tier 1 devi-
ces have the following additional features: a) availability of
heterogeneous long-range network connectivity (WiFi, cellu-
lar), and b) ability to process sensed and received information.

Therefore, Tier 1 devices may be equipped with a rich set
of sensors, multiple connectivity interfaces, storage and com-
puting power to perform wide set of functions such as com-
pression, encoding, rendering, intrusion detection, firewall
filtering and encryption. Some of these resources are context
dependent, e.g., WiFi connectivity will only be available in
limited locations, GPS location will not be available indoors
and devices may be disconnected if the battery is depleted.

Since Tier 2 devices provide complementary and specific
functionality that may be duplicated on available Tier 1
devices, an app does not usually need sensors on all devices
to be active simultaneously. Different sensors have differing
output quality and resource requirements that make the
selection of functionality for optimal user benefit at run-
time a challenge. Thus if all the resources available on a
PAN can be effectively utilized in an automated fashion,
depending on the user/device context, it should be possible
to significantly improve both the dimensions of user utility:
functional requirements (precision, accuracy), and perfor-
mance (energy consumption, latency).

As mentioned, app developers do not effectively utilize
all the available resources in a PAN, when developing apps.
We believe to facilitate the use of PAN wide resources, that
it is necessary to provide methods for designers to seam-
lessly access the resources, taking in to account the context
of use. We further believe this is achievable by virtualizing
the commonly-used functions distributed across multiple
devices on a PAN, and orchestrating the use of the functions

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

vy v

Apps : Hemm)
PPs coe app1‘:‘app2‘g‘app3‘ g O :

AFV : : < - H
Architecture t : : : 3 Developer
os - :AFVAPIs :

- - g {_Function API" i Preference API | :
Tier 1 - Device 3 I - P — - o v
> g 3 L 2 —
Apps Sl Decision Function | % O D []
AFV k= Engine Manager [User
Architecture L2 <<
s >
0s £ F
Tier 1 - Device 2 § |ev] Context Function
© Monitoring Execution
T T T
v ¥ v @
(]
8 0S APIs |

Tier 2 - Devices Tier 1 - Device 1

Fig. 2. Overview of the AFV and logical connectivity among devices.

depending on the context of use, and the system state,
which we refer to as AFV. In so doing, it is possible to
accomplish the goals of a) reducing the development effort
for app developers; b) reducing the configuration burden of
the users; and ¢) increasing the user quality of experience.

2.1 AFV Architecture

AFV is a collaborative platform, which runs on the Tier 1
devices and interacts with the Tier 2 devices in a PAN as
shown in Fig. 1, makes available all potential resources to
app developers and/or users seamlessly through APIs.

Fig. 2 provides a schematic view of the AFV architecture.
To use AFV, apps register requests for the required functions
via the AFV APIs explained in Section 2.2. Within AFV, app
function registration requests are handled by the Function
Manager module as described in Section 2.3. The Context Moni-
toring module periodically monitors device and user context
as detailed in Section 2.4. One of the Tier 1 devices on a PAN
is elected as the Master Device. This can either be done by the
user or automatically based on a set of criteria such as the low-
est ratio between current state of charge and energy usage
(i.e., the Tier 1 device that would be least affected by the mas-
ter tasks if selected).

The automated Master Device selection is done in the Deci-
sion Engine (described in Section 2.5) as a collective process of
all the Tier 1 devices. The Decision Engine of the selected Master
Device then determines the optimal mapping of each app func-
tion request to a function provided by a device on the PAN.
All the other Tier 1 devices transfer context changes to the
Master Device to be used by the Decision Engine. The Communi-
cation Manager maintains efficient Inter-device and Intra-
device communication as detailed in Section 2.6. Finally, the
Function Execution module performs function invocation on
devices as described in Section 2.7. Fig. 3 shows the diagram-
matic representation of the flow of events in AFV when a
request is made, which is explained throughout this section.

2.2 AFV APIs

AFV provides two main types of APIs: Function APIs that
are executed during run time and Preference APIs that are
executed at app start-up.

2.2.1 Function APIs

For each supported function, AFV provides a specific API to
the developer. As such, the AFV APIs augments the existing
APIs provided by the operating system.

As an example, Fig. 4 describes the sensing function
enhancements of the AFV API. The onSensorChanged
and unregisterListener Android APIs are unchanged,

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION

-
1 1
1 1
1 1
1 1
H ! Communication
: [Manager
1
! AFV APIs V!
[I TSNS S— pe—— S— 1 1
H | Function i | Preference 1 Context L funiait it
! LA DA Monitoring !
1
1
(2 Y WS SRR P
. Communication
Function Manager
Manager

Requests
Aggregation

Function
Execution

(a) Client device.

. 3. Diagrammatic representation of AFV.

but are reimplemented as AFVonSensorChanged and
AFVunregisterListener for consistency.

The registerListener API requires simple modi-
fications. The AFVregisterListener «call has two
additional required parameters: maxReportLatencyUs is
an input defining the data exchange frequency between
apps and devices, and precision is an input to specify
the required measurement accuracy with respect to abso-
lute correctness, provided as a list of contexts and ranges
(e.g., <running, <5, 10 percent>>, <walking, <5, 15
percent >>). In addition, the optional mapping parameter
that provides a list of (context, device) pairs (e.g., < walking,
smartphone >, <sitting, smartwatch >), is used to enable
the developer to force the Decision Engine to select a particu-
lar device where possible.

All Function APIs are designed with a similar structure
with minimal changes to the existing APIs to reduce the
complexity of AFV for the app developers.

2.2.2 Preference APIs

There may be different preferred configurations for
the user, app and the device itself when executing an

Android

abstract void onSensorChanged (SensorEvent event)

boolean registerListener (SensorEventListener
listener, Sensor sensor, int sampling
PeriodUs, int maxReportLatencyUs)

void unregisterListener (SensorEventListener

listener, Sensor sensor)

AFV

abstract void AFVonSensorChanged (AFVSensorEvent
event)

boolean AFVregisterListener
(AFVSensorEventListener listener,
AFVSensor sensor, int samplingPeriodUs,
int maxReportLatencyUs, List<Context,
<int, int> > precision, List<Context,
Device> mapping)

void AFVunregisterListener (AFVSensorEventListe—
-ner listener, AFVSensor sensor)

Fig. 4. Example of function APIs provided by AFV and by android.

e Decision
Context (Sensor) Engine

-
1 Master

Context
Monitoring

Communication
Manager

Manager

1 1
' '
1 L 1
1 Communication !
'

H Manager '
1 '
1 1
' I
' '
1 1

All the Devices’

Function

1

1

1

s

]

1

1

i
Execution !
|

]
o
©

]
[

L
>
o)

[s]

\.

Client Device

(b) Master device

app. These configurations are managed in AFV via the
Preference APIs. AFV provides three types of Preference
APIs: app (setAppPrefs()), user (setUserPrefs())
and device (setDevicePrefs()), all with the same
structure. An example of setAppPrefs () is illustrated
in Fig. 5. The configurations (app, user and device) could
be conflicting. This is mitigated by certain configurations
being mandated, or prevented. In the current implemen-
tation the following order of priority is used: Device,
User, Application.

Consider a scenario where the developer (via setApp-
Prefs ()) may specify a fitness tracking app to synchronize
data with an Internet server, whenever data connectivity is
available. However, the user may wish to override the app’s
settings (via setUserPrefs ()) by configuring the app to
synchronize data only when WiFi connectivity is available.
For this example, the preference input in setAppPrefs
() is <connectivity, 0>, where “0” denotes “any net-
work”, and the preference input in setUserPrefs () is
< connectivity, 1>, where “1” denotes “WiFi network”.
However, the user Preference API is not directly exposed to
the user; rather, it is leveraged by the developer to take user
preferences as inputs. For instance, the Ul of the app could
provide an interface with radio buttons or drop-down lists
to allow the user to select required or forbidden device/con-
text mappings.

Additionally, each device may have configurations
defined by the manufacturer. For example, iOS devices
are recommended to operate below 35 °C.” These configu-
rations are set by the developer via the setDevice-
Prefs (), so any user specified configurations beyond
this is ignored.

All the preferences received via Preference APIs and func-
tional requests received via Function APIs are first trans-
ferred to the Function Manager. (cf. ® and ® in Fig. 3a).

2.3 Function Manager

The Function Manager is responsible for (i) keeping track of
device capabilities in terms of supported functions and their
associated costs, and (ii) managing the function registration

2. https:/ /support.apple.com/en-au/HT201678

https://support.apple.com/en-au/HT201678

1396
AFV

void setAppPrefs (AFVApplication appName,
AFVDevice deviceName, List<Context,
int> preference)

Fig. 5. Example of preference APIs provided by AFV.

requests and preferences received from AFV-enabled apps.
The Function Manager in the Master Device additionally
stores the supported functions and associated costs for all
Tier 1 devices and their paired (passive) Tier 2 devices in
the PAN. These stored information is transferred to the
Decision Engine (cf. ® in Fig. 3b).

A pre-defined list of supported functions of each device
is provided with the AFV architecture. The associated cost
of each function is composed of two main components; the
cost of executing the function and the cost of exchanging
inputs/outputs between the requested app and the function
running device. Costs could be energy, monetary, latency,
etc. The associated costs are either be provided in the list,
which is provided with the AFV architecture, or obtained at
the initialization using methods available in the devices (e.g.,
getPower() method in Android). Each time a new AFV-
enabled Tier 1 device or a Tier 2 device joins the PAN, the
Function Manager of the Tier 1 device first discovers the sup-
ported functions, and then it announces function availability
and related costs to the Master Device (cf. Section 2.6).

The next key Function Manager role is the management of
function requests/preferences. The preferences received via
Preference APIs are considered for the requests where appli-
cable, and apply bound conditions to the requests. For
instance, if the user preferred to use WiFi connectivity, the
Internet connectivity function requests from that particular
app is bound with the condition to use WiFi connectivity
only. The Function Manager aggregates multiple registration
requests for the same function from different AFV-enabled
apps, and only invokes the function on one of the devices
where possible by considering the preferences (cf. Request
Aggregation in Fig. 3a). Any change in the list of registra-
tion requests (R;) is notified as a change of context and
transferred to the Context Monitoring module of the device
(cf. @ in Fig. 3a). Eventually, this is transferred to the Con-
text Monitoring module of the Master Device (cf. @, ® in
Fig. 3a, @in Fig. 3b), and then triggers the Decision Engine of
the Master Device (cf. ©in Fig. 3b).

After each re-evaluation of the function allocation in the
Decision Engine of the Master Device, the Function Manager
receives the mapping between function registration
requests r € R, and the device d € D selected to execute the
function (Ry — D) (cf. ®, ® in in Fig. 3b and @in Fig. 3a).
This is re-mapped to each function requesting AFV-enabled
app a € Ag and the device d € D selected to execute the
function (A4 — D). Finally, the Function Manager transfers
the A; — D mapping to the Communication Manger in order
to perform the data transfer from/to the AFV-enabled apps
(cf. @in Fig. 3a).

2.4 Context Monitoring

We consider the context monitoring component as an addi-
tional virtual function, which runs on a device capable of
receiving information from (i) the Function Manager, on the
changes in registration requests, (ii) sensors, either directly
or indirectly (cf. @ in Fig. 3a), and transferring to the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

TABLE 1
Example Set of Context Information and
Mapped System Objectives

System objective Context

(i) Maximizing the Functional Quality

Precision of fitness tracking
Network throughput

Moving status (i.e., walking or not)
Average link speed of the network

(ii) Energy Utilization

Extend the battery uptime Battery level, Default energy usage

(iii) Minimizing the Monetrary Cost

Not exceeding the cap data level Each device’s connected network

Decision Engine of the Master Device. The context retrieval
function operates as needed and only reports changes rele-
vant to the Decision Engine.

It is possible for context monitoring to be carried out on
different devices, depending on the context induced from
the sensor values. Each sensed context is directly or indi-
rectly mapped to a system objective function as shown in
Table 1. Context monitoring is an essential element of AFV.
Several implementations of context monitoring exist in the
literature [3], [4]. These can be adapted for AFV. The context
monitor evaluates the cost of obtaining the measures and
selecting the appropriate mechanism/sensor with which to
obtain this information. It is also possible that the context
may be obtained from the device’s operating system, if
those features at that level are enabled [5].

Since AFV is intended to be used across multiple devices
and multiple apps, contexts are represented in the common
format described as (name, value) pairs. Context pairs
can be defined per-app and per-device in the specific config-
uration files. The state of a particular context pair is
expressed and stored as an enumerated type or string. The
value field could be a) a threshold, b) ranges (e.g., moder-
ate temperature could be 20-30 C), or c) a binary value (e.g.,
the device is either charging or discharging). The context
value triggers a context change event and orchestrates
appropriate flow of events to notify the Master Device.

2.5 Decision Engine

Initially, at the system bootstrap, the Decision Engine module
of each device performs the master selection algorithm and
elects the Master Device. Then the Decision Engine module on
the Master Device executes the function allocation problem
(raP (cf. Section 3)), based on received context information
from all client devices in the PAN. It determines the map-
ping of app function registration requests to actual function
execution across devices.

The Decision Engine is triggered for a new assignment of
functions by the Context Monitoring module on changes of
context. First, the decision engine performs the preferred
mappings and filters out infeasible function executions by
considering the preferences of device, user and app. The
preference information is transferred at the context changes.
Then, each remaining function registration request is
mapped to one of the feasible implementations as described
in Section 3. As an example, the maximum acceptable delay
for receiving a particular function’s data by the app can be
specified via the Perference APIs. This maximum acceptable
delay value is compared with the transmission delay caused
by the data transfer rate between devices (e.g., via

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION

Bluetooth) and app data generation rate (e.g., sensing func-
tion sampling rate). The lower of these delays determines
whether AFV will be used to discover and use the optimal
function implementation.

Then, the Master Device creates individual messages for
each device which has (i) the mapping between function reg-
istration requests r € Ry and the device d € D selected to
execute the function (R;+— D), (ii) the mapping between
function executions v € V; in the device and each requesting
device d € D (V; — D). These messages are then transferred
to the Communication Manager of the Master Device in order to
communicate to all the devices in the PAN (cf. ®in Fig. 3b).

2.5.1 Objective Functions

Although the overall objective of AFV is to maximize the
user quality of experience, there can be specific objectives for
individual users. We have categorized the potential user spe-
cific objectives into three groups: i) Quality, ii) Energy, and iii)
Monetary cost. An example set of context information that is
required by the Decision Engine to achieve a specific objective
is summarized in Table 1. We have given the user and/or
app developer the ability to configure the optimization pref-
erence (via the Ul or Preference APIs); by default AFV is con-
figured to optimize Energy. In the case of Quality, we assume
the user prefers quality of service improvements, e.g., maxi-
mize the precision of sensing information or network
throughput, over energy consumption of devices and mone-
tary cost. Then, in the case of Energy, we presume the user
prefers to keep all devices in the PAN active for the longest
possible time compromising Quality and Monetary cost.
Finally, if the user opts for Monetary cost, the Decision Engine
makes external communication decisions based on cost/
byte value provided by the user (via the AFVUI). Achieving
one objective does not, however, guarantee the achievement
of another objective. In order to support different objectives
and function categories, the Decision Engine runs an instance
of the function allocation problem (Far) per objective-
function category pair (cf. Section 3).

2.6 Communication Manager

This module manages all AFV communications. There are
two types of communication modes in AFV: i) Inter-device
communication and ii) Intra-device communication.

2.6.1 Inter-Device Communication

Communication among devices in the PAN is performed via
Bluetooth or other similar low-powered wireless technologies.
We define AFV specific message formats rather than using
existing data structures (e.g., Java-defined, csv) in order to
minimize the amount of data transferred. In addition, the Com-
munication Manager aggregates messages and batches data
transfers to further limit communication costs. Inter-device
communication in AFV is performed in following situations.

(i) During the system bootstrap or after any device joins/
leaves the PAN. All the devices broadcast their own
capabilities (e.g., via DataAPI in Android). An Ini-
tialization Message is used in this phase. The main
purpose of this message is to announce the device to
the PAN along with its supported functions.

(ii) Changes in the context. In this phase, a Context (Sensor)
Message, (ie., changes in sensor data), or Context

1397

(Request) Message, (i.e., changes in the requests), is
transmitted from client devices to master device when
there is a change in any of the context information.
Once the Decision Engine module on the Master Device
executes the function allocation algorithm. The Communica-
tion Manager of the Master Device notifies the other devi-
ces with the assignments using Assignment Message,
which contains the R; — D, and V;; — D mappings.
Data transfer from/to other devices in the PAN. When
the requested function is selected to run on a differ-
ent device than the requesting device, the required
data is transferred using a Data Message. In order
to remove the additional tail energy after each mes-
sage transmission, the Communication Manager is
designed to aggregate data for different requests to
a particular device. However, when a function
requires any differences in the data transfer fre-
quency (e.g., real-time data transfer requirements for
microphone, camera), AFV can either identify the
requirements by referring to the request type, (i.e.,
there are specified functions that are pre-defined as
requiring specific data transfer rates), or the user/
developer can specify via the Preference APIs.

(iii)

(iv)

2.6.2 Intra-Device Communication

Intra-device communication involves in data exchanges
between the AFV and AFV-enabled apps. The Data Message
format is used for these transfers. There are four methods
available for intra-device communication: broadcasting, sock-
ets streams, content provider (specifically in Android), and ser-
vice callbacks. In broadcasting, only the apps registered with a
given broadcast listener receive the broadcast data. The
socket streams, content provider and service callbacks methods
provide one-to-one data transmission instead, where data is
directly exchanged between AFV and the targeted app.

Intuitively, the most suitable mechanism for intra-device
communication depends on the requested function. For
example, in the case of sensing functions where multiple
different apps are requesting the same function, the use of
broadcasting would be efficient. On the other hand, in case of
data transfer towards the Internet where apps have differ-
ent data to transfer, it should be more efficient if data is
transferred directly to the app. We experimentally evaluate
the energy efficiency of all these methods in Section 5.

2.7 Function Execution

This module is responsible for the invocation of functions
on the devices selected by the Decision Engine. The Commu-
nication Manager forwards the required function invocations
(cf. @ in Fig. 3b if the selected function invocation device is
the Master Device). Then, the Function Execution module lev-
erages operating system APIs to execute functions. Essen-
tially, Function Execution maps the function requests made
by AFV APIs to operating system APIs and then invokes the
operating system APIs accordingly. The data exchanges in
between the AFV-enabled apps and AFV is performed via
the Communication Manager (cf. ® in Fig. 3b).

3 CONTEXT-AWARE FUNCTION ALLOCATION

The objective of the context-aware function allocation is to map
each function registration request r,,q4 € R to its chosen
implementation, i.e., R, — D,, to optimize the total cost of

1398
TABLE 2
Definitions of Notations

Symbol Definition

D Set of devices in PAN

A Set of apps in PAN

\4 Set of functions

R Set of requests

Tand € B Request for virtual function v € V, at device d € D, for
appac A

D, Set of devices providing implementations for a given vir-
tual function v, where D, C D

R, Set of requests for a given virtual function v, where
R,CR

F, Set of function implementation costs available for a
given virtual function v

C. Set of communication costs between a given requests
and an implementation on a device

foa Implementation function cost of v in device d, f, 4 € F,

Crd Communication costs between a given request and an

implementation on device d, where ¢, 4 € C,
(my.4),(2,4), Binary variables
(Ya)

XY Sets of solutions

executing the all requested functions. All the notations used
in this section are detailed in Table 2.

3.1 Function Costs

The function costs are related to the usability objective of the
system (e.g., monetary, quality and/or energy), which can
be defined either by the app developer or the user. For each
objective, there are two types of costs associated with each
function request and its implementations; 1) communica-
tion costs and 2) implementation costs. If the objective is to
optimize the monetary costs, internal communication (e.g.,
Bluetooth), can be considered as zero. On the other hand, if
the objective is to optimize the energy consumption of the
devices, communication is not negligible. Usually, local
mapping incurs zero cost. For the same function, the imple-
mentation cost can be different for multiple devices, for
example, the energy cost of activating the WiFi network
interface compared to the total battery capacity on the
smartphone is lower than on the smartwatch.

3.2 Problem Formulation

We first define a binary variable m, 4 where m, 4 = 1, if func-
tion registration request r,, 4 € R, can be mapped to imple-
mentation on device de€ D,, and m,4, =0 otherwise,
depending on the current context of the user and the device.
For instance, even if the GPS sensor is implemented on the
device d; € D,, it may not be able to map d; with any request
if the current remaining battery capacity on d; is below the
threshold. If no function implementation is available for a
particular function registration request, we remove that
function from the problem formulation. That makes for all
considered functions p, Mra = 1;Vr € R,. Given the set
function registrations R, and function implementations D,
and the associated costs f, s as input, the optimal FUNCTION
ALLOCATION PROBLEM (FAP) can be formulated as follows:

Minimize < Z Ya+ foa + Z Z Trd Cr.d)) (n

deD, rely deDy

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

subject to
L. > dep, Trd = 1; Yr € R,
2. Myd > T d; vr € R,,Vd € D,
3. Yd = Ty Vr € R,,Vd € D,
4. Ya, xra € {0,1}; Vr € R,,Vd € D,.

The sets of 2, ; € X and y; € Y would be the solution of the
FAP. x,4 = 1 if the function registration request r € R, is
assigned to the device d € D, and y; =1 if the device d
is required to be activated to satisfy certain requests.
Only mappable implementations will be assigned and
each function registration request will be mapped to an
implementation.

3.3 Solution to Function Allocation

When m, 4 is given Vr € R,,,Vd € D,, it is trivial to show that
FAP is equivalent to the UNCAPACITATED FaciLiry LocATION
(UrL) problem where every function implementation D, is a
facility with f,, facility opening cost and every function
registration request R, corresponds to a customer associ-
ated with ¢, 4 service cost. It immediately follows that Fap is
also an NP-Hard problem. However, there are a number of
approximation algorithms for the well-studied UFL problem.
We build on the approximation algorithm proposed by Wil-
liamson and Shmoys [6] to take into account the use of valid
mappings (m,) after context aware constraints. The itera-
tive greedy solution to Far is described in Algorithm 1.

Algorithm 1. FAP(R,. D,,m, f,¢)

1. S— R,

2. X0

3. while S # () do

4. Selectve Dyand PC Ss.t.Vpe P:m.qg=1

f'u,d+2 pep Crid
[Pl

that minimize
S—S—-P; fa=0

(Ry = Dy) « (R, D) + (P +—)
7. return assignment o : R, — D,

AL

The algorithm iteratively selects a function implementa-
tion and the valid registrations associated to it. Assigned
registrations are then removed from the problem and the
implementation cost set to 0. At each iteration, an imple-
mentation is selected to minimize the total cost of function
registrations that will be associated to the implementation.
The algorithm can be efficiently realized by maintaining the
list of registrations not yet satisfied for each implementation
in increasing cost order. FaP is performed for each type of
function separately, and aggregate the solutions to get the
final solution. This further increases the efficiency of rap.

4 REALIZATION OF AFV FRAMEWORK

4.1 Implementation

Our prototype realizes AFV as a library that can be com-
piled into an app and as a stand-alone user-level app. In
Section 5, we use AFV lib and AFV app to evaluate the prac-
tical feasibility of AFV and user benefits with use cases.

For simplicity and without loss of generality, it is assumed
that all Tier 1 devices in the PAN run the same OS (e.g.,
Android). The library, AFV lib, provides access to the
AFV APIs for the developer once linked into the app binary

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION

AFV app
Function Requesting Devices

AFV Enabled App
[+ 1
AFV lib 1
Function Manager T H
i 1

Intent Object

Intent Object
Function Registration

Function Data

Context Monitoring

1
Broadcast Receiver/ e et |

Sender = e —————

Message API
Data Message

Communication Manager

AFV app
Master Device

AFV app

Decision Engine Function Executing Devices

M ge API
Context Message

Context Monitoring Communication Manager

T

1 i Communication Manager

Message API
Assignment Message
7777777777777 Intra-Device Communication i

Inter-Device Communication
Communication Between Modules !

Function Execution

Fig. 6. Message flow in the implementation.

file. To support AFV services to multiple apps in parallel
at user-level, the other components of AFV are imple-
mented in a standalone app, AFV app. At the time of
installation of an AFV enabled app, it checks whether the
AFV app is already installed. If not, it initiates the instal-
lation of the AFV app.

The communication between AFV-enabled devices is
implemented using MessageAPTI and DataAPI as Android
Services. Context monitoring is also implemented as an
Android Service. A Master Device is selected among the
devices in the network and it runs rap algorithm described
in Section 3 to check for optimal function placement.

Device arrival/dxeparture is monitored using the
onCapabilityChanged method. When an AFV-enabled
device joins/leaves the PAN, all AFV-enabled devices
send Initialization Messages via DataAPI to all the con-
nected devices. In addition, Context Monitoring runs in
the background and collects information such as battery
level, charging status, motion status, connected network,
and link speed. When a context of a device changes, it
reports the change to the Master Device by sending a Con-
text (Sensor) Message via MessageAPI. This context
change will trigger the Decision Engine of the Master
Device to make new decisions.

Also, as shown in Fig. 6, once an app registers a function
(e.g., AFVregisterListener (this, Sensor.TYPE
_ACCELEROMETER) , AFVHTTPGet), AFV lib sends a broad-
cast with an Intent about the function registration to
AFV app. The BroadcastReceiver in the AFV app trans-
fers the request to the Function Manager. Then, it is identified
as a context change and reports to the Master Device by send-
ing a Context (Request) Message via MessageAPI. Then Master
Device’s Decision Engine checks for the optimal placement of
the function.

The Decision Engine implements the rar algorithm by
using efficient ordered data structures (i.e., TreeMulti-
maps and ArrayLists). Function Execution registers the
function using Android APIs and returns data in a self-
defined data format to the Communication Manager (Data Mes-
sage). The Communication Manager aggregates all the Data
Messages per device and sends them via MessageAPI. Once
the Data Message is received by a device, the Communication
Manager broadcasts the data stream. Each app that has a
registered listener for the function will receive the data
stream.

1399

4.2 Experimental Calibrations
4.2.1 Energy Costs of Functions

For the Fap algorithm to allocate functions optimally, the Func-
tion Manager should contain a list of supported functions and
their associated costs. We measured energy consumption of
several app functions for sensing, communication,” and proc-
essing. We use a smartphone running Android 6.0 and LG
Watch Urbane running Android 5.1.1 with 2300 mAh and
410 mAh battery capacities respectively for all experiments.
The functions are reported in Table 3.

The energy consumption for each function is obtained with
a Monsoon power monitor” directly connected to each device
via USB. Energy usage is obtained by integrating the instanta-
neous power values calculated using current and voltage
measurements from the USB interface sampled at 0.2 ms time
intervals. The experiment energy usage is computed by
deducting the fixed energy of the background processes from
the total energy consumed. Sensing energy is measured for
multiple sampling frequencies that are offered by Android by
default.” These energy cost values are used in the experimen-
tal validation of AFV architecture and to show user benefits.

4.2.2 Intra-Device Communication Modes

As mentioned in Section 2.6, there are four potential modes
for intra-device communication. We experimentally evalu-
ate the energy efficiency of four methods (broadcasting, socket
streams, content provider, service call-backs) in the case of
AFV message exchanges. Fig. 7a shows the results for differ-
ent intra-device communication methods in transferring
2.5 KB of data from AFV to an app. The measurements are
done in an Android smartphone. As expected, intra-device
communication has much lower energy usage than inter-
device communication (cf. Table 3). In this particular case,
smartphone inter-device communication consumes ~23 m]
without tail energy (~650 m] with tail energy) and intra-
device communication consumes ~1 mJ-6 m].

Moreover, we observe that broadcasting requires the mini-
mum energy for transactions even in case of a single app.
Therefore, we further experiment with the case where up
to eight external apps request the same data from the
AFV architecture. Fig. 7b illustrates that energy consump-
tion of broadcasting to eight apps is still lower than any other
method of intra-app communication for a single one app as
shown in Fig. 7a. We thus select broadcasting as the intra-
device communication mode in AFV.

5 PERFORMANCE EVALUATION

We first evaluate the performance of the Fap algorithm with
data driven simulations. Then, we present the simulation and
experimental results of how AFV prolongs the system uptime.
Finally, we show the benefits of AFV, and validating the
design objectives based on the experimental use cases.

5.1 Evaluation of the FAP Algorithm
5.1.1 Evaluation Methodology

We developed a custom simulator to analyze the effec-
tiveness of the Decision Engine, in particular, the Frapr

3. Only WiFi receive measured, transmit is between 20 and 30 percent
higher [7].

4. https:/ /www.msoon.com/LabEquipment/PowerMonitor/

5. http:/ /developer.android.com/reference/android /hardware/
SensorManager.html

https://www.msoon.com/LabEquipment/PowerMonitor/
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html

1400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019
TABLE 3
Energy Cost Associated to Each Function

Function Energy cost

Smartphone Smartwatch
Sensing Speed [m]/s]

NORMAL Ul GAME FASTEST NORMAL Ul GAME FASTEST
Accelerometer 5.01 13.28 34.46 77.71 9.52 24.74 57.61 168.4
Gyroscope 11.71 20.33 36.44 80.15 16.23 33.34 60.44 182
Magnetometer 8.12 15.45 28.46 28.28 17.04 30.21 57.82 79.73
Connectivity Per Byte High Power Idle Low Power Idle Per Byte High Power Idle Low Power Idle

[m]/B] (m]] [m]] [m]/B] [m]] [m]]

Bluetooth 0.0095 305 300 0.0024 126.07 64.23
WiFi 0.0005 66 N/A 0.0004 50 N/A
Processing Per Byte [m]/B] Per Byte [m]/B]
Compression 0.01 0.0004
Encoding 0.00026 0.00025

algorithm. We compared AFV function allocation against
three strategies:

e MANUAL: User assignment of functions in a static
manner, e.g., MyFitnessCompanion [1].

e ALL: Running functions on all available devices in
parallel, which is one of the common strategies in
today’s wearable apps, e.g., UP [1].

e ortiMAL: Function allocation, using the optimization
problem solver Gurobi.®

We assume that costs of executing a function on devices is

normally distributed, with a standard deviation o = 0.1 x p
where 11 is the average value. We change 1 to obtain multiple
cost values to evaluate the performance of Fap.

5.1.2 Efficiency and Robustness of the FAP Algorithm

Fig. 8a shows the cost reduction obtained when using the
FAP algorithm with respect to MANUAL, ALL and OPTIMAL as a
function of the ratio of function implementation cost (£}) to
communication cost (C,). Communication costs are incu-
rred for any transmission of an individual sensor stream to
the device executing the app.

We consider 5 active wearable devices in a PAN. Intu-
itively, if the communication cost is too high, it is more
efficient to execute the function on each device, resulting
in parallel apps with no coordination. This is reflected in
the region where F,/C, < 1. Under these conditions ALL
performs as well as opriMAL and Fap. However, FAP signif-
icantly reduces the cost compared to MANUAL selection.
As F,/C, increases, the significance of the communica-
tion cost decreases. Thus, executing a function in all
devices becomes inefficient as there is potentially a
device with a very low relative function execution cost.
Since there is a 1/5 chance of selecting the right device,
MANUAL performs comparatively well with a high stan-
dard deviation. rar performs equally well (error is less
than 1 percent) compared to orTIMAL, irrespective of the
F,/C, value.

Fig. 8b shows that FAP increases its cost savings compa-
red to both ManuaL and ALL along with the number of

6. https:/ /www.gurobi.com

functions when F,/C, = 1. Furthermore, FAP accuracy does
not vary significantly compared to opriMAL (error is about
2-3 percent). Overall, Fig. 8 shows that the rap algorithm is
often able to map the function registration requests to the
optimal device for executing the function providing signifi-
cant cost savings.

5.2 Prolonging System Uptime

We analyze AFV effectiveness by considering system uptime
(i.e., time until at least one device drains out its battery) as an
example of the quality metric. First, we evaluate the system
uptime varying the power status of devices with simulations.
Then, we augment simulation results by conducting experi-
ments with real-devices. We consider a smartphone and a
smartwatch for both simulations and experiments.

5.2.1 Evaluation with Simulations

Uptime of a device depends on its remaining battery per-
centage (i.e., State of Charge (SoC)) and current energy
usage. To simulate typical user behaviour, we assume the
smartphone battery would completely drain in two days
linearly and the smartwatch would last only one day. We
consider the “sensing accelerometer in FASTEST speed”
function and 60-second data synchronization frequency: the
Decision engine makes decisions to maximize system uptime.
We use measurements in Table 3 to derive energy consump-
tion for the functions. As an example, for sense only on
smartphone (Accelerometer FASTEST speed) and data syn-
chronization frequency of one minute (70 KB of data), we
can get the energy consumption per minute from Table 3 as
f =+ ¢=(77.71*60)+((0.0095*70000)+305+300)=5932m].

Broadcast
Socket E=SSSI

Content Provider 15 4F
Service Callbacks e

Time (mS)
Energy (mJ)
o

Energy (mJ)
o - M w & O O N ®

1APP 2APPs 4APPs BAPPs

(a) With one external app. (b) Broadcasting to multiple

apps requesting same data.

Fig. 7. Impact of intra-device communication modes.

https://www.gurobi.com

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION

— 100 r

X Eﬁ; saving compareg to ?AKLIB/K-\I} -----

— saving compared to —

& 80 \4 FAP saving compared to ALL — - — |
w \\ T

5 60 N ¥

=) \ A7

£ 40 N

3 %

@ 20 Nt

(%2}

3 ;;i I I —
o o0 *k

o

1 10
Cost ratio (F,/C,)

(a) The impact of cost ratio F, /C..

.20

fad _
L

o 15 =

< ="

s rqﬁﬂﬂﬁgkww@

o 10

% il

c 3 FAP saving compared to OPTIMAL -----

s 5 FAP saving compared to MANUAL ——

b / FAP saving compared to ALL —--

@w 0 B T B S s

o ITTTTTTTT

8 [T I

0 5 10 15 20 25 30 35 40 45 50
Number of Functions/Devices
(b) The impact of no. of functions, F,,/C; = 1.

Fig. 8. Efficiency, accuracy, and robustness of Fap algorithm.

Fig. 9a illustrates the battery drain profile for MANUAL
selection, i.e., sense only on the smartphone or on the smart-
watch, and when AFV is running. Due to a lower relative
impact on the smartphone, AFV selects the smartphone as
the sensing device if the smartphone has sufficient SoC.
However, if the smartphone’s SoC drops below 20 percent
(context change), the Context Monitor triggers the Decision
Engine and sensing switches to the smartwatch if the smart-
watch has sufficient SoC (Fig. 9a). To show this context
change, we consider the following initial conditions: smart-
phone-45 percent SoC, smartwatch 100 percent SoC. The
smartwatch uptime increases by approximately 2 hours
compared to sensing on the smartwatch. The gain for the
smartphone is approximately 1/2 hour compared to only
sensing on the smartphone.

Since uptime gain is dependent on the initial SoC of devi-
ces, in Fig. 9b we change the initial smartphone SoC. If the
smartphone’s remaining SoC is greater than 60 percent at
the beginning, AFV increases the system uptime between
35-40 percent compared to sensing on the smartwatch and on
both devices. Due to sufficient battery capacity on the smart-
phone, AFV selects the smartphone most of the time. As a
result, AFV does not increase the uptime compared to sensing
only on the smartphone. AFV may marginally reduce the sys-
tem uptime when the SoC of one or more devices drops below
the threshold. To minimize the app energy consumption,
while respecting user preferences, the Decision Engine selects
the only available device or the most energy efficient when
both are under the threshold, although this solution may
reduce system uptime. This can be observed when initial
smartphone SoC is approximately 35 and 55 percent.

5.2.2 Evaluation with Experiments

Next, we quantify the energy consumption of the devi-
ces with and without AFV experimentally. We installed
AFV on an Android smartphone and a smartwatch. With-
out AFV, we use counterpart apps that are installed on both
devices. We consider the “sensing accelerometer in NOR-
MAL speed” function and 60-second data synchronization

1401
—_ 100 } | Phone Only ———
X | | Watch Only -----
>, 80 I i+ AFV - Phone
I l———| Context Change H AFV - Watch —- —
© 60 [T t
Q L] - |
()] R O =~ 1
£ 40 t e
£ I - ~. |
N I e Threshold at 20%
3] | N R e
o I T~ s .
0 ! B, & S =~
8 10 12 14 16 18 20
Time [hours]
(a) Battery drain profiles
40
A
% 35 «*” #
g2 30
£ 25 f
w 4
E2 % /
§-.: 15 L AFV compared to Phone only — =~
= 10 AFV compared to Watch only ---«--
€3 WW’H‘WM 4 AFV compared to ALL —+—
Q 5 2R asun
13]
0 i ;
(,>)‘ = T %ﬁaﬂad?r

0 10 20 30 40 50 60 70 8 90 100
Starting battery level of the phone [%)]
(b) Percentage increase in system uptime.

Fig. 9. The impact of AFV on system uptime.

frequency. Most current apps select both devices to perform
a certain functionality and then exchange data [1]. There-
fore, we selected ALL function allocation strategy.

Fig. 10 considers the energy consumption of the function
as well as the overheads of AFV such as, communication,
context monitoring and running the optimization algorithm.
Fig. 10a shows the measured energy consumption for each
type of message passing in AFV (cf. Section 2.6). The ene-
rgy requirement for group formation (nitialization) is
(0.6 % (n — 1) 4+ 1.8)] that is much lower compared to the
group formation energy in Hemminski et al. [8]. Fig. 10b
shows the reduction of battery SoC in smartphone and
smartwatch. Using AFV achieves lower energy usage by
approximately 3 times for one function request, despite the
additional energy consumption of AFV (e.g., Initialization,
Context Monitoring, running the Fap algorithm). In a practical
scenario of having 10 function requests within the PAN, the
FAP algorithm consumes ~100 mW of power for less than
10 mS of time. Moreover, the battery SoC decreases much
faster as the number of functions increases, especially with-
out AFV. Thus more energy is saved with AFV when the
number of function requests increases.

5.3 Experimental Validation of AFV-Enabled PAN

We now present experimental results to show quantitative
benefits of AFV. As shown in Fig. 11, we implemented an
AFV-enabled PAN consisting of 4 devices (3 Tier 1 devices
and a Tier 2 device). The Tier 1 devices (smartphone, smart-
watch and smartglasses”) are connected to each other via
Bluetooth and each have Internet connectivity. The Tier 2
device (smartshirt®) consists with three different sensor types
and paired with the smartphone. We implemented AFV in all
three Tier 1 devices. Although the AFV architecture is not
installed in the smartshirt (as it is a Tier 2 device), it is consid-
ered as a remote sensor that is available in the paired

7. https:/ /developers.google.com/glass/
8. https:/ /www.hexoskin.com/

https://developers.google.com/glass/
https://www.hexoskin.com/

1402

Initialization e
Context-Request update ===
Phone in Data Exchange
Watch in Data Exchange

Energy (mJ)

Functioning Requesting
Device Device

(a) Energy consumption of different message passing

phases.
~ 100
2 - '
3 e P : 2
1) Anappon each device N _‘—\—___
kot le—— isrequesting —s -
1<) Accelerometer data) Trreell
g 60 A app on 6ach device e
S5 is requesting tee
Accelerometer and
S 4, Gyroscope data
2
]
@» L ’
> 20 Smartphone with:Android - -
> Smartwatch with Android N app on each device
2 Smartphone with AFV-+Android ~ - - i is requesting
k5 p! i 1 | Accelerometer, Gyroscope
o o with AFV+Android - - - - - and data
0 500 1000 1500 2000 2500 3000
Time (min)

(b) Energy consumption with and without AFV when
each device is requesting for different functionalities.

Fig. 10. Energy consumption of the system.

smartphone (Tier 1 device). The smartphone is responsible
for pulling data from its remote sensors and feeding it to the
AFV via REST APIs. We developed an AFV-enabled fitness
tracking app requiring accelerometer and heart rate informa-
tion to be uploaded to Internet servers that is similar to the
previously identified current popular health and fitness
apps. The app was installed in the smartphone, smartwatch
and smartglasses.

We investigated five scenarios, to investigate the benefit
of using AFV. These experiments evaluated three main objec-
tives described in Table 1. For the first objective of achieving
the maximum functional quality, we conducted two experi-
ments, one to achieve the best information quality, and the
other to achieve the maximum network throughput. To mini-
mize energy utilization, we examined how the usage of
AFV extends the device uptime. Finally, we examined the
case of minimizing the monetary cost of data usage.

5.3.1 Maximizing the Functional Quality

(1) Maximizing the Precision of Fitness/Health Tracking.

(a) Requesting Accelerometer Data. The AFV-enabled app
requires accelerometer data for fitness tracking. The user is
wearing smartglasses and the smartwatch, and has a smart-
phone nearby while standing and exercising. At first, the
user is doing head stretching exercises and then moves to
body stretching exercises. After a while, the user starts
walking, carrying their smartphone in their pocket. We con-
sider that the smartphone provides the best quality informa-
tion when user is walking, the smartwatch provides the best
quality information when user is doing body stretching
activities, and the smartglasses provide the best quality
information when doing head stretching exercises. This rule
is used in the Decision Engine in order to feed the app with
highest quality data.

At first, while the user is doing head stretching exercise,
as there is no walking detected by the smartphone on the
table, and no activities are detected by the smartwatch, the
smartglass performs the accelerator function and feeds

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

Smartglasses
o Google Glasses
o Android XE 18.11

Smartwatch
o LG Urbane
o Android Wear 5

hone
o Nexus 5
o Android 6.1

Smartshirt

o Hexoskin

o Paired with the
Smartphone

o Communicate
via REST APls

Fig. 11. Experimental setup.

data to the AFV-enabled app. We consider the detection of
an activity if the accelerometer (in NORMAL speed) read-
ings are above the specified threshold (we set a threshold
to discard the floating values), and also, in order to mini-
mize the erroneous activity detections, the detected activity
needs to be continued for a given period of time. This also
avoids unnecessary functionality movements between
devices for this context, AFV triggers a function placement
change only if the new activity continues for a given
period of time, in this experiment, 10 seconds. During this
time, the previously selected device continues to feed data
to the AFV-enabled app. When the user starts doing body
stretching exercises, the accelerometer sensing function is
moved to the smartwatch and feeds data to the AFV-
enabled app. When the smartphone detects that the user is
walking, the sensing function moves from the smartwatch
to the smartphone. Fig. 12a shows the accelerometer data
that is received by the AFV-enabled app installed in the
smartphone.

(b) Requesting Heart Rate Data. Next, the AFV-enabled app
requests for heart rate (HR) data. Assume that at first, the
user has the smartphone and the smartwatch. When the
user dons the smartshirt, it is paired with the smartphone.

Assume that the best heart rate measurements are given
by the smartshirt as it is specifically designed for sensing. In
the absence of the smartshirt, the data is provided by the
smartwatch. Therefore, the Decision Engine will select the
smartshirt whenever it is available. The context change of
the availability of the smartshirt via the smartphone triggers
the AFV architecture and the Decision Engine selects the
smartshirt via the smartphone to feed the AFV-enabled app.

Fig. 12b shows the heart rate data received by the AFV-
enabled smartphone app every 10 seconds. It illustrates that
the smartshirt is feeding stable and accurate HR data when
the user is doing the same activity. In this particular
case, the smartshirt’s data is available for third party app
development via the cloud. Therefore, the smartphone is
connected to the cloud and retrieves the smartshirt’s real-
time data and feeds it to AFV. However, managing resour-
ces in Tier 2 devices depends on the accessibility provided
by the device manufacturers.

(2) Maximizing the Network Throughput. In this use case,
AFV virtualizes the Internet connectivity function in order
to maximize the network throughput in a heterogeneous
environment.

Assume that an AFV-enabled app on the smartphone is
configured to upload sensor data from the smartphone to an
external server periodically (i.e., per second). We created two
WiFi networks with different throughputs to emulate the

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION 1403
- - 16
20 Data received from smartglass 90 Data received from smartwatch —— Data transfer via smartwatch
Data received from smartwatch Data received from smartshirt —»— 14 [Direct data transfer from smartphone ——
15 Data received from smartphone 80 ,
o ol . ! 7 12 i
240 Lol Cdntext Ghange i 70 W i e g Context Change }—h
< O 1 2 Nt SR !
S5 o i1 @ 60 ® g
g § E ' s Phone connected to
3 0 W :ch 50 L‘Smart-shin is availablel ﬁ 6 a network which has I
§ Dl f T higher throughput !
<5 i SR 40 e 4
j=—+{User started hand exercises H Pe———
-10 el o [Functor 30 Context Change 2
{1 [Userstaredwaking —= 1 meved e e — Aokl ppi
15 20 0
0 20 40 60 80 100 120 140 160 0 50 100 150 200 250 300 350 400 0 5 10 15 20 25 30 35
Time (s) Time (s) Time (s)

(a) Accelerometer data received by an AFV- (b) Heart rate data received by an AFV-enabled (c) Dynamically switching to the higher data

enabled app installed in smartphone.

Fig. 12. Maximizing the functional quality with AFV.

heterogenous network. At first, the smartwatch has Internet
connectivity, but not the smartphone. After a while, we enable
another higher speed network, to which the smartphone is
connected. The device’s connectivity to a new network trig-
gers a context change which invokes the Decision Engine to
select the higher throughput network to upload the file.

At first, when the smartphone does not have direct Inter-
net connectivity, the data from the smartphone is uploaded
to the Internet servers by relaying through the smartwatch.
After a while, when direct Internet connectivity for the
smartphone becomes available, the AFV-enabled app on the
smartphone automatically suspends the data transfer via
the smartwatch and starts transferring directly to the Inter-
net. The achieved throughput is measured at the access
points by using a network analyzer (Wireshark”). Fig. 12c
depicts the throughput at the access points for data uploads
before and after context change.

5.3.2 Extending the Device’s Uptime

We use the same AFV-enabled app used previously. In
addition, we developed two other apps for the smartphone
and smartwatch that have the same functionality but do not
use AFV (default Android). In both cases, the app installed
in the smartphone requests accelerometer data, and the user
preferred the app to get accelerometer data from the smart-
watch and transmitted to the smartphone once per minute.

In the case of AFV, when the SoC reaches the threshold
(i.e., 20 percent), it triggers a context change. Fig. 13a illus-
trates the devices’ power profiles during the context change.
Initially in this experiment, the smartwatch is sensing at
normal speed and sending data to the smartphone once in a
minute. When the context is changed at ¢t = 15 seconds, the
smartwatch broadcasts the context change to the Master
Device, which triggers the Decision Engine on the Master
Device to selects smartphone with a higher SoC for sensing,
and informs devices. The smartwatch then stops sensing
and the smartphone takes over the sensing function.

The high power peaks of all devices after t = 15 seconds is
due to the messages received and transmitted by each
device, which is followed by high power idle states. The high
power idle state is longer for the smartphone (until ¢t = 26
seconds) compared to the smartwatch (until ¢ = 20 seconds).
Fig. 13a shows that the delay of system adaptation to context
changes is less than one second as the smartphone starts
sensing even before ¢ = 16 seconds.

In the default case, the smartwatch keeps running
its accelerometer and transfers data to the smartphone until

9. https:/ /www.wireshark.org/

app installed in smartwatch.

rate network for data uploading.

its SoC reaches 0 percent. Fig. 13b shows results for the
increased longevity of the smartwatch battery when using
AFV. The smartwatch uptime is increased by 5 hours due to
the sensing function offloading.

5.3.3 Minimizing the Monetary Cost of Data Usage

We virtualize the Internet connectivity function in order to
minimize the monetary cost of data transfer. The monetary
cost for each data plan is pre-configured at system bootstrap
and can be changed at any time via the AFV user interface.
Assume that the AFV-enabled app needs to upload files to
the Internet. Also assume at first, only the smartphone has
Internet connectivity, but the smartphone’s data plan has
exceeded the available data cap and excess data costs
$0.10/MB. After a while, the smartwatch’s Internet connec-
tivity, which has not exceeded the data cap, becomes avail-
able. Since this data plan has not exceeded the data limit,
this plan costs $0.00/MB.

The availability of the additional network connection
triggers a context change and the decision is made to use
the low-cost network. AFV notifies the device connected to
network with lower cost to take over the connectivity func-
tion. Fig. 14 shows the data usage of the smartphone and
smartwatch before and after the context change.

6 RELATED WORK

6.1 Context Monitoring
There has been substantial work on context awareness and
sensing for mobile apps. Always-on sensing can quickly
drain battery resources [9], yet continuous context monitor-
ing is essential for proper response to context changes [4].
This suggests a distinction between always-on and continu-
ous that does not degrade app adaptivity nor battery life.
These trade-offs are explored in several research projects.
The most comprehensive sensing framework is SeeMon
[4]. Their approach leverages the relationship between sen-
sor values and higher level “context” states to minimize
the number of sensors and their associated energy costs
while continuously recognizing context changes. Another
approach to sensing is to use a low-powered sensor proces-
sor to save energy. MobileHub [9] provides a framework
that determined optimized alerts and submission of sensor
data that reduce energy without affecting app semantics.
Our context has a limited number of sensors and a small
number of devices capable of performing context recogni-
tion, therefore, we have simplified the evaluation of sensor
readings with a call-back mechanism for each activated sen-
sor to inform the smart device regarding changes to the
value of interest.

https://www.wireshark.org/

1404 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.6, JUNE 2019
700 T ~ 100 - -
Smartphone Starts Sensing\‘\ SSmanwhatch T B3 Sensing and E{fgﬁg mm ﬁﬂg:g:g -
o0 | Smargass < | Qa0 | |duno MestwARiAGed ——
500 Context Change %“ % T one wi +Andro
2 Ll] on | g 60 L
£ 400 ! 1 System Adaptation | s |
g Smartwatch is O ++—| Context Change
g 300 g } i . E 40 ! Sorsraard Threfsh%iz \?oc]
& 200 f i -4+ [g;“ ot g | Transmitting =
L] ni ! stops in watch
100 I L e E 20)
. : g :
10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8

Time (s)

(a) Energy consumption profiles for devices in the PAN.

Fig. 13. Extending the device uptime with AFV.

6.2 Single-Device Resource Utilization

Adaptive system/framework for the context changes is a
key concept in resources utilization. Adaptive systems
designs have been in existence for nearly 20 years [10]. Early
work provided context based systems development [11],
prototype implementations [12], [13], programming lan-
guage support for existing apps [14], and architectures for
system design [15], [16]. Applications on commercially
available devices have only recently been deployed, due to
the challenges of battery and device form, among other
issues [17], [18], [19]. For the purpose of resource utilization,
Martins [20] aims to tune the background apps in Android
selectively to improve the battery lifetime. They use an OS
mechanism to control the frequency of handling back-
ground tasks.

CAreDroid [21] is a framework in which to design
Android apps to select the most appropriate functions to
run for a given app on a single device depending on the
context. It takes care of context-monitoring, adaptation deci-
sions and allows the developer to focus on app logic only.
Their work provided the inspiration for our focus on dis-
tributed system apps for wearable computer network apps.
AFV differs in that it provides seamless function placement
across devices of a PAN and function sharing across apps.
Our optimization engine runs as a lightweight separate pro-
cess on Tier 1 devices and the adaptation selects which func-
tions from which devices are active at any point in time and
what communication strategy will be deployed.

Senergy [22] utilizes the sensing functionality in a way
that it reduces the energy usage. This work does not require
programmer intervention via the Latency, Accuracy Battery
(LAB) abstraction. These 3 components are the main consid-
erations in our framework as well, as they provide a mean-
ingful set of tradeoffs for the user and the developer. The
authors develop classifiers to infer context in sensing apps,

Smartphone Data Usage —e—

700 | Smartwatch Data Usage —&—
@ 600 !
= ’ Data Plan Cap ‘ Context Change ‘
& 500 !
R T
3 -
o 400 :
© smartwatch is available with }_;
B 300 - a lower monetary cost network | M

200 o

0 500 1000 1500 2000
Time (S)

Fig. 14. Dynamically switching to the less costly network for data
uploading.

Time (Hours)

(b) Battery state of charge measured in smart-
phone and smartwatch during AFV-enabled
and not enabled cases.

while we use a simpler sensing strategy, but provide adap-
tation to achieve app goals.

All of the above specified projects consider a single
device for the resource utilization. In contrast to this work,
AFV targets the utilization of resources in a network of mul-
tiple smart-wearable devices in order to achieve the user-
selected objective at runtime.

6.3 Multi-Device Resource Utilization

Mechanisms to utilize the resources from multiple devices
has been receiving increasing attention, and the adaptive
framework designs enable developers to create tasks for
multiple devices [23], [24]. There are several studies such as
ErdOS [5], CoSense [8], OSone [25] and M+ [26].

ErdOS leverages resources in nearby devices based on
user modeling and stated user preferences. It uses a light-
weight IPC and network stack to securely broadcast impor-
tant context information and app data in a user-level
communication manager. The implementation in CoSense
distributes the sensing tasks between familiar devices that
are in close proximity. The group formation is done by the
cloud backend once the devices are registered to the cloud
backend with their mac address. Once the groups are
formed, the data is transferred via local connection.

OSone distributes the functionality of the operating system
in a similar fashion to how Barrelfish [27] separates function-
ality onto different cores. The architecture consists of a kernel
node in charge of various host nodes that can be kept simpler.
M+ allows cross-device functionality sharing. It uses remote
procedure call scheme based on the binder IPC mechanism to
utilize app and system functionalities across devices.

Moreover, the work such as in Reptor [28] allows third
parties to easily distribute their modifications for a platform
without the need to update the entire platform. This provide
ease for the open innovation for the multi-device platforms
for resources utilization. In contrast to the above systems,
Rio [29] presents a system where a device’s resources are
utilized by remotely accessing them with the help of
another device in close proximity.

We implement AFV in a similar fashion with the poten-
tial to have multiple controlling nodes over time, depending
on remaining resources and app needs. AFV runs on a PAN
where the devices are already connected to each other via
Bluetooth. Therefore, dynamic group formation is not con-
sidered in AFV. Moreover, most of these systems are
designed for the optimal usage of the sensing function.
However, the AFV framework considers all the available
common functions (i.e., sensing, connectivity and comput-
ing) in the wearable personal area network. Also, we

KOLAMUNNA ET AL.: SEAMLESS RESOURCE SHARING IN WEARABLE NETWORKS BY APPLICATION FUNCTION VIRTUALIZATION

consider different optimization objectives than energy-
related objectives, such as network quality, functionality
precision/quality and also monetary costs.

We follow the philosophies initiated in the early design
work on wearables. In particular, Speakeasy [15] motivates
the need for domain independent interfaces, mobile code,
and user interpretation of semantics. Our representation of
context is similar to that provided by Speakeasy and we
retain user discernment as well. We are less ambitious in
the overall goals as we leverage existing APIs and focus on
the adaptive nature of wearable network apps. We do not
implement code migration; we provide a system-level
extension to code already available on wearable devices.
Smailagic and Sieworek [16] provide key design principles/
challenges for future wearable apps: user interface models,
input/output modalities, matched capability with require-
ments, and quick interface evaluation methodology. We
focus on the third of these challenges to meet the user’s
needs with the lowest resource utilization.

7 DISCUSSION

AFV is designed with the premise that all devices in a PAN
are always connected and managed by the same person.
Therefore, we have not considered the option of dynamic
device group formation with nearby devices owned by
other people. This is primarily to reduce the privacy and
security concerns of communicating with untrusted devices
of strangers. On the other hand, we assumed that there are
no privacy or security risk in communicating or utilizing
functions on the trusted devices on the same PAN. How-
ever, this assumption may not always be true, as the third-
parties such as trackers, intruders and manufacturers have
the access and partially control some functionalities of the
devices and its data. Therefore, we intend to mitigate the
potential threats of information leakage with the PAN by
extending AFV with a context-aware security framework
incorporating a set of pre-defined and also user defined
device access policies. These policies will then be consid-
ered during function allocation as another context informa-
tion. For example, if a device is connected to a public WiFi
access point, the device may not be used to virtualize func-
tions by the Decision Engine.

In this paper, we have only validated AFV performance
for limited functionalities (i.e., sensing and Internet connec-
tivity), although AFV is designed for efficient utilization of
many other functions such as compression, encoding and
anonymization. We have noticed the potential difference in
overheads associated with each function. Therefore, we aim
to further strengthen our function allocation algorithm con-
sidering available memory and CPU power as additional
context. In addition, for each particular use case, we consid-
ered a single objective, which are specified in Table 1.
However, a user may wish to achieve multiple objectives at
the same time. As an example, a user may wish to have the
best quality of information while achieving the minimum
possible energy consumption. This can be addressed by
formulating a multi-objective optimization problem in the
Decision Engine with different weighting factors for each of
the objective. These weighting factors are to be specified by
the user via the UI provided by AFV.

Although we developed AFV prototype as a standalone
user-level app and a library, it can also be realized by inte-
grating it into the OS as a module (requiring root access

1405

permission to the kernel). OS module implementation will
be efficient in terms of systems overheads of AFV, but it
requires significant development effort as well as reduces
the deployability of AFV. However, despite this implemen-
tation overhead, we showed that AFV outperforms the
vanilla scenario without AFV. Therefore, we aim to further
improve the user-level development to release AFV as a
software development kit (SDK) for app developers, and
also, envisage the implementation in multiple OSs.

8 CONCLUSION

The majority of devices in a personal area network that con-
sists of multiple smart wearables and hand-held devices
have a number of common capabilities and resources. How-
ever, current popular mobile and wearable apps do not uti-
lize these resources efficiently that leads to multiple of app
function executions in the same personal area network. As a
result, the users may not get the best outcome, may incur
higher networking cost and may also result in higher energy
consumption of devices.

In this paper, we proposed AFV, an architecture that
overcomes the above inefficiencies, while reducing the over-
all energy usage, without adding any latency and minimiz-
ing the communication overhead. AFV enables context-
aware app function virtualization in a personal area net-
work with a set of APIs that can be easily leveraged by app
developers during app development. Our simulation results
showed that the proposed function allocation algorithm
enables system uptime improvement of up to 35-40 percent
compared with typical configurations of current wearable/
mobile apps. Then, we showed the viability of the architec-
ture by implementing AFV in Android devices without loss
of generality. Finally, we showed the real world applicabil-
ity of AFV and user benefits via emulating multiple use
cases with real devices.

REFERENCES

[1] H. Kolamunna, Y. Hu, D. Perino, K. Thilakarathna, D. Makaroff,
and A. Seneveratne, “AFV : Enabling application function virtual-
ization and scheduling in wearable networks,” in Proc. ACM Int.
Joint Conf. Pervasive Ubiquitous Comput., Sep. 2016, pp. 981-991.

[2] R. Mijumbij, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surv. Tut., vol. 18, no. 1,
pp- 236262, Jan.-Mar. 2016.

[3] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, and
K. Seada, “Fusing mobile, sensor, and social data to fully enable
context-aware computing,” in Proc. 11th Workshop Mobile Comput.
Syst. Appl., Feb. 2010, pp. 60-65.

[4] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and
J. Song, “SeeMon: Scalable and energy-efficient context monitor-
ing framework for sensor-rich mobile environments,” in Proc. 6th
Int. Conf. Mobile Syst. Appl. Serv., Jun. 2008, pp. 267-280.

[5] N. Vallina-Rodriguez and J. Crowcroft, “ErdOS: Achieving energy
savings in mobile OS,” in Proc. 6th Int. Workshop MobiArch,
Jun. 2011, pp. 37-42.

[6] D.P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms, 1st ed. New York, NY, USA: Cambridge Univ. Press,
2011.

[7] Y. Xiao, Y. Cui, P. Savolainen, M. Siekkinen, A. Wang, L. Yang,
A. Yl-Jski, and S. Tarkoma, “Modeling energy consumption of
data transmission over Wi-Fi,” IEEE Trans. Mobile Comput.,
vol. 13, no. 8, pp. 1760-1773, Aug. 2014.

[8] S. Hemminki, K. Zhao, A. Y. Ding, M. Rannanjarvi, S. Tarkoma,
and P. Nurmi, “CoSense: A collaborative sensing platform for
mobile devices,” in Proc. 11th ACM Conf. Embedded Netw. Sensor
Syst., 2013, pp. 34-35.

1406

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. Shen, A. Balasubramanian, A. LaMarca, and D. Wetherall,
“Enhancing mobile apps to use sensor hubs without programmer
effort,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
Sep. 2015, pp. 227-238.

C. Randell, “Wearable computing: A review,” Univ. Bristol,
Bristol, U.K., Tech. Rep. CSTR-06-004, 2005.

D. Chu, A. Kansal, J. Liu, and F. Zhao, “Mobile apps: It's Time to
move up to condOS,” in Proc. 13th USENIX Conf. Hot Topics Oper-
ating Syst., May 2011, pp. 1-5.

G. Kortuem, Z. Segall, and M. Bauer, “Context-aware, adaptive
wearable computers as remote interfaces to ‘intelligent’ environ-
ments,” in Proc. 2nd IEEE Int. Symp. Wearable Comput., Oct. 1998,
pp- 58-65.

M. Conti, B. Bruno Crispo, E. Fernandes, and Y. Zhauniarovich,
“CRePE : A system for enforcing fine-grained context-related poli-
cies on android,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 5,
pp. 1426-1438, Oct. 2012.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and R. Kalaskar,
“Programming language support for adaptable wearable com-
puting,” in Proc. 6th Int. Symp. Wearable Comput., Oct. 2002,
pp. 205-212.

W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, and
S. Izadi, “Challenge: Recombinant computing and the speakeasy
approach,” in Proc. 8th Annu. Int. Conf. Mobile Comput. Netw.,
Sep. 2002, pp. 279-286.

A. Smailagic and D. Siewiorek, “Application design for wearable
and context-aware computers,” IEEE Pervasive Comput., vol. 1,
no. 4, pp. 20-29, Oct. 2002.

S. Brachmann, “Wearable gadgets: What is the secret to commer-
cial success?” 2014. [Online]. Available: http:/ /www.ipwatchdog.
com/2014/11/15/wearable-gadgets-the-secret-to-commercial-
success/id=52159/

J. Mischke, “Wearables for professional and industry applications,”
2014. [Online]. Available: https:/ /www.wearable-technologies.
com/2014/03/wearables-for-professional-and-industry-
applications/

R. Rawassizadeh, B. A. Price, and M. Petre, “Wearables: Has the
age of smartwatches finally arrived?” Commun. ACM, vol. 58,
no. 1, pp. 45-47, Dec. 2014.

M. Martins, J. Cappos, and R. Fonseca, “Selectively taming back-
ground android apps to improve battery lifetime,” in Proc. USE-
NIX Conf. USENIX Annu. Tech. Conf., 2015, pp. 563-576.

S. Elmalaki, L. Wanner, and M. Srivastava, “CAreDroid: Adapta-
tion framework for android context-aware applications,” in Proc.
21st Annu. Int. Conf. Mobile Comput. Netw., Sep. 2015, pp. 386-399.
A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley, T. Mytkowicz,
and R. Ziola, “The latency, accuracy, and battery (LAB) abstrac-
tion: Programmer productivity and energy efficiency for continu-
ous mobile context sensing,” in Proc. ACM SIGPLAN Int. Conf.
Object Oriented Program. Syst. Lang. Appl., Oct. 2013, pp. 661-676.
T. Kaler, J. P. Lynch, T. Peng, L. Ravindranath, A. Thiagarajan,
H. Balakrishnan, and S. Madden, “Code in the air: Simplifying
sensing on smartphones,” in Proc. 8th ACM Conf. Embedded Netw.
Sensor Syst., Nov. 2010, pp. 407-408.

L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden,
“Code in the air: Simplifying sensing and coordination tasks on
smartphones,” in Proc. 12th Workshop Mobile Comput. Syst. Appl.,
Feb. 2012, pp. 4:1-4:6.

B. Pasztor and P. Hui, “OSone: A distributed operating system for
energy efficient sensor network,” in Proc. 25th Int. Teletraffic Con-
gress, Sep. 2013, pp. 1-9.

S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and L. Shin, “Mobile plus:
Multi-device mobile platform for cross-device functionality
sharing,” in Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
Jun. 2017, pp. 332-344.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schiipbach, and A. Singhania, “The multi-
kernel: A new OS architecture for scalable multicore systems,”
in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Principles,
Oct. 2009, pp. 29-44.

T. Ki, A. Simeonov, B. P. Jain, C. M. Park, K. Sharma, K. Dantu,
S. Y. Ko, and L. Ziarek, “Reptor: Enabling API virtualization on
android for platform openness,” in Proc. 15th Annu. Int. Conf.
Mobile Syst. Appl. Serv., Jun. 2017, pp. 399-412.

A. A. Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio : A System
Solution for Sharing I/O between Mobile Systems,” in Proc. Annu.
Int. Conf. Mobile Syst. Appl. Serv., Jun. 2014, pp. 259-272.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.6, JUNE 2019

Harini Kolamunna received the bachelor's
degree in electrical & electronics engineering with
a first class honors from the University of Perade-
niya, and worked as a research assistant at the
National University of Singapore in 2013-2014. She
is working toward the PhD degree in the School
of Electrical Engineering & Telecommunications,
UNSW Australia, and attached to Data61-CSIRO.
Her current research interests include wearable/loT
technologies, networking, and communications.

Kanchana Thilakarathna received the PhD
degree in electrical engineering and telecommu-
nications from UNSW Australia. He is a lecturer in
distributed computing with the School of Infor-
mation Technologies, The University of Sydney.
Previously, he was a research scientist in the Net-
works Group, Cyber-Physical Systems Research
Program at Data61-CSIRO. His research interests
include developing technologies for resource allo-
cation, secure communication and authentication,
and privacy-preserving data sharing in wearable/
mobile/loT networks.

Diego Perino received the MS degree from
Politecnico di Torino and Eurecom institute, and
the PhD degree in computer science from the
Paris Diderot-Paris 7 University. He is a resear-
cher at Telefonica Research in Barcelona, Spain.
His research focuses on design and performance
evaluation of networking protocols and systems.
He has published several papers at international
conferences and in journals, and also led several
patents.

Dwight Makaroff received the PhD degree in
multimedia systems from the University of British
Columbia in 1998. He is a professor with the
Computer Science Department, University of
Saskatchewan, Canada. His current research
interests are distributed systems performance,
including network protocols, sensor networks, big
data architecture frameworks, wearable systems,
and networked games.

Aruna Seneviratne received the PhD degree in
electrical engineering from the University of Bath,
United Kingdom. He is a professor at UNSW,
Australia. He was the foundation professor of tel-
ecommunications at UNSW, where he holds the
Mahanakorn chair of Telecommunications. His
research interests are in mobile technologies,
networking and communications, and computer
system security.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://www.ipwatchdog.com/2014/11/15/wearable-gadgets-the-secret-to-commercial-success/id=52159/
http://www.ipwatchdog.com/2014/11/15/wearable-gadgets-the-secret-to-commercial-success/id=52159/
http://www.ipwatchdog.com/2014/11/15/wearable-gadgets-the-secret-to-commercial-success/id=52159/
https://www.wearable-technologies.com/2014/03/wearables-for-professional-and-industry-applications/
https://www.wearable-technologies.com/2014/03/wearables-for-professional-and-industry-applications/
https://www.wearable-technologies.com/2014/03/wearables-for-professional-and-industry-applications/

