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ABSTRACT
The world population is expected to reach an estimated 9.8 bil-
lion by 2050, necessitating substantial increases in food production.
Achieving such increases will require large-scale application of
computer informatics within the agricultural sector. In particular,
application of informatics to crop breeding has the potential to
greatly enhance our ability to develop new varieties quickly and
economically. Achieving this potential, however, will require capa-
bilities for analyzing huge volumes of data acquired from various
field-deployed image acquisition technologies. Although numerous
frameworks for big data processing have been developed, there are
relatively few published case studies that describe user experiences
with these frameworks in particular application science domains.

In this paper, we describe our efforts to apply Apache Spark
to three applications of initial interest within the Plant Pheno-
typing and Imaging Research Centre (P2IRC) at the University of
Saskatchewan. We find that default Spark parameter settings do
not work well for these applications. We carry out extensive perfor-
mance experiments to investigate the impact of alternative Spark
parameter settings, both for applications run individually and in
scenarios with multiple concurrently executing applications. We
find that optimizing Spark parameter settings is challenging, but
can yield substantial performance improvements, particularly with
concurrent applications, provided that the dataset characteristics
are considered. This is a first step towards insights regarding Spark
parameter tuning on these classes of applications that may be more
generally applicable to broader ranges of applications.

CCS CONCEPTS
• Information systems→ Information systems applications;
Computing platforms;
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1 INTRODUCTION
The Plant Phenotyping and Imaging Research Centre (P2IRC) was
founded in 2015 with $37.2 million awarded to the University of
Saskatchewan by the Canada First Research Excellence Fund. P2IRC
researchers are exploring various analysis techniques to elicit in-
sight into the way plants grow, and developing prediction and
monitoring applications to help breeders select traits for a safer
food supply for the world. Tolerance of extreme environmental
conditions, pest resistance, and increased yield/nutrition are some
of the characteristics that the next generation of crops will require.

A major focus of P2IRC concerns technologies for plant image ac-
quisition and analysis. Collection of basic image data from field test
plots began in the summer of 2016 using fixed-position time-lapse
cameras as well as drones equipped with high-fidelity multispectral
cameras. Although initial data sets are relatively small, as more
advanced imaging technologies are deployed the quantity of im-
age data is expected to greatly increase, necessitating the use of
distributed data storage and analysis techniques.

TheMapReduce model [3] provides a basis for several distributed
processing systems. Apache Hadoop1 was developed as an open
source software framework for distributed storage and processing
using MapReduce, and has been widely used [14]. Apache Spark
[21] was developed in recognition of MapReduce model limitations.
Spark extends MapReduce using a data-sharing abstraction called
“Resilient Distributed Datasets” (RDDs), through which a variety
of types of workloads can be efficiently supported. The potential
benefits of Spark and the convenience of its use, for example its
Pyspark2 Python interface, made Spark a possible framework for
use within P2IRC.
1http://hadoop.apache.org (Accessed: Jul 12, 2018)
2http://spark.apache.org/docs/latest/api/python/ (Accessed: Jul 12, 2018)
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Performance evaluation of distributed processing frameworks
is complicated by the substantial number of tuneable parameters
such frameworks typically offer. Our evaluation of Spark therefore
entailed use of extensive performance experiments to determine
the impact of alternative Spark parameter settings. As our initial
datasets were relatively small, we were able to perform these ex-
periments on two small clusters, as well as run experiments on
a single well equipped server machine for comparison purposes.
We evaluated Spark with three applications of initial interest in
P2IRC: flowerCounter, imageRegistration, and imageClustering. Note
that these applications were not selected owing to any particular
inherent affinity to the Spark processing model; in particular, only
one of the applications (imageClustering) produces intermediate
data output that can be persisted in memory using RDDs.

Of interest are both application performance when run in iso-
lation, and when multiple applications are run concurrently. In
the latter case, to share cluster resources efficiently, the multiple
applications submitted to the cluster must be appropriately sched-
uled and resourced by a cluster manager. Options for the cluster
manager in Spark include a) Standalone which comes as part of the
Spark distribution, b) Apache Mesos [7], and c) Hadoop YARN [17].
All three of these managers were evaluated in our experiments.

The main contributions of this paper are the following:

(1) We provide a case study investigating the use of Spark in
the plant phenotyping/imaging application domain.

(2) We identify the performance impact of the various Spark re-
source allocation parameters on three domain specific image
processing applications.

(3) We perform an in-depth analysis of the performance impli-
cation of the two Spark resource allocation modes (static and
dynamic) and the three Spark supported cluster managers,
on concurrent multiple instances of the applications.

(4) We quantify the effect of key Spark configuration parameters
on cluster resource utilization and makespan.

The rest of this paper is organized as follows. Section 2 provides
an overview of the relatedwork in this area, while Section 3 expands
on our motivations. Our experimental design is described in Section
4. We discuss the results and implications of our experiments in
Section 5. Finally, Section 6 summarizes our contributions and
outlines some areas for future work.

2 BACKGROUND AND RELATED WORK
This section describes the components of Spark applications and
the related research work that evaluates the performance of Spark
in various applicable deployments. For the purposes of this paper,
we restrict ourselves to research regarding resource allocation and
cluster management.

Big Data Frameworks such as Spark run tasks of jobs/applications
in parallel on cluster compute nodes. A Spark application consists
of five major components, briefly discussed as follows:

• Driver Program - an application written using any of the
supported Spark APIs - Scala, Python, Java or R.

• Cluster Manager - the management software Spark uses to
acquire worker resources for executing the driver program.

• Worker - provides compute resources such as the CPU, mem-
ory and storage. Each worker manages at least one Executor-
Backend process to launch and manage executor instances.

• Executor - a Java Virtual Machine (JVM) process created by
Spark on each worker node for an application. Each executor
maintains a thread pool for tasks.

• Task - This is the smallest unit of work sent by the TaskSched-
uler to an executor. Tasks operate on RDDs and perform
transformation/data transfer operations.

Tasks may be part of a single application run exclusively on
a cluster, or there may be many simultaneous application shared
between multiple users/organizations. These factors require mech-
anisms and policies for allocating cluster resources and scheduling
tasks/jobs/applications on the available compute nodes.

The default Spark Standalone cluster manager schedules applica-
tions in FIFO order, and each application will try to use all available
cluster resource by default. Subsequent applications submitted will
be queued and must wait for the first application to run to comple-
tion. Application developers may set spark.cores.max to limit the
number of cores an application requests and thus permit multiple
concurrent users or use dynamic allocation as explained later.

Apache Mesos [7] is a kernel for dynamically sharing cluster
resources among multiple frameworks. Mesos abstracts cluster re-
sources from multiple nodes in a cluster, including CPU, memory,
and disk and allows them to be used between multiple frameworks
as if they belonged to a single, large server. Mesos allows orga-
nizations to define their own resource allocation policies using a
pluggable allocation module. By default, Mesos uses a fair-sharing
resource allocation algorithm called Dominant Resource Fairness
(DRF) [6] to allocate resources to frameworks.

Hadoop YARN [17] allows multiple data processing engines with
diverse programming models to run alongside Hadoop MapReduce
on the same cluster and access centralized datasets stored on the
Hadoop Distributed FileSystem (HDFS) [15]. YARN permits deploy-
ment of different schedulers and resource allocation policies.

There are two modes of resource allocation. By default, Spark
uses Static Resource Allocation, in which applications hold on to
resources until completion. Dynamic Resource Allocation adjusts
resource allocation at runtime, based on the workload require-
ments/available resources. If an executor is idle for more than a
threshold of time (60 seconds by default), it is reallocated to a dif-
ferent application. This is useful in a multi-tenant shared cluster
where multiple applications need to share cluster resources.

Most existing MapReduce schedulers allocate a fixed set of re-
sources (e.g. CPU and memory) to jobs at the task-level, thus as-
suming the run-time resource consumption of tasks are stable over
its lifetime. Zhang et al. [22] argue that this does not provide opti-
mal performance since different tasks can have varying resource
requirements over time. The authors propose a fine-grained phase-
level resource-aware scheduler called PRISM which divides tasks
(e.g. Map and Reduce tasks) into groups of phases where each phase
has a similar and constant resource usage. PRISM improves perfor-
mance and resource utilization by allocating resources to phases
within an application according to their resource requirements.

The effect of data partition size and executor core scaling to
application completion time in data analytics frameworks has been
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previously investigated [16, 23]. However, the characteristics of
the applications considered in those works are different from the
applications studied here. The applications used in those studies
are generic benchmarks. The applications used in this study are
real-world applications that have varying uses of Spark primitives
and RDDs. This makes our performance study of particular interest,
compared to previous work.

The impact of Spark’s use of memory, caching, serialization, local
file systems and SSDs is compared to SciDB by Zhang et al. [23] for
in-memory scientific data analysis. Generational garbage collection,
multi-threading and executor scaling influence on TPC-H queries
using Spark have also been studied for their performance effects [2].

Straggler tasks in heterogeneous environments have also been
studied and an improved version of Spark’s speculative execution
algorithm has been proposed [20], as existing speculative execu-
tion was shown to be ineffective since straggler tasks due to slow
nodes are not accurately identified. HAT [1] is an optimized MapRe-
duce Scheduler that mitigates the impact of slow tasks in hetero-
geneous environments using historical information to detect slow
tasks/nodes and then avoids these slow nodes for backup tasks.

Veiga et al. [18] compared the performance of Hadoop, Spark
and Flink3 using benchmarks including PageRank [5] and K-Means
clustering and revealed that Spark outperformed Hadoop and Flink
with respect to scalability across all the benchmarks considered,
especially for K-Means. The HDFS partition size most suited for
Spark workloads was 64 MB. The authors found that one big execu-
tor with 8 cores (the machine maximum) was the best configuration
for Spark workloads except for PageRank.

The finding that one big executor per node is the optimal con-
figuration for Spark agrees with Li et al. [8]. However, Chiba et al.
[2] suggests that two or four executors per node achieves better
performance for their test workloads.

The influence of configuration settings on application perfor-
mance was studied by Nguyen et al. [11] with different applica-
tion workloads. The authors developed a framework capable of
identifying key configuration parameters that affect performance.
Two Spark parameters investigated pertinent to our study are
spark.executor.cores and spark.speculation. For all workloads and
executor sizes considered, task durations were greatly improved
but speculative execution either negatively impacted task execution
or had no effect at all.

Ousterhout et al. [13] investigated the presumed major bottle-
necks in data analytics frameworks: network, the disk and strag-
glers. They developed a Blocked Time Analysis methodology that
measures how long jobs spent blocked on cluster resources, and ap-
plied this methodology for two benchmarks and industry workloads
running on Spark. The authors found that that network improve-
ments and disk I/O did not impact performance to a noticeable
degree, as CPU was typically the bottleneck. However, results for
other environments and workloads may differ.

Different schedulers and cluster managers have been proposed,
but are not widely deployed. Cluster managers such as Borg [19]
effectively run applications across thousands of machines by group-
ing jobs into categories based on priority. Quasar [4] designs re-
source efficient and QoS-aware cluster management which aims to

3flink.apache.org. Last viewed Aug. 21, 2018

improve cluster resource utilization by eliminating resource reser-
vation. Our workload applications are long running and batch; they
do not require strict deadlines, therefore, do not reserve resources.

More study is required for a comprehensive understanding of the
influence of configuration parameters on Spark workloads. Con-
flicting results are reported that are insufficient to be generally
applicable. Previous work has helped identify influential configu-
ration parameters. Prior performance studies of Spark are crucial
as they provided useful insights about the performance of analyt-
ics applications. Our aim is to see whether the widely-supported
schedulers and resource managers were vulnerable to previously
identified problems with our workload before choosing more ex-
perimental components with which to experiment.

3 CONTEXT & MOTIVATION
The P2IRC project has collected still-camera images from test plots
in 2016 and 2017. In 2016, up to 10 cameras in separate plots were
used to take an image every minute. This generated about 600 GB
of data. In 2017, 48 cameras were deployed and images were taken
every 5 minutes, but the images were of higher resolution, and 2
TB of data was generated. We have approximately 1 million drone
images collected from the 2016 and 2017 growing season for a total
of 8 TB of data. This data was collected from 2 small test farms. This
level of data storage can be contained in a single server computer,
but the deployments increase each year, and the corresponding
storage/compute capabilities will not be able to keep pace. Individ-
ual applications may take between a day’s worth of images from
a single camera data from multiple seasons and multiple cameras
for analysis, requiring that all the data be available simultaneously
from an application’s point of view. This suggests a distributed
filesystem approach.

The applications used in our study are selected not because of
their inherent affinity to the Spark processing model. Spark favours
applications that produce intermediate data output which can be
persisted in memory for subsequent processing in the pipeline (only
imageClustering among our benchmarks).

Furthermore, our chosen applications have differing resource re-
quirements and operational phases over their lifetimes. We wished
to see if particular types of applications can more efficiently share
resources when scheduled simultaneously, or if common optimiza-
tions for the influential configuration parameter is reasonable with
this set of applications. If the required parameter settings are sub-
stantially different, then cluster managers may need to be used to
treat similar classes of applications as multiple instances of Spark
frameworks that share the same hardware infrastructure.

We intend to determine if the processing needs of P2IRC could be
met by Spark cohesively by utilizing HDFS storage and moderate-
sized clusters for a subset of the data already collected. If so, this
would enable a variety of subsequent applications, potentially specif-
ically suited to the advantages of Spark, Flink or other frameworks
to be developed/hosted in this infrastructure. This study provides
a first step towards this understanding of the nature of resource
utilization/configuration and a methodology for obtaining detailed
performance measurements. With the insight gained, we hope to
determine favourable deployment scenarios and configurations,
and if parameter settings generalizations are possible.
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4 EXPERIMENTAL DESIGN
4.1 Datasets
The datasets are still-camera JPEG images and drone PNG images
from the summer of 2016. Drone images were processed by im-
ageRegistration while imageClustering and flowerCounter used still
camera images.

Drone images. The camera captures images in five bands: Blue,
Green, Red, Red Edge andNear-Infrared. Three drone images datasets
were used. The first 200 image sets from each dataset were used by
imageRegistration. Each dataset was 1.7 GB.

Still images for single application experiments.We selected
an entire collection period, which could be up to 15 days of the still-
camera images from 6 cameras for each dataset. The July dataset is
about 35 GB and contains images collected from July 1-15, 2016. We
used images from August 26-31 (about 20 GB), and images collected
from September 9-12 (about 6 GB).

Still images formultiple application experiments. Forflow-
erCounter, three single-day datasets are used. The first 2 datasets
have 1020 images each while the third has 719 images, because the
camera was not set up at the beginning of the day. The datasets are
314 MB, 354, and 422 MB in size. For imageClustering, each dataset
contained between 3 and 4 day’s worth of images, for dataset sizes
of 1.3 GB, 1.4 GB, and 0.85 GB, respectively.

Individual image files are relatively small (500 KB) compared to
the default HDFS block size of 128 MB. For experimental purposes,
this had little effect on performance, as the Spark repartition opera-
tion and spark.files.maxPartitionBytes parameter were used to pack
images into a single RDD partition.

As well, none of the datasets can be truly considered Big Data.
Each dataset could easily be stored on a single disk and processed
for a single application execution on even these small datasets
ranges between 30 minutes to 2 hours on one of the clusters using
default settings.

4.2 Benchmark Applications
The sequential applications were written in Python, using OpenCV
and OpenCV-contrib for various image processing algorithms. They
all use numpy arrays to store the component values of each channel
contributing to the image (Red, Green, Blue, Infrared and Near
Infrared), as appropriate. Standard image processing techniques are
employed, such as Scale Invariant Feature Transform (SIFT) and K-
Means clustering, though not necessarily the same implementations
of these functions. These applications are relatively representative
in that they cover a diverse set of Spark transformations and actions
including map, filter, aggregate, coalesce, sortBy and reduceByKey.
Table 1 summarizes the main features of the applications. The Spark
transformations have narrow dependencies (e.g. map, filter) where
each parent RDD is needed by at most one child RDD as well as
wide dependencies (e.g. reduceByKey) where the parent RDD is
needed by multiple child RDDs.

imageRegistration. To register multiple images on the same
coordinate system, one channel is selected as the reference image
and the others are the target images. The registration involves
spatially registering the target image(s) to align with the reference
image. The sequential version reads the input images and registers
multiple channels of images by using OpenCV’s implementation of

the SIFT algorithm [9] to extract image features. These features are
passed to a feature-matching function which takes the descriptor of
one feature in the reference image andmatches it with all features in
the target images using a distance metric. For each target image, the
feature with the closest distance is returned. This embarrassingly
parallel application aligns a group of 5 input images together on
a single coordinate system. The outputs are a set of 5 registered
images, a coloured RGB image, a cropped version of the RGB, and
an NDVI (Normalized Difference Vegetation Index) image.

flowerCounter. The input images are first passed to a K-Means
clustering stage. This stage groups all the input images into clus-
ters, based on the percentage of yellow pixels. The selected images
from the appropriate cluster are sorted based on the percentage of
yellow pixels and passed to a pipeline of various image process-
ing techniques to estimate the number of flowers. The processing
pipeline includes converting the image colourspace, computing
sigmoid mapping, and finally detecting blobs. Each blob is consid-
ered a flower. Final desired output is a text file containing image
names and estimated number of flowers per image. The stages in
the Flower Counter are of two types: 1) Stages that process a single
image independent of other images such as the final flower count-
ing stage, and 2) Stages that require information from all other
input images (e.g. K-Means clustering).

imageClustering. This application clusters images based on
features using the K-Means clustering algorithm. The input images
are converted to Spark RDDs of numpy arrays and passed to a map
function that uses SIFT to extract features and compute descrip-
tors from the input images sequentially within each partition. The
extracted feature descriptors are filtered and intermediate output
RDDs are collected, and the resulting data structure is passed to
the K-Means clustering function for model building, training and
clustering. The clustering results are reduced into one RDD parti-
tion and written to HDFS as a text file containing the names of the
images and the associated cluster. This application is CPU-bound
during K-means iteration and I/O-bound during clustering.

4.3 Experimental Environment
All of the computers in our experiments ran Ubuntu 16.04 LTS. The
baseline system was a single machine configured with 2 Intel(R)
Xeon(R) E5-2690 v4 CPUs (14 cores @ 2.60GHz, hyper-threaded
with 56 virtual cores), 620 GB RAM and 43 TB of disk space. The
clusters were configured as follows:

• Cluster 1: 12 machines, configured as 11 workers and 1 mas-
ter, running KVM Virtual Machines, connected via a private
1GB Ethernet network. The master and 9 of the workers
have Intel(R) Core(TM) i7-2600 CPUs (4 cores @ 3.40GHz,
hyper-threaded with 8 virtual cores), and 16 GB of RAM each,
while 2 of the workers have Intel(R) Xeon(R) E5-2403 CPUs
(4 cores @ 1.80GHz hyper-threaded with 8 virtual cores),
and 40 GB of RAM. 1 GB of RAM and 1 virtual core were
reserved for the OS.

• Cluster 2: 3 machines, 2 workers and 1 master, running KVM
Virtual Machines as well, connected via the campus network
with 1 GB ethernet interfaces. The master has 2 Intel(R)
Xeon(R) E5-2680 v4 CPUs (2x14 cores @ 2.40GHz, hyper-
threaded for 56 virtual cores) and 256 GB of RAM, while one
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Table 1: Application Characteristics

Features Image Registration Flower Counter Image Clustering
Sequential Distributed Sequential Distributed Sequential Distributed

Lines of code 436 355 789 766 156 124
OpenCV functions 5 9 14 14 2 2
Spark functions - 8 - 31 - 15

Spark jobs - 2 - 31 - 8
Spark stages - 3 - 54 - 14

Max CPU utilization (%) 99 99 24 26 11 57
Max memory utilization (%) 0.5 54 0.9 65 9 66
Machine Learning Details - - scikit k-means MLlib k-means scikit k-means MLlib k-means
Main Image Processing Features extraction/matching, Clustering, color space conversion, Features extraction,

perspective transformations sigmoid mapping, blob detection image clustering
Spark transformations/actions map, reduceByKey, foreach aggregate, map, filter, sortBy, coalesce map, filter, flatMap, coalesce

of the workers has 2 Intel(R) Xeon(R) E5-2690 v3 CPUs (12
cores @ 2.60GHz, hyper-threaded for 48 virtual cores) with
384 GB of RAM and the other has 2 Intel(R) Xeon(R) E5-2680
v4 CPUs (2x14 cores @ 2.40GHz, hyper-threaded for 56 vir-
tual cores) with 384 GB of RAM. To keep the configurations
comparable, a small amount of RAM was reserved for the
host OS and 48 cores were given to each VM, since that is
the number of cores available on the smallest host machine
(no core reserved for host OS).

We used Hadoop/YARN 2.7.2 and Spark 2.1.0, and Mesos 1.2.0,
with Python 2.7.12. JRE 1.8 was the Java version deployed.

4.4 Measurement Methodology
The main metric that we are concerned with is makespan, the time
between the submission of the first of a set of applications and
the completion of the last application. We also measure a num-
ber of other quantities that help us understand how makespan is
influenced. These include average CPU and memory utilization,
job waiting and execution times, stage level task execution times,
number of tasks per node, network/disk throughput, and HDFS I/O.

The Spark Web UI provides various information about applica-
tions at run-time. This data is logged to disk for later analysis. The
single application experiments used an instrumented version of
Spark called SparkOscope4 to collect CPU, memory, network and
disk utilization information in the cluster, as well as some publicly
available scripts for visualizing and analyzing Spark logs [12, 23].
The multiple application experiments recorded the beginning and
the end time of each experimental run. The external monitoring
system Ganglia [10] (version 3.6.0) was used to get cluster CPU and
memory utilization of running applications.

4.5 Parameters & Experimental Settings
The results section describes the performance of a single run per
configuration unless specified otherwise. The time required to com-
plete a single run was on the order of hours, thus many replications
are impractical. For validation purposes, some runs were done mul-
tiple times and the variations between runs was minimal, except
for the first run after the cluster was rebooted. The quantitative
4https://github.com/ibm-research-ireland (Accessed: 23 Apr, 2018)

effect of this variation is described at the beginning of Section 5
and therefore that first run is ignored.

We evaluated the effect of a number of Spark configuration pa-
rameters, including executor size (CPU cores and memory), RDD
partition size, dynamic resource allocation, and speculative execu-
tion. All other configuration parameters were left at default settings.

Single application experiments. The sequential version of flow-
erCounter on the baseline system (56 total cores) was compared
to the corresponding parallel versions. The closest equivalent of
compute cores on Cluster 1 is 9 worker nodes with 6 cores per node,
(54 total cores) and on Cluster 2 is 32 cores per node (64 total cores)

As the right partition size is important to avoid data skew and re-
duce computation time, flowerCounter experiments were performed
with Executor Sizes between 2 MB and 128 MB in powers of 2. A set
of experiments were conducted with all the datasets by increasing
the number of cores allocated to each Spark executor, varying the
number of executors, keeping the heap size constant based on the
total memory allocated to the worker machine. This evaluates the
performance impact of the number and size of Spark executors.

Next, Spark’s caching mechanism was investigated. The exper-
iments were performed with both flowerCounter and imageClus-
tering on Cluster 2. The execution time with 10 GB memory and
16 cores per executor was the baseline. Different storage levels in
Spark were studied for both applications on Cluster 1 (9 worker
nodes) using the July dataset for flowerCounter, and the September
dataset for imageClustering: memory only, disk only and both.

The scale-out design was evaluated by increasing the compute
nodes from 1 to 11 (with odd number increments) on Cluster 1
for flowerCounter using the July dataset with 128 MB partitions.
Single node performance was used as the basis for calculating
speedup. Speculative execution experiments were performed with
all the nodes in Cluster 1. The experiments used all the datasets for
flowerCounter, but imageClustering used only the July dataset.

Multiple application experiments. We then executed the distributed
versions of the benchmark applications on the three cluster man-
agers on Cluster 1 with 11 workers/77 cores. All the experiments
only examined one factor at a time (except for parameters that con-
trol Spark executor size), instead of multiple factors simultaneously.
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This is reasonable, since it was prohibitively time consuming to
test the combination of all factors.

Each experimental run involves submitting 3 instances of each
of the 3 applications, with five minutes delay between submissions.
The 9 application instances were randomly ordered, with the same
seed to ensure the same submission sequence. The various executor
sizes were as follows: a) 1 core/2 GB RAM, b) 3 core/6 GB RAM,
and c) 6 core/12 GB RAM. Each of the executor configurations was
accompanied by 3 RDD partition sizes (128MB, 64MB and 32MB): a
total of 9 configurations. In addition, each configuration was tested
with and without dynamic resource allocation enabled on the 3
Spark-supported cluster managers.

Replication is not performed for every configuration, since the
makespan on a few initial replications showed consistent results. A
small number of replications on Cluster 1 running without KVM
were run with twice the amount of data and/or twice the number
of instances to asses at what point variation became a factor.

5 RESULTS
It should be noted that the sequential version in python is restricted
to running as a single thread per Linux process, since only one
thread can be active at any point in time, due to the python Global
Interpreter Lock (GIL).5 The parallel version uses at least as many
cores as available executors. When OpenCV functions are called,
the GIL is released, and C/C++ modules can run in multiple threads.

The applications have differing amounts of parallel code in their
execution path. While running the sequential applications on the
single server, we sampled the CPU utilization. For flowerCounter,
occasional usage of 8-10 cores simultaneously was observed. On the
other hand, a large portion of the execution time for imageClustering
showed over 50 cores being used at 100%. Evaluating a parallel
version on a single machine Spark instantiation could provide an
even more interesting performance comparison.

5.1 Validation of Makespan Variation
To investigate performance differences between a freshly started
cluster and a cluster that has been running for some time, a set
of experiments were done using the initial parameter setup for
multiple applications. Five identical runs were done on each cluster
manager. Figure 1 shows the makespan results of multiple runs of
the same experimental setup on the three cluster managers. The first
run deviated from the four subsequent runs in all configurations.

We calculate the mean and standard deviation of the subsequent
runs, and used t-test with 3 degrees of freedom and α = 0.05 to
determine if the first run could belong to the remainder of the
distribution. The t-scores of the first run on Standalone, YARN and
Mesos are 29.69, 30.17, and 23.68 respectively. The corresponding t-
value is 2.353, thus the first experimental run on all the three cluster
managers is greater than the t-value. The standard deviation of
remaining replications is approximately 1% of themean. Subsequent
analysis revealed that the qemu process did not have sufficient
physical memory on startup which resulted in substantial paging
activity during the first run, noticeably slowing its execution.

Furthermore, runs with double the dataset size had twice the
number of executors. For imageClustering, the OpenCV functions
5https://wiki.python.org/moin/GlobalInterpreterLock (Accessed August 24, 2018)

Standalone YARN Mesos
Cluster Manager

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Ma
ke

sp
an

 (s
)

8907

10924

4894

7938

9443

4758

7873

9410

4753

7795

9362

4735

7787

9208

4733

First Run
Second Run
Third Run
Fourth Run
Fifth Run

Figure 1: Multiple run variation validation: static/1core-2
GB/32 MB/no spec

with many concurrent threads led to a slowdown of tasks of the
other applications on the same host, and substantial increase in
task execution time variation. Variation in overall makespan was
affected somewhat, but still within 10% of the mean, as the same
amount of work must be completed overall. More work is needed
to explore the stability of the results.

5.2 Individual Application Performance
Comparison with Sequential Application. Sequential experiments

were conducted for only the flowerCounter application using all
the datasets and compared to the parallel Spark execution on both
clusters. The results are shown in Table 2. The speedup obtained
on Cluster 1 is approximately 3 times the sequential execution for
all datasets with a similar number of compute cores devoted to the
work. Similarly, the speedup on Cluster 2 is approximately 4 times
the sequential setup for all the datasets.

Table 2: Runtime Comparison: Sequential & Spark flower-
Counter

Month Server
(56 cores)
(minutes)

9-Node (54
cores) (min-
utes)

9-Node
Speedup

2-Node (64
cores) (min-
utes)

2-Node
Speedup

Sep 35.74 11.29 3.2 8.21 4.4
Aug 103.43 28.53 3.6 22.23 4.7
July 231.56 68.45 3.4 54.83 4.2

Effect of Partition Size. The influence of partition size on the total
processing time of the flowerCounter application is shown in Table
3. These experiments were conducted on Cluster 1 with 9 workers;
each executor had 6 cores and 12 GB of RAM. A 64 MB partition size
reduces processing time from the 128 MB default. Processing time
remained almost the same for further reduction in the partition size
until the smallest partition size of 2 MB.

Table 3: Partition Size Comparison:flowerCounter

128 MB 64 MB 32 MB 16 MB 8 MB 4 MB 2 MB
4448 3862 3980 3932 4025 4086 4546
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The stages whose execution times (with respect to the maximum
task time) are notably affected by the partition size are the com-
puteHistogram and computeHistogramShifts. The execution times of
the other two stages (computeFlowerPixelPercentage and compute-
FlowerCount) are reduced as well but with smaller differences.

The computeFlowerCount stage accounted for about 76% and
68% of total completion time, in both instances, respectively. The
difference in the execution times for the computeFlowerCount stage
is very similar, since slow 128 MB partition tasks completed in
almost the same time as the larger number of 64 MB partition tasks.

Further investigation into the completion time of each task
showed that slow tasks in other stages are the cause of the longer
completion time for the 128 MB partition; the time for 128 MB is
almost twice of 64 MB. It is obvious that with twice as much data,
each task should take on average twice as long, but there are half
as many tasks, so the elapsed time for hundreds of tasks should
be the same. At the stage completion time of about 300 seconds in
the computeHistogram stage for the 64 MB (with 556 total tasks)
configuration, there were still about 39 tasks yet to be completed in
the 128 MB (with 279 tasks in total) configuration. These tasks took
a disproportionate amount of time to complete, even compared
with the previous tasks in that phase.

To further investigate the influence of the partition size on clus-
ter resources, metrics were collected with respect to CPU utilization,
memory usage, network and disk throughput. Average values sam-
pled at every 30 seconds were recorded. For CPU usage, there are
downward spikes at the transition points between stages. The 128
MB scenario had much longer durations of these spikes, because a
few executors were finishing the slow tasks and others were idle,
because they could not start the next stage. RAM usage is higher
in the first computeHistogram stage for 128 MB partitions in com-
parison to 64 MB partitions. In general, the high CPU and RAM
usage by the application in both run scenarios across all the stages
of execution in the pipeline is due to large array transformations,
involving matrix computation and copying deep array dictionar-
ies. The high CPU volatility especially in the 128 MB run scenario
requires further study. Disk and network activity were reasonably
similar in each scenario and did not provide further insight.

JVM Executor Scaling. The impact of the number of JVM execu-
tors (executor size) on Cluster 1 is investigated next. The number
of executors is 18 (3 cores/6 GB RAM each) and 27 (2 cores/4 GB
RAM each) for the two configurations (64 MB partition only). The
summarized execution time results are shown in Table 4. 27 JVM
executors performed better than 18 executors. The differences in
execution times are larger in the computeHistogramShifts and com-
puteFlowerPixelPercentage stages than in the other stages.

For both stages, tasks took more time to complete in the 18 JVM
executors instances than in the corresponding 27 JVM executors,
especially in the computeHistogramShifts stage. In the computeHis-
togramShifts stage, for example, the total task run time in the 18
JVM executors scenario is about twice that of the 27 JVM executors,
though the median times were comparable. Some long-running
tasks seem to dominate the stage completion time.

For imageClustering, the effect of the JVM executor scaling was
studied for five iteration steps. Two different experimental scenarios
were considered on Cluster 1 with 128 MB partition size (September

Table 4: flowerCounter: Task Execution times vs. Executor
Size (August Dataset - 19.3 GB)

18 Executor JVMs (64 MB)
Function Name Min Median Max Elapsed
computeHistogram 7 s 18 s 35 s 132 s
computeHistogramShift 3 7 36 114
computeFlowerPixelPercentage 2 13 72 138
computeFlowerCount 96 228 408 1440

Total Elapsed Time 1824
27 Executor JVMs (64 MB)

Function Name Min Median Max Elapsed
computeHistogram 8 17 31 108
computeHistogramShift 3 7 14 54
computeFlowerPixelPercentage 3 10 21 90
computeFlowerCount 108 222 420 1440

Total Elapsed Time 1692

dataset only): 9 executors (6 cores/12 GB) and 18 executors (3 cores/6
GB). There are 46 tasks in each stage in the pipeline.

For the five iteration steps considered, there are eight key stages
involved in the application processing whose execution times are
dominant. The summarized execution times for the 9 and 18 JVM
executors scenarios are shown in Tables 5 and 6. The median exe-
cution time for the collectAsMap stages is reduced by about 30% for
the 18 executor JVMs than for the 9 executor JVMs. Also, the col-
lectAsMap stages are more stable in the 18-executor JVM runs. The
9 JVM executors scenario is dominated by slower tasks as reflected
in the large variation of the time summary statistics especially in
the collectAsMap stages and the second takeSample stage.

Table 5: Execution Time Summary of 9 JVM Executors for
imageClustering (128 MB)

Stages Min Median Max Elapsed
takeSample 498 660 1200 1200
takeSample 0.8 96 162 162
collectAsMap 9 102 192 198
collectAsMap 3 108 174 180
collectAsMap 5 114 174 174
collectAsMap 4 102 168 174
collectAsMap 3 90 210 210
saveAsTextFile 660 780 960 1020

Total Elapsed Time 3318

To further investigate the influence of the number of cores on
Cluster 2, more experiments were conducted using all datasets and
both applications. The memory size of each executor was kept at 7
GB while spark.executor.cores was varied between 1, 4, 8, 12, 16 &
47 cores. For both applications, the single large executor resulted in
the slowest processing time. This finding agrees with Chiba et al. [2]
but contradicts others [8, 18]. The application type has an effect on
the best configuration, so this confirms that specific measurements
in each environment are necessary [11].

Also, a large number of executor JVMs (94 executors each with
one core) degrades performance for both applications; tasks are

24



CASCON’18, October 2018, Markham, Ontario, CANADA

Table 6: Execution Time Summary of 18 JVM Executors for
imageClustering (128 MB)

Stages Min Median Max Elapsed
takeSample 504 720 780 780
takeSample 47 84 138 138
collectAsMap 48 84 150 150
collectAsMap 52 72 102 102
collectAsMap 50 72 102 102
collectAsMap 50 78 102 102
collectAsMap 50 78 96 102
saveAsTextFile 720 840 1020 1080

Total Elapsed Time 2556

more CPU and/or memory bound (especially with the July dataset).
This is due to excessive communication overhead caused by the
large number of executors [2].

Impact of Caching. Using different configuration memory set-
tings and spark.executor.cores fixed at 16 (2 per node on Cluster 1),
experiments were conducted with the July dataset for both applica-
tions, but results are shown only for imageClustering. Increasing the
amount of memory allocated for each executor does not speedup ap-
plication performance as shown in Figure 2. Some previous studies
have shown that allocating more memory for caching RDDs does
not always improve performance as workloads sometimes require
dynamically distinguishing job stages that are cache friendly and
tune accordingly [8].
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July, 34.8GB Dataset

Figure 2: Influence of spark.executor.memory -
imageClustering

The effect of caching the input RDD (input data) using the differ-
ent storage levels on the applications execution speed was studied.
For flowerCounter, the input RDD was cached using storage levels
including MEMORY_ONLY, DISK_ONLY, MEMORY_AND_DISK,
MEMORY_ONLY_SER and MEMORY_AND_DISK_SER while im-
ageClustering used DISK_ONLY, MEMORY_AND_DISK and MEM-
ORY_AND_DISK_SER storage levels to cache the input RDD. MEM-
ORY_ONLY failed due to an out-of-memory exception.

Data locality policies attempt to assign tasks to nodes near the
source data files and instantiate RDDs on the node performing the
next task in the pipeline. The locality level summary for both appli-
cations is shown in Tables 7 and 8 respectively. For flowerCounter, all

the storage levels considered showed very similar runTime except
the MEMORY_AND_DISK_SER storage level whose runTime was
slightly higher than the other storage levels. With imageClustering,
MEMORY_AND_DISK storage level exhibited the least runTime
because of differences in the task locality levels. PROCESS_LOCAL
tasks are the most frequent in the imageClustering application runs
for MEMORY_AND_DISK; the ANY tasks are the least frequent.
This contributes to lower execution time.

Table 7: flowerCounter: Locality Summary (July, 34.8 GB)

Task Locality Level Count Summary
Locality Level MEM

ONLY
DISK
ONLY

MEM &
DISK

MEM
ONLY_SER

MEM &
DISK_SER

NODE_LOCAL 225 224 225 225 224
ANY 115 109 104 121 124
PROCESS_LOCAL 778 785 789 772 770

Table 8: imageClustering: Locality Summary (Sept., 5.7 GB)

Task Locality Level Count Summary
Locality Level DISK

ONLY
MEMORY
& DISK

MEMORY
&
DISK_SER

NODE_LOCAL 547 568 487
ANY 285 145 240
PROCESS_LOCAL 6169 6288 6274

Compute Node Scaling. The node scaling experiments were exe-
cuted on Cluster 1 with 1 to 11 nodes using all datasets. As seen
in Figures 3 and 4, the applications do not exhibit absolute linear
scalability but show a quasi-linear trend up to 9 nodes.

The execution time for 11 nodes was greater than that for 9 nodes.
This is because 9 worker nodes have twice the CPU frequency of
the two remaining nodes. These two workers executed the fewest
tasks, but also exhibited slowest task completion time. All other
nodes showed similar processing time overall. This behaviour of
prolonged tasks is typical of heterogeneous environments and task
schedulers fail to handle this dynamically without affecting the
overall application performance [1].

Speculative Task Execution. Slow tasks are expected in a hetero-
geneous cluster environment due to varying node resources. The
results obtained from the node scaling experiments clearly validate
this premise. Speculation, however, does not automatically make all
workloads process faster, depending on the rescheduling behaviour.
If the original slow task finished before the rescheduled back-up
task, the back-up task would be killed and vice-versa.

Speculation experiments were carried out on both applications
using all the datasets to study the effects on straggler tasks. Re-
sults from the experiments (3 run instances for each dataset in
both scenarios) conducted for flowerCounter are shown in Figure
5. Speculation slightly favours flowerCounter with all the datasets.
Speculation has a large effect for the July and September datasets
but has almost no effect with August dataset. On the other hand, for
imageClustering using the July dataset (not shown), h the processing
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Figure 4: Node Scaling: Speedup

time is slightly increased with speculation enabled, the difference
is miniscule (624 minutes vs. 612 minutes).
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Figure 5: Speculation vs. No speculation (flowerCounter)

5.3 Concurrent Application Performance
Impact of Spark Resource Allocation Modes. Figure 6 shows the

CPU andmemory utilization of the standalone cluster manager. The
most CPU-intensive of the applications is imageRegistration. The
number of tasks in the other 2 apps is much smaller than the cluster
core capacity. In particular, when we examine the partitioning
behaviour, we see that very few partitions (at most 5) are created
for flowerCounter. Most cluster resources are idle, so this is clearly
a poor operation mode.
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Figure 6: Resource utilization: Standalone/static/1 core-2
GB/128 MB partition/no spec

Figure 7 shows that, with the YARN cluster manager, both CPU
and memory utilization gradually increase to approximately 40% as
more applications were submitted. This decreases as applications
finish execution. After about 6000 seconds, only one application
(imageClustering_job_2) is left running.
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Figure 7: Resource utilization: YARN/static/1 core-2 GB/128
MB partition/no spec

YARN allocates 3 executors to each application by default, which
underutilizes cluster resources for all applications. As 9 applica-
tions were submitted with this configuration: there are again an
excess supply of executors. The cluster administrator must man-
ually set the spark.executor.instances configuration parameter to
an appropriate value to use all cluster resources. Manually setting
this parameter is not easy, since the optimal number of executors
depends on the application type and the dataset size.

Figure 8 shows resource utilization with Mesos and static alloca-
tion mode. All cluster resources are allocated to the first application
and held throughout execution. Upon completion, Mesos reclaims
the allocated resources and divides them among all the queued
applications. This increases the CPU and memory utilization to
approximately 80% and 60%, respectively. When there are resources
available, Mesos uses the Dominant Resource Fairness algorithm
to fairly share the resources among all waiting applications. The
cluster utilization/makespan is dependent on the completion time
of the first application and the number of waiting applications at
that time. If few resources are released to many waiting applica-
tions, little parallelism is realized. Again, one application prolongs
the makespan (flowerCounter_1).
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Figure 8: Resource utilization: Mesos/static/1 core-2 GB/128
MB partition/no spec

The same experiments were repeated using dynamic resource al-
location. All other dynamic resource allocation parameters were set
to their default values. Figures 9 and 10 present the CPU/memory
utilization of Standalone and Mesos. Cluster resource utilization
rises to approximately 85% for CPU and 60% for memory on Stan-
dalone. Dynamic resource allocation is capable of scaling resource
utilization up or down depending on the number of currently sub-
mitted tasks. YARN results are similar; the cluster is still substan-
tially under-utilized, due to applications that have few partitions.
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Figure 9: Resource utilization: Standalone/dynamic/1
core-2 GB/128 MB/no spec

Resource Allocation Modes/Partition Size. Table 9 compares the
makespan for static resource allocation and different partition sizes.
The makespan value decreases when the Spark RDD partition size
was decreased due to increased parallelism. This contradicts our ear-
lier experiments where applications are run individually, since the
datasets utilized are so small that there are too few tasks available
to be scheduled concurrently, and therefore, idle cores.

Table 9: Makespan: Static/1-core/2 GB/no spec

128 MB 64 MB 32 MB
Standalone 20636 16084 8170

YARN 12562 12007 9826
Mesos 9428 6133 4753

Standalone provides the worst makespan for 128 MB and 64 MB
RDD partitions. Although YARN allocated only 3 containers per
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Figure 10: Resource utilization: Mesos/dynamic/1 core-2
GB/128 MB/no spec

application (1 container for executing the ApplicationMaster and
the other 2 for executing tasks), it took about 61% and 75% of the
makespan for Standalone with 128 MB and 64 MB RDD partitions,
respectively. Similarly, Mesos took approximately 46% and 38% of
the makespan of Standalone. Applications spend more time waiting
for resources on the Standalone cluster manager than on YARN and
Mesos. When the RDD partition sizes decrease, the number of tasks
increases, reducing both the average waiting time and execution
time of applications on Standalone. Moving from 64 MB to 32 MB
partition size almost halved the makespan, surpassing YARN.

Under Mesos, reducing RDD partition size also has a large impact
on the makespan, (35% and 23% for each reduction, respectively).
For all the static resource allocation experiments, the Mesos cluster
manager produces the best results, since Mesos implemented some
internal fair sharing of resources.

Figure 11 compares the makespan of different configurations
when using dynamic resource allocation without speculative exe-
cution. There is a substantial reduction in makespan values for all
experimental setups. With a 128 MB partition size, the makespan
was reduced by approximately 63% on Standalone, 34% on YARN
and 28% on Mesos when compared to static resource allocation.
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Figure 11: Makespan: dynamic/1 core/2 GB/no spec

With dynamic resource allocation, the first application submitted
to all the cluster managers was allocated only the exact number of
executors it needed, therefore, reducing the waiting time of subse-
quent applications, and hence a reduction in the total makespan.
Similar to static resource allocation, the Mesos cluster manager
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produces the best results. The difference in makespan between
Standalone and Mesos is very small on the configurations with 64
MB and 32 MB partitions. The relative performance of the cluster
managers is unchanged, indicating that there is some overhead with
YARN aswith 32MB partitions, all cores are busy doing “something"
for a larger percentage of the makespan.

Impact of Speculative Execution. Figure 12 shows the makespan
for static resource allocation with and without speculative execu-
tion of tasks enabled. Surprisingly, a small reduction in makespan
values were observed, especially on the configuration with 32 MB
RDD partition size, which has the largest number of concurrently
running tasks, therefore, higher chances of speculation. The re-
sults show that the reduction in makespan on this configuration
is approximately 2% on Standalone, 7% of YARN and 9% on Mesos.
Similar results were observed for dynamic resource allocation. In
particular, on the configuration with 32 MB partition, the reduction
in makespan is approximately 9% on YARN and less than 1% on
Mesos. These values are lower than expected.
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Figure 12: Makespan Speculation: static/1 core-2 GB

The low reduction inmakespanwhile using speculation is related
to the characteristics of the benchmark image processing applica-
tions and partition size used for the experiments. Many stages in
the applications have long running tasks. Since re-launching tasks
means starting them from the beginning on a different executor,
the original tasks often finished faster than the speculated tasks
and Spark used the results of the tasks that finished first.

Impact of Spark Executor Size onMakespan. Figure 13a shows that
the makespan decreases with the increase in the number of CPU
cores and memory per executor for Standalone in static resource
allocation mode. This is because setting Spark executors with many
CPU cores has the benefit that multiple tasks can run in a single JVM
and share memory space. Applications that use broadcast variables
tend to benefits from this configuration, since small executors may
increase the overhead of creating many JVMs and may lead to
performance deterioration for such applications.

When dynamic resource allocation is enabled, the configuration
with 6 cores/12 GB RAM provides the worst performance on all the
three partition sizes, as shown in Figure 13b. There are relatively
few executors to allocate to applications compared to the other two
configurations. If the number of tasks in a stage is not a multiple of
the executor size, then some cores will be idle as an entire executor
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Figure 13: Makespan: various executor sizes

must be allocated atomically. With small numbers of tasks (in one
case, 14), 4 cores must be idle (22% of the cores of 3 executors).

In general, there are many factors to consider in deciding opti-
mum executor size. Applications with multiple stages that require
shuffle will benefit from having executors with large resource size.
However, the number of CPU cores and memory chosen per Spark
executor should not be too large (in relation to the total amount
of node resources) to avoid resource contention, excessive garbage
collection and executor failure which may negatively affect appli-
cation performance. Moreover, for applications with long running
tasks within stages, having large number of resource per executor
may affect performance, especially on a heterogeneous cluster.

Comparison with sequential applications. Finally, we compare
the makespan of executing the distributed applications on Spark
and equivalent sequential versions on a server equipped with large
amount of resources. Dynamic resource allocation with 1 core/2
GB RAM per executor, 32 MB RDD partition size, and without
speculative execution of tasks was selected for comparison in this
section as it performed consistently strong. The makespan values
are normalized based on the number of worker cores.

Figure 14 shows the makespan of the applications was reduced
by approximately 63% on the Standalone, 57% on YARN and 65%
on Mesos cluster managers when compared to the results from
the sequential server. The results show we can achieve better per-
formance by distributing the processing across multiple machines
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using Spark and tuning the various Spark configuration parame-
ters, due to automatic parallelization and distribution of large-scale
computations, concurrent execution of multiple tasks, optimized
partitioning of the input data across the cluster nodes and indepen-
dent disk I/O on the cluster nodes.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present a case study of Spark resource config-
uration and management on two different cluster environments
using real image processing applications for plant phenotyping:
imageRegistration, flowerCounter and imageClustering. In general,
we show that selection of configuration parameters and resource
managers is challenging, but permits the reduction of application
execution time. In particular, we have shown that parallelism alone
can provide great speedup, but there must be enough data partitions
to keep all worker cores busy. Either more simultaneous applica-
tions can be submitted or the partition size decreased. The data we
have currently collected does not meet the standard for true Big
Data, but the large compute requirements of our initial benchmarks
on the small datasets do enable Spark to improve performance.
Optimizing performance by tuning the parameters still appears to
require repeated measurements with various configurations.

For future work, we plan to investigate further the influence
of more configuration parameters in a GPU-enabled Spark cluster.
The initial versions of the applications did not use GPUs as the
single server did not have a GPU. The cluster machines could not
use their GPU as GPU virtualization is not fully supported in KVM
at this time. The applications will have to be rewritten to use GPU
functions and the cluster migrated to the physical machines or we
must use a different virtualization infrastructure.

Furthermore, the use of container technologies with automation
deployment frameworks such as Kubernetes is of future interest.
We also intend to consider more interesting image processing ap-
plications that are more representative in that they cover a wide
range of Spark’s high level transformations and actions. The project
will also incorporate various bioinformatics and genomics applica-
tions that can share the Spark/Hadoop infrastructure and may have
differing resource requirements over time than those studied here.
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