
5September 2017 | Volume 21, Issue 3 GetMobile

for processing, storage, and visualization.
Furthermore, there are many popular apps
that transfer data from cloud servers to
wearables to provide real-time notifications.
Due to the sensitivity of the transferred
personal data, secure communication
protocols must be used. Our study on
most popular wearable apps shows that the
majority of today’s wearable apps rely on a
paired smartphone via Bluetooth to provide
secure Internet communication despite

earables such as smartwatches
and smartglasses are becoming

increasingly popular as they
show promise in providing a number of
attractive and useful services [1]. Wearables
are equipped with sophisticated sensors
and connectivity options that are capable
of collecting personal data to support
personalized services, such as fitness and
health apps. More often than not, this
information is transferred to cloud servers

direct Internet connection capability.
Therefore, this article attempts to answer
the critical question – “Are wearables
ready for secure and direct Internet
communication?” – by means of real
experiments with modern wearables.

In this paper, we first analyze the
Internet communication methods,
protocols, amount of data, and communi-
cation frequencies for the most popular
smartwatch apps to profile current wearable

Harini Kolamunna, Jagmohan Chauhan and Yining Hu
University of New South Wales, Australia
Kanchana Thilakarathna University of Sydney, Australia
Diego Perino Telefonica Research, Barcelona, Spain
Dwight Makaroff University of Saskatchewan, Canada
Aruna Seneviratne University of New South Wales, Australia

Editor: Geoffrey Challen

ARE WEARABLES READY
FOR SECURE AND DIRECT
INTERNET COMMUNICATION?
Recent advances in wearable
technology tend towards
standalone wearables. Most of
today’s wearable devices and
applications still rely on a paired
smartphone for secure Internet
communication, even though many
current generation wearables are
equipped with Wi-Fi and 3G/4G
network interfaces that provide
direct Internet access. Yet it is not
clear if such communication can be
efficiently and securely supported
through existing protocols. Our
findings show that it is possible
to use secure and efficient direct
communication between wearables
and the Internet.

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m
[past➔Future]

GetMobile September 2017 | Volume 21, Issue 36

app-generated traffi c. Th e results show
that smartwatches are not yet considered
as standalone devices, for the following
possible reasons: 1) enabling secure
communication from the wearables is
considered a signifi cant burden due to the
lower capabilities of wearables compared to
a smartphone; and/or 2) relaying through
a smartphone is considered more effi cient
(in terms of energy and time) than direct
Internet communication. Th erefore, we
investigate the impact of these two factors
on wearables in comparison to a smartphone
through a series of experiments. Th e
experimental results show that secure,
standalone apps and platforms can be
practically and effi ciently realized on current
wearables and, thus, we provide suffi cient
evidence to app developers to motivate them
to create standalone apps and platforms in
the foreseeable future.

INTERNET COMMUNICATION
FROM SMARTWATCHES
Measurement methodology: We used an
LG Urbane smartwatch running Android
Wear and a Nexus 4 smartphone running
Android 5.1.1. We considered the 10 most
popular Android wear apps in Google Play.1
Seven apps out of the 10 (Google Fit,
 Google Translate, Reminders, Google Keep,

Hangouts, Weather, Google) have been
already installed as default apps, and the next
three apps (To-Do List, Shazam, Runtastic)
were downloaded from Google Play. To gain
insight on communications, we run tcpdump
and Bluetooth HCI Snoop log on each device.
We mimicked typical usage of these apps
and captured incoming and outgoing data
from both the smartphone and smartwatch
for two scenarios; i) turning-off Bluetooth
while turning-on Wi-Fi on the smartwatch,
and ii) turning-on Bluetooth on both the
smartwatch and smartphone (Wi-Fi of
the wearable is turned off automatically).
Smartphone Wi-Fi is turned on at all
times. We investigated the apps’ Internet
communication methods and protocols in
both of the scenarios. We also measured the
amount of data and frequency of Internet
communication for the most popular
communication method.

Communication modes of
Android wearables
Current smartwatch apps leverage three
modes of Internet communications
supported by Android; Method-1: Direct
Communication; Method-2: Relaying
through the paired smartphone via
Bluetooth; Method-3: Relaying through a
cloud server (Wear Cloud) and the paired
smartphone via Wi-Fi (see Figure 1).
In Method-1, the smartwatch directly
communicates with the targeted servers

via WiFi or cellular data. In Method-2,
the smartwatch communicates with the
smartphone counterpart of the same app via
Bluetooth and relies on the smartphone app
for any external communication. Method-3
is used as long as both devices have Internet
connectivity. Instead of communicating
directly with the end servers, the smartwatch
is connected to a trusted cloud server, Wear
Cloud, provided by Google [2]. Wear Cloud
relays all requests from wearables to the
respective smartphone counterpart apps,
and then the smartphone communicates
with the targeted server and relays data back
to the wearable through Wear Cloud.

We observed that the default
communication mode of choice for all
analyzed apps is Method-2, i.e. smartphone
relaying, irrespective of the availability
of a direct Internet connectivity. When
Bluetooth of the wearable is turned-off , only
2 apps (Google Fit, Google Translate) were
capable of communicating directly with the
servers using Method-1. Th e remaining 8
apps attempted to leverage Method-3, which
is subjected to the Internet connectivity
of the paired smartphone. When the
paired smartphone is not connected to
Internet, these eight apps do not support
functionalities that require Internet
connectivity. Th is is a signifi cant drawback
of the current wearable eco-system, which
essentially constrains the potential of
wearable devices. In the case of Android,

FIGURE 1. Methods of Internet communication for smartwatch apps.

[past➔Future]

(a) Direct communication. (b) Relaying through the paired
smartphone via Bluetooth.

(c) Relaying through a cloud server
(Wear Cloud) and the paired

smartphone via Wi-Fi.

1 https://play.google.com/store/apps/category/
ANDROID_WEAR?hl=en

WiFi

BT

Mobile data/WiFi

Cloud Node

WiFi
Mobile data/WiFi

WiFi

BT

Mobile data/WiFi

Cloud Node

WiFi
Mobile data/WiFi

WiFi

BT

Mobile data/WiFi

Cloud Node

WiFi
Mobile data/WiFi

7September 2017 | Volume 21, Issue 3 GetMobile

the developer documentation encourages
developers to use Wearable Data Layer
APIs, but these APIs do not support direct
communication, and this hiding the true
communication mode from the developer.
If a developer wants an app to communicate
with the Internet directly, the developer
should use basic APIs.

In the relayed communication (Method-2
and Method-3) the counterpart app for the
smartphone behaves in different ways for
different apps. The counterpart app either
displays statistics, does some processing to
the data before transferring, or just relays
data to/from Internet servers. As examples,
Google Fit and Runtastic in both devices
measure, display and exchange data before
Internet communication. Also, Google
Translate, Reminders, and Google Keep
process data received from the smartwatch
to perform voice recognition. Moreover,
Reminders, Google Keep, Hangouts, To-Do
List, and Shazam store the statistics and
display the data received before sending
back to the smartwatch. On the other hand,
Google and Weather apps are using the
smartphone just as a relay device.

Communication protocols
We also investigated the utilization of
communication protocols in wearable-
Internet communication. Several protocols

are available for the transfer of web objects.
HTTP is the standard original Web Traffic
protocol. It does not provide end-to-end
security. Security is provided by the HTTPS
protocol [3]. Recently Google has released
versions of the QUIC (Quick UDP Internet
Connections) protocol, which focuses on
low latency for connections and transport
data, and was designed to provide TLS/
SSL equivalent security [4]. Although
the smartphone’s connections with the
Internet use HTTPS, HTTP2 and QUIC
protocols, all the direct connections from
the smartwatch only use HTTPS.

At the data link layer, the smartwatch’s
connections with the smartphone are
established via Bluetooth Basic Rate/
Enhanced Data Rate (BR/EDR) in all
the apps, referred to as Bluetooth Classic
(BT-classic). Surprisingly, no apps utilize
Bluetooth Low Energy (BLE) for such
communication, although it is intuitive to
use a protocol that consumes low energy
for wearables [5]. We will investigate the
consequences of using BLE and BT-Classic
in the remainder of this article.

For a deeper understanding of current
wearable traffic, we then investigated
the amount of data and frequency of
communication from the smartwatch apps,
while the app is running in the foreground.
Table 1 shows the total number of bytes

transferred from and to each app, and
the frequency of the communication. We
selected Method-2 as it is common for all
10 apps and measured the total amount of
application layer data transmitted between
the server and smartphone. The two
fitness-tracking applications (Google Fit
and Runtastic) transfer data in the range
of 1 KB. However, these connections are
periodic (i.e., Google Fit transfer in every
10 minutes, Runtastic transfer in every
90 seconds) and eventually transfer a
larger amount of data. All the other apps
communicate on demand and transfer more
than 10 KB of data for each connection.
Reminders app transfers the highest amount
of data, which is more than 100 KB.

Not all of the wearable apps are designed
to collect data and upload to the Internet.
There are apps that are purely designed
to download data from the Internet, such
as Weather and Google. This downloaded
data is not required to be synced with
the smartphone. Also, Google Translate,
Reminders, Google Keep, Google Fit and
Hangouts apps perform both uploads and
downloads in certain cases. However, these
apps are linked with the user’s Google
account; therefore, if the smartphone is
connected to the Internet, the data can
be retrieved by synchronizing with the
Google account. Similarly, each user has
their own account for To-Do List, Shazam
and Runtastic apps that allows data to be
synchronized if the user logs into their
account from the smartphone. Computation
for other apps, such as Google Translate,
Reminders, and Google Keep can also
be moved to the cloud and bypass the
smartphone. Thus, all the analyzed apps
can take advantage from direct and secure
Internet connectivity rather than always
relaying through the smartphone.

However, leveraging the smartphone
for Internet communication is the chosen
method for most current apps, despite
not being a functional requirement.
The observed traffic profiles of wearable
apps in terms of transmitted amount of
data, frequency of communication and
connection duration make a strong case for
utilizing direct, secure connectivity. Thus,
we experimentally evaluate the practical
feasibility of utilizing direct and secure
Internet communication on wearables in
the remainder of this article.

[past➔Future]

App Name	 Size of the transferred	 Direction of 	 Communication
	 application data from	 data transfer	 frequency
	 and to servers

Runtastic	 1 KB	 Upload	 Once per every
			 90 seconds

Google Fit	 1 KB	 Upload	 Once per every
			 10 minutes

Google	 10 KB	 Download	

Shazam	 16 KB	 Upload/Download	

To-Do List	 20 KB	 Upload	

Google Keep	 26 KB	 Upload	 As requested

Google Translate	 44 KB	 Upload/Download	

Hangouts	 50 KB	 Upload/Download	

Weather	 50 KB	 Download	

Reminders	 112KB	 Upload/Download

TABLE 1. Data sizes, data transfer direction and communication
frequencies in Internet communication

GetMobile September 2017 | Volume 21, Issue 38

SECURITY-PERFORMANCE
TRADE-OFF OF DIRECT
COMMUNICATION
In this section, we analyze the cost of
enabling secure Internet direct communica-
tion with a smartwatch and a smartglass as
they represent two most advanced wearable
categories of devices. Specifically, we measure
energy, time and downloaded data overhead
associated with HTTPS in a controlled ex-
perimental environment and compare it with
HTTP and a smartphone as baselines.

Measurement methodology: We added
a Google Glass Explorer edition running
Android XE 18.11 to the previous hardware/
software configurations. We developed an
Android app for all three platforms that
simply fetches objects from a given address
using either HTTP or HTTPS (Method-1).
We downloaded objects of multiple sizes
(1 KB, 10 KB, 100 KB and 500 KB) from an
Apache web server connected to the local
network with end-to-end security (HTTPS)
and without security (HTTP). To measure
the transfer times and downloaded bytes,
we run a tcpdump on each device. Energy
consumption is measured with a Monsoon
power monitor2 directly connected to each
device via USB. Due to the significant differ-
ence in battery capacity among the compared
devices, the absolute energy consumption is
normalized by the battery capacity.

Figure 2(a) depicts the normalized
energy consumption for downloading web
objects. Energy consumption increases with
object size in all cases due to the longer
transfer duration, but the overhead of
HTTPS is more apparent for smaller object
sizes. Normalized energy consumption for
both wearables is significantly greater than
for the smartphone. In terms of downloaded
data, there is an increment of 5421 bytes
during the TLS handshake phase, in
addition to the ~0.2% increment in payload
due to encryption. These observations are
common for all the devices as long as the
same TLS parameters are used. However, the
ratio between HTTPS/HTTP for wearables
is comparable with the smartphone. A
comprehensive analysis of the impact of
secure communication on wearables is
presented in our earlier publication [6].

As the sizes of the majority of the
objects transferred between wearables
and the Internet are at least a few KBs as
shown earlier, we further quantify the
energy consumption for each phase of the
communication for 1KB object size. Figure
2(b) and 2(c) illustrate that the majority
of both energy and time is consumed
during the TLS handshake. Due to the key
generation process, the time consumption
and energy footprint of the TLS handshake
is significant in comparison to the amount of
data generated in all three devices. Moreover,

[past➔Future]

FIGURE 2. Cost of handling security.

 (a) Normalized energy consumption
for different file sizes.

(b) Energy consumed: 1 KB download.

 (c) Data transfer time: 1 KB download.

2 https://www.msoon.com/LabEquipment/
PowerMonitor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Watch Glass Phone

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

x
10

-5

Connection termination
Data exchange

TLS handshake
TCP handshake

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Watch Glass Phone

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

x
10

-5

Connection termination
Data exchange

TLS handshake
TCP handshake

the processing overhead of encrypting data
increases the data transfer time and hence
the energy consumption. Although secure
communication is more energy expensive,
the next section will show that it is still
more energy efficient than leveraging the
smartphone as a relay.

Further, we investigate the benefits
of using the modern HTTP extensions,
like HTTP2, which enables long-lived
connections and amortize the cost of
re-establishing the TLS connections, as
the TLS handshake overhead is more
significant for smaller data transfers.
However, the long-lived connections
consume additional energy during the idle
connection time because of the elevated
power state of devices. Figure 3 illustrates
the analyses of energy saving offered by
keeping the connection alive for different
traffic patterns and device types, which is
based on measured energy consumption
of different phases of connection and
periodic 1 KB downloads. Long-lived
connections are beneficial only when idle
energy consumption is relatively lower and
the time interval between two transfers are
smaller (color shades of the figure show the
percentage of energy saving). For a typical
Wi-Fi idle power consumption of 200mW,
long-lived connections are beneficial only
if the time interval is less than 500 ms for
a 1 KB data transfer. The time interval
and idle energy values that are above the
0% curve will not benefit from long-lived
connections. Therefore, a typical app will
not benefit from keeping a connection alive
as per the observed traffic profiles in the
previous section.

COST OF DIRECT VS.
RELAYED COMMUNICATION
In this section, we evaluate the relative
time and energy efficiency of leveraging
direct Internet communication. Relayed
communication can be established via
BT (i.e. BT-Classic, BLE) or Wi-Fi as
shown in Figure 1. Wi-Fi relaying, as in
Method-3, incurs significant extra delays
and energy consumption compared to
the other methods as it requires two
communications with the Internet
(i.e., smartwatch to smartphone via Wear
Cloud and Smartphone third party server).
Therefore, Wi-Fi relaying is not considered
for this analysis.

9September 2017 | Volume 21, Issue 3 GetMobile

Measurement methodology: We only
use the LG Urbane watch running
Android Wear that runs tcpdump and
Bluetooth HCI Snoop in the device. Energy
consumption is measured with a Monsoon
power monitor directly connected via
USB. In direct communication, the
smartwatch app sends HTTPS requests
directly to a local server via Wi-Fi and
downloads the requested object. In relayed
communication, the smartwatch app sends
download requests to the companion
app on the smartphone via Bluetooth
and then the smartphone sends HTTPS
requests to the server, downloads the
requested object and instantly uploads

to the smartwatch. Although BLE is not
used in any of the apps considered in
the previous experiments, it is a natural
candidate for relayed communication for
Method-2. Therefore, we conducted the
above measurements using both BLE and
BT-Classic. We chose HTTPS in direct
connections, as it is the only protocol
used in direct Internet communications
from wearables. In Android BLE
development, we used BluetoothGatt and
BluetoothGattCallback classes in order to
connect to a BLE-enabled device. In direct
communication, we measured the energy
consumption in the smartwatch and time
taken from smartwatch to the third-party

server. In relayed communication, we
measured energy consumption in both
smartwatch and smartphone, and time
usage from smartwatch to smartphone and
from smartphone to the third-party server.

Figure 4(a) shows the time taken for all
the three methods (note the log-y axis). The
total time for the smartwatch to download
the object by relaying via BLE is less for
smaller file sizes (1 byte to 10 bytes) as the
smartphone downloads the objects faster
than the smartwatch and BLE also assures
the least connection establishment time
compared to BT-Classic [7]. However, since
BLE allows for short bursts (20 bytes) and
is not designed for continuous connections,
larger objects are transmitted in smaller
chunks [5]. Therefore, completion time
increases drastically with object size for
BLE due to the lower effective data rate.
Direct Wi-Fi communication took the least
time (including Wi-Fi association time)
for all object sizes larger than 100 bytes.

Relaying via BLE is the most energy-
efficient method in the smartwatch, if the
object size is smaller than 100 bytes as
shown in Figure 4(b). In contrast, energy
consumption for direct communication
is larger for smaller object sizes in the
smartwatch, due to the costly TLS
handshake phase in HTTPS. However,
when the file size increases, BLE becomes
the worst mode among the three methods,
because the lower data rate in BLE has a
greater effect than connection establishment

[past➔Future]

FIGURE 3. Percentage energy saving by long-lived connections.

FIGURE 4. Cost of direct vs. relayed communication.

(a) Time consumption of relayed
and direct communication.

(b) Energy consumption of relayed
and direct communication.

1

10

100

1000

10000

100000

1B 10
B

10
0B

50
0B 1K

B
2K

B
5K

B
8K

B
10

KB

Ti
m

e
(m

s)

Direct via WiFi (between Watch and Server)
Relaying via BT Classic (between Phone and Server)
Relaying via BT Classic (between Watch and Phone)

Relaying via BLE (between Phone and Server)
Relaying via BLE (between Watch and Phone)

1

10

100

1000

10000

1B 10
B

10
0B

50
0B 1K

B
2K

B
5K

B
8K

B
10

KB

En
er

gy
 c

on
su

m
pt

io
n

(m
J)

Direct via WiFi (in the Watch)
Relaying via BT Classic (in the Phone)
Relaying via BT Classic (in the Watch)

Relaying via BLE (in the Phone)
Relaying via BLE (in the Watch)

GetMobile September 2017 | Volume 21, Issue 310

[past➔Future]

REFERENCES
[1] T. Danova. “The wearables report: Growth

trends, consumer attitudes, and why
smartwatches will dominate,” http://www.
businessinsider.com.au/the-wearable-computing-
market-report-2014-10 , October 2014.

[2] Android.com, “Sending and syncing data”,
https://developer.android.com/training/
wearables/data-layer/index.html.

[3] D. Naylor, A. Finamore, I. Leontiadis,
Y. Grunenberger, M. Mellia, M. Munafò,
K.Papagiannaki, and P.Steenkiste, “The cost of
the “S” in HTTPS”, CoNEXT ’14, Dec. 2014,
pp. 133-140.

[4] J. Rosskind, “Multiplexed transport over UDP,”
Google White Paper, 2013.

[5] Bluetooth SIG, “Bluetooth core specification,”
https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[6] H. Kolamunna, J. Chauhan, Y. Hu, K.
Thilakarathna, D. Perino, D. Makaroff and
A. Seneviratne, “Are wearable devices ready
for HTTPS? Measuring the cost of secure
communication protocols on wearable devices,”
https://arxiv.org/abs/1608.04180, December 2016.

[7] Link Labs, “Bluetooth vs. bluetooth low energy:
What’s the difference?” https://www.link-labs.
com/blog/bluetooth-vs-bluetooth-low-energy,
November 2015.

cost in BT-Classic and TLS handshake
phase in HTTPS. Therefore, direct
Internet communication via Wi-Fi is
the best method in terms of energy
consumption in the smartwatch for larger
file sizes. However, the cumulative energy
consumption in the smartwatch and the
smartphone is larger in BLE relaying than
in direct communication for all the sizes.

All the considered applications in the
previous section require 1 KB or larger files
transmission. In this case, Wi-Fi provides
the minimal power/throughput ratio, and is
thus more power efficient than BT-Classic
and BLE relaying. We have shown that the
direct Internet communication is much
more efficient than any other relaying
method for object sizes currently used in
wearable apps.

CONCLUDING REMARKS
Secure, direct Internet Wi-Fi connectivity
on wearables is practically feasible. In
fact, the direct Internet communication
reduces energy consumption and improves
performance compared to the current
norm of Bluetooth relaying. Therefore,
we advocate that wearable app/system
developers should leverage these advanced
capabilities of wearables to drive a
paradigm shift toward standalone wearable
devices. In particular, we provide the
following recommendations:

• 	Relayed communication via smartphone
is not imperative for functionality of
many apps and, thus, wearable apps can
directly communicate with the Internet.

• 	The relative cost of enabling secure
direct communication on wearables is
comparable to smartphones, despite
the resource constraints on wearable
devices. Thus, standalone secure
wearable applications can be practically
realized utilizing existing secure
protocols such as HTTPS.

• 	Although TLS overhead is significant
for smaller data transfers, keeping the
connection live is only beneficial if the
interval in between two transfers is less
than 500 ms for modern wearables with
Wi-Fi connectivity, which is almost a
continuous stream of data.

• 	Bluetooth Low Energy (BLE) is not
energy- and time-efficient for transferring
1 KB or larger files. As typical wearable

data communications involve 1 KB
or larger files, we do not recommend
BLE be used for relayed Internet
communication from wearables.

• 	Most current wearable apps leverage the
smartphone for Internet connectivity,
regardless of device capability. However,
Bluetooth relaying increases both the
energy consumption and data transfer
time. Therefore, future wearables apps
can be developed to leverage direct Wi-Fi
connectivity whenever Wi-Fi connectivity
is available. To realize this, we recommend
that app developers utilize basic networking
APIs rather than Wearable APIs (e.g.,
HttpsURLConnection class rather than
Wearable Data Layer APIs) for Android
Wear. n

Harini Kolamunna is a PhD candidate at
the School of Electrical Engineering and
Telecommunications, UNSW Australia, and
attached to Data61-CSIRO. She received a
bachelor’s degree in Electrical & Electronics
Engineering with a First Class Honours from
University of Peradeniya, and worked as a
research assistant at National University of
Singapore (2013-14). Her current research
interests include wearable/IoT technologies,
networking and communications.

Jagmohan Chauhan is a PhD candidate in
Electrical Engineering and Telecommunica-
tions at UNSW, Australia. Before joining UNSW,
he received a MS from University of Saskatch-
ewan in 2013. His research interests include
mobile systems, security and deep learning.

Yining Hu is a PhD candidate at UNSW,
Australia, affiliated to Data61-CSIRO. She
received a bachelor’s degree in Engineering
(Electrical) with First Class Honours from the
University of Sydney, Australia, and Harbin
Institute of Technology, China in 2016 (joint
program). Her current research interests
include data integrity preservation in wearable
systems and blockchains.

Kanchana Thilakarathna is a Lecturer in
Distributed Computing at the School of
Information Technologies, The University of
Sydney. Previously, he was a Research Scientist
at Networks Group, Cyber-Physical Systems
Research Program at Data61-CSIRO. He
received his PhD in Electrical Engineering and
Telecommunications from UNSW Australia.
His research interests include developing
technologies for resource allocation, secure
communication and authentication, and
privacy-preserving data sharing in wearable/
mobile/IoT networks.

Diego Perino is a researcher at Telefonica
Research in Barcelona, Spain. He received
a PhD in Computer Science from the Paris
Diderot-Paris 7 University, and MS from
Politecnico di Torino and Eurecom institute.
His research focuses on design and
performance evaluation of networking
protocols and systems. He has published
several papers at international conferences
and in journals, and also filed several patents.

Dwight Makaroff is a professor in the
Computer Science Department at the
University of Saskatchewan, Canada. He
obtained his PhD at the University of British
Columbia in 1998 in Multimedia Systems.
His current research interests are distributed
systems performance, including network
protocols, sensor networks, big data
architecture frameworks, wearable systems,
and networked games.

Aruna Seneviratne is currently the research
director of Cyber-Physical Systems Research
Program in Data61-CSIRO and a professor
at UNSW, Australia. He was the foundation
professor of Telecommunications at UNSW,
where he holds the Mahanakorn Chair of
Telecommunications. He received his PhD in
electrical engineering from the University of
Bath, UK. His research interests are in mobile
technologies, networking and communications,
and computer system security.

