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for processing, storage, and visualization. 
Furthermore, there are many popular apps 
that transfer data from cloud servers to 
wearables to provide real-time notifications. 
Due to the sensitivity of the transferred 
personal data, secure communication 
protocols must be used. Our study on 
most popular wearable apps shows that the 
majority of today’s wearable apps rely on a 
paired smartphone via Bluetooth to provide 
secure Internet communication despite 

earables such as smartwatches 
and smartglasses are becoming 

increasingly popular as they 
show promise in providing a number of 
attractive and useful services [1]. Wearables 
are equipped with sophisticated sensors 
and connectivity options that are capable 
of collecting personal data to support 
personalized services, such as fitness and 
health apps. More often than not, this 
information is transferred to cloud servers 

direct Internet connection capability. 
Therefore, this article attempts to answer 
the critical question – “Are wearables 
ready for secure and direct Internet 
communication?” – by means of real 
experiments with modern wearables.

In this paper, we first analyze the 
Internet communication methods, 
protocols, amount of data, and communi- 
cation frequencies for the most popular 
smartwatch apps to profile current wearable 
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ARE WEARABLES READY 
FOR SECURE AND DIRECT 
INTERNET COMMUNICATION?
Recent advances in wearable 
technology tend towards 
standalone wearables. Most of 
today’s wearable devices and 
applications still rely on a paired 
smartphone for secure Internet 
communication, even though many 
current generation wearables are 
equipped with Wi-Fi and 3G/4G 
network interfaces that provide 
direct Internet access. Yet it is not 
clear if such communication can be 
efficiently and securely supported 
through existing protocols. Our 
findings show that it is possible 
to use secure and efficient direct 
communication between wearables 
and the Internet. 
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app-generated traffi  c. Th e results show 
that smartwatches are not yet considered 
as standalone devices, for the following 
possible reasons: 1) enabling secure 
communication from the wearables is 
considered a signifi cant burden due to the 
lower capabilities of wearables compared to 
a smartphone; and/or 2) relaying through 
a smartphone is considered more effi  cient 
(in terms of energy and time) than direct 
Internet communication. Th erefore, we 
investigate the impact of these two factors 
on wearables in comparison to a smartphone 
through a series of experiments. Th e 
experimental results show that secure, 
standalone apps and platforms can be 
practically and effi  ciently realized on current 
wearables and, thus, we provide suffi  cient 
evidence to app developers to motivate them 
to create standalone apps and platforms in 
the foreseeable future. 

INTERNET COMMUNICATION 
FROM SMARTWATCHES
Measurement methodology: We used an 
LG Urbane smartwatch running Android 
Wear and a Nexus 4 smartphone running 
Android 5.1.1. We considered the 10 most 
popular Android wear apps in Google Play.1 
Seven apps out of the 10 (Google Fit,
 Google Translate, Reminders, Google Keep, 

Hangouts, Weather, Google) have been 
already installed as default apps, and the next 
three apps (To-Do List, Shazam, Runtastic) 
were downloaded from Google Play. To gain 
insight on communications, we run tcpdump 
and Bluetooth HCI Snoop log on each device. 
We mimicked typical usage of these apps 
and captured incoming and outgoing data 
from both the smartphone and smartwatch 
for two scenarios; i) turning-off  Bluetooth 
while turning-on Wi-Fi on the smartwatch, 
and ii) turning-on Bluetooth on both the 
smartwatch and smartphone (Wi-Fi of 
the wearable is turned off  automatically). 
Smartphone Wi-Fi is turned on at all 
times. We investigated the apps’ Internet 
communication methods and protocols in 
both of the scenarios. We also measured the 
amount of data and frequency of Internet 
communication for the most popular 
communication method. 

Communication modes of 
Android wearables
Current smartwatch apps leverage three 
modes of Internet communications 
supported by Android; Method-1: Direct 
Communication; Method-2: Relaying 
through the paired smartphone via 
Bluetooth; Method-3: Relaying through a 
cloud server (Wear Cloud) and the paired 
smartphone via Wi-Fi (see Figure 1). 
In Method-1, the smartwatch directly 
communicates with the targeted servers 

via WiFi or cellular data. In Method-2, 
the smartwatch communicates with the 
smartphone counterpart of the same app via 
Bluetooth and relies on the smartphone app 
for any external communication. Method-3 
is used as long as both devices have Internet 
connectivity. Instead of communicating 
directly with the end servers, the smartwatch 
is connected to a trusted cloud server, Wear 
Cloud, provided by Google [2]. Wear Cloud 
relays all requests from wearables to the 
respective smartphone counterpart apps, 
and then the smartphone communicates 
with the targeted server and relays data back 
to the wearable through Wear Cloud. 

We observed that the default 
communication mode of choice for all 
analyzed apps is Method-2, i.e. smartphone 
relaying, irrespective of the availability 
of a direct Internet connectivity. When 
Bluetooth of the wearable is turned-off , only 
2 apps (Google Fit, Google Translate) were 
capable of communicating directly with the 
servers using Method-1. Th e remaining 8 
apps attempted to leverage Method-3, which 
is subjected to the Internet connectivity 
of the paired smartphone. When the 
paired smartphone is not connected to 
Internet, these eight apps do not support 
functionalities that require Internet 
connectivity. Th is is a signifi cant drawback 
of the current wearable eco-system, which 
essentially constrains the potential of 
wearable devices. In the case of Android, 

FIGURE 1. Methods of Internet communication for smartwatch apps.

[past➔Future]

(a) Direct communication. (b) Relaying through the paired 
smartphone via Bluetooth.

(c) Relaying through a cloud server 
(Wear Cloud) and the paired 

smartphone via Wi-Fi.

1 https://play.google.com/store/apps/category/
ANDROID_WEAR?hl=en 
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the developer documentation encourages 
developers to use Wearable Data Layer 
APIs, but these APIs do not support direct 
communication, and this hiding the true 
communication mode from the developer. 
If a developer wants an app to communicate 
with the Internet directly, the developer 
should use basic APIs.  

In the relayed communication (Method-2 
and Method-3) the counterpart app for the 
smartphone behaves in different ways for 
different apps. The counterpart app either 
displays statistics, does some processing to 
the data before transferring, or just relays 
data to/from Internet servers. As examples, 
Google Fit and Runtastic in both devices 
measure, display and exchange data before 
Internet communication. Also, Google 
Translate, Reminders, and Google Keep 
process data received from the smartwatch 
to perform voice recognition. Moreover, 
Reminders, Google Keep, Hangouts, To-Do 
List, and Shazam store the statistics and 
display the data received before sending 
back to the smartwatch. On the other hand, 
Google and Weather apps are using the 
smartphone just as a relay device.

Communication protocols
We also investigated the utilization of 
communication protocols in wearable-
Internet communication. Several protocols 

are available for the transfer of web objects. 
HTTP is the standard original Web Traffic 
protocol. It does not provide end-to-end 
security. Security is provided by the HTTPS 
protocol [3]. Recently Google has released 
versions of the QUIC (Quick UDP Internet 
Connections) protocol, which focuses on 
low latency for connections and transport 
data, and was designed to provide TLS/
SSL equivalent security [4]. Although 
the smartphone’s connections with the 
Internet use HTTPS, HTTP2 and QUIC 
protocols, all the direct connections from 
the smartwatch only use HTTPS. 

At the data link layer, the smartwatch’s 
connections with the smartphone are 
established via Bluetooth Basic Rate/
Enhanced Data Rate (BR/EDR) in all 
the apps, referred to as Bluetooth Classic 
(BT-classic). Surprisingly, no apps utilize 
Bluetooth Low Energy (BLE) for such 
communication, although it is intuitive to 
use a protocol that consumes low energy 
for wearables [5]. We will investigate the 
consequences of using BLE and BT-Classic 
in the remainder of this article.

For a deeper understanding of current 
wearable traffic, we then investigated 
the amount of data and frequency of 
communication from the smartwatch apps, 
while the app is running in the foreground. 
Table 1 shows the total number of bytes 

transferred from and to each app, and 
the frequency of the communication. We 
selected Method-2 as it is common for all 
10 apps and measured the total amount of 
application layer data transmitted between 
the server and smartphone. The two  
fitness-tracking applications (Google Fit  
and Runtastic) transfer data in the range 
of 1 KB. However, these connections are 
periodic (i.e., Google Fit transfer in every 
10 minutes, Runtastic transfer in every 
90 seconds) and eventually transfer a 
larger amount of data. All the other apps 
communicate on demand and transfer more 
than 10 KB of data for each connection. 
Reminders app transfers the highest amount 
of data, which is more than 100 KB.

Not all of the wearable apps are designed 
to collect data and upload to the Internet. 
There are apps that are purely designed 
to download data from the Internet, such 
as Weather and Google. This downloaded 
data is not required to be synced with 
the smartphone. Also, Google Translate, 
Reminders, Google Keep, Google Fit and 
Hangouts apps perform both uploads and 
downloads in certain cases. However, these 
apps are linked with the user’s Google 
account; therefore, if the smartphone is 
connected to the Internet, the data can 
be retrieved by synchronizing with the 
Google account. Similarly, each user has 
their own account for To-Do List, Shazam 
and Runtastic apps that allows data to be 
synchronized if the user logs into their 
account from the smartphone. Computation 
for other apps, such as Google Translate, 
Reminders, and Google Keep can also 
be moved to the cloud and bypass the 
smartphone. Thus, all the analyzed apps 
can take advantage from direct and secure 
Internet connectivity rather than always 
relaying through the smartphone.

However, leveraging the smartphone 
for Internet communication is the chosen 
method for most current apps, despite 
not being a functional requirement. 
The observed traffic profiles of wearable 
apps in terms of transmitted amount of 
data, frequency of communication and 
connection duration make a strong case for 
utilizing direct, secure connectivity. Thus, 
we experimentally evaluate the practical 
feasibility of utilizing direct and secure 
Internet communication on wearables in 
the remainder of this article.

[past➔Future]

App Name	 Size of the transferred	 Direction of 	 Communication 
	 application data from	 data transfer	 frequency 
	 and to servers

Runtastic	 1 KB	 Upload	 Once per every  
			   90 seconds

Google Fit	 1 KB	 Upload	 Once per every  
			   10 minutes

Google	 10 KB	 Download	

Shazam	 16 KB	 Upload/Download	

To-Do List	 20 KB	 Upload	

Google Keep	 26 KB	 Upload	 As requested

Google Translate	 44 KB	 Upload/Download	

Hangouts	 50 KB	 Upload/Download	

Weather	 50 KB	 Download	

Reminders	 112KB	 Upload/Download

TABLE 1. Data sizes, data transfer direction and communication 
frequencies in Internet communication
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SECURITY-PERFORMANCE  
TRADE-OFF OF DIRECT 
COMMUNICATION
In this section, we analyze the cost of 
enabling secure Internet direct communica-
tion with a smartwatch and a smartglass as 
they represent two most advanced wearable 
categories of devices. Specifically, we measure 
energy, time and downloaded data overhead 
associated with HTTPS in a controlled ex-
perimental environment and compare it with 
HTTP and a smartphone as baselines. 

Measurement methodology: We added 
a Google Glass Explorer edition running 
Android XE 18.11 to the previous hardware/
software configurations. We developed an 
Android app for all three platforms that 
simply fetches objects from a given address 
using either HTTP or HTTPS (Method-1). 
We downloaded objects of multiple sizes 
(1 KB, 10 KB, 100 KB and 500 KB) from an 
Apache web server connected to the local 
network with end-to-end security (HTTPS) 
and without security (HTTP). To measure 
the transfer times and downloaded bytes, 
we run a tcpdump on each device. Energy 
consumption is measured with a Monsoon 
power monitor2 directly connected to each 
device via USB. Due to the significant differ-
ence in battery capacity among the compared 
devices, the absolute energy consumption is 
normalized by the battery capacity.

Figure 2(a) depicts the normalized 
energy consumption for downloading web 
objects. Energy consumption increases with 
object size in all cases due to the longer 
transfer duration, but the overhead of 
HTTPS is more apparent for smaller object 
sizes. Normalized energy consumption for 
both wearables is significantly greater than 
for the smartphone. In terms of downloaded 
data, there is an increment of 5421 bytes 
during the TLS handshake phase, in 
addition to the ~0.2% increment in payload 
due to encryption. These observations are 
common for all the devices as long as the 
same TLS parameters are used. However, the 
ratio between HTTPS/HTTP for wearables 
is comparable with the smartphone. A 
comprehensive analysis of the impact of 
secure communication on wearables is 
presented in our earlier publication [6].

As the sizes of the majority of the 
objects transferred between wearables 
and the Internet are at least a few KBs as 
shown earlier, we further quantify the 
energy consumption for each phase of the 
communication for 1KB object size. Figure 
2(b) and 2(c) illustrate that the majority 
of both energy and time is consumed 
during the TLS handshake. Due to the key 
generation process, the time consumption 
and energy footprint of the TLS handshake 
is significant in comparison to the amount of 
data generated in all three devices. Moreover, 

[past➔Future]

FIGURE 2. Cost of handling security.  

 (a) Normalized energy consumption  
for different file sizes.

(b) Energy consumed: 1 KB download.

 (c) Data transfer time: 1 KB download.

2 https://www.msoon.com/LabEquipment/
PowerMonitor
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the processing overhead of encrypting data 
increases the data transfer time and hence 
the energy consumption. Although secure 
communication is more energy expensive, 
the next section will show that it is still 
more energy efficient than leveraging the 
smartphone as a relay.

Further, we investigate the benefits 
of using the modern HTTP extensions, 
like HTTP2, which enables long-lived 
connections and amortize the cost of 
re-establishing the TLS connections, as 
the TLS handshake overhead is more 
significant for smaller data transfers. 
However, the long-lived connections 
consume additional energy during the idle 
connection time because of the elevated 
power state of devices. Figure 3 illustrates 
the analyses of energy saving offered by 
keeping the connection alive for different 
traffic patterns and device types, which is 
based on measured energy consumption 
of different phases of connection and 
periodic 1 KB downloads. Long-lived 
connections are beneficial only when idle 
energy consumption is relatively lower and 
the time interval between two transfers are 
smaller (color shades of the figure show the 
percentage of energy saving). For a typical 
Wi-Fi idle power consumption of 200mW, 
long-lived connections are beneficial only 
if the time interval is less than 500 ms for 
a 1 KB data transfer. The time interval 
and idle energy values that are above the 
0% curve will not benefit from long-lived 
connections. Therefore, a typical app will 
not benefit from keeping a connection alive 
as per the observed traffic profiles in the 
previous section.

COST OF DIRECT VS.  
RELAYED COMMUNICATION
In this section, we evaluate the relative 
time and energy efficiency of leveraging 
direct Internet communication. Relayed 
communication can be established via  
BT (i.e. BT-Classic, BLE) or Wi-Fi as  
shown in Figure 1. Wi-Fi relaying, as in 
Method-3, incurs significant extra delays 
and energy consumption compared to 
the other methods as it requires two 
communications with the Internet  
(i.e., smartwatch to smartphone via Wear 
Cloud and Smartphone third party server). 
Therefore, Wi-Fi relaying is not considered 
for this analysis. 
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Measurement methodology: We only 
use the LG Urbane watch running 
Android Wear that runs tcpdump and 
Bluetooth HCI Snoop in the device. Energy 
consumption is measured with a Monsoon 
power monitor directly connected via 
USB. In direct communication, the 
smartwatch app sends HTTPS requests 
directly to a local server via Wi-Fi and 
downloads the requested object. In relayed 
communication, the smartwatch app sends 
download requests to the companion 
app on the smartphone via Bluetooth 
and then the smartphone sends HTTPS 
requests to the server, downloads the 
requested object and instantly uploads 

to the smartwatch. Although BLE is not 
used in any of the apps considered in 
the previous experiments, it is a natural 
candidate for relayed communication for 
Method-2. Therefore, we conducted the 
above measurements using both BLE and 
BT-Classic. We chose HTTPS in direct 
connections, as it is the only protocol 
used in direct Internet communications 
from wearables. In Android BLE 
development, we used BluetoothGatt and 
BluetoothGattCallback classes in order to 
connect to a BLE-enabled device. In direct 
communication, we measured the energy 
consumption in the smartwatch and time 
taken from smartwatch to the third-party 

server. In relayed communication, we 
measured energy consumption in both 
smartwatch and smartphone, and time 
usage from smartwatch to smartphone and 
from smartphone to the third-party server.

Figure 4(a) shows the time taken for all 
the three methods (note the log-y axis). The 
total time for the smartwatch to download 
the object by relaying via BLE is less for 
smaller file sizes (1 byte to 10 bytes) as the 
smartphone downloads the objects faster 
than the smartwatch and BLE also assures 
the least connection establishment time 
compared to BT-Classic [7]. However, since 
BLE allows for short bursts (20 bytes) and 
is not designed for continuous connections, 
larger objects are transmitted in smaller 
chunks [5]. Therefore, completion time 
increases drastically with object size for 
BLE due to the lower effective data rate. 
Direct Wi-Fi communication took the least 
time (including Wi-Fi association time)  
for all object sizes larger than 100 bytes.

Relaying via BLE is the most energy-
efficient method in the smartwatch, if the 
object size is smaller than 100 bytes as 
shown in Figure 4(b). In contrast, energy 
consumption for direct communication 
is larger for smaller object sizes in the 
smartwatch, due to the costly TLS 
handshake phase in HTTPS. However, 
when the file size increases, BLE becomes 
the worst mode among the three methods, 
because the lower data rate in BLE has a  
greater effect than connection establishment 

[past➔Future]

FIGURE 3. Percentage energy saving by long-lived connections.  

FIGURE 4. Cost of direct vs. relayed communication.

(a) Time consumption of relayed  
and direct communication.

(b) Energy consumption of relayed  
and direct communication.

1

10

100

1000

10000

100000

1B 10
B

10
0B

50
0B 1K

B
2K

B
5K

B
8K

B
10

KB

Ti
m

e 
(m

s)

Direct via WiFi (between Watch and Server)
Relaying via BT Classic (between Phone and Server)
Relaying via BT Classic (between Watch and Phone)

Relaying via BLE (between Phone and Server)
Relaying via BLE (between Watch and Phone)

1

10

100

1000

10000

1B 10
B

10
0B

50
0B 1K

B
2K

B
5K

B
8K

B
10

KB

En
er

gy
 c

on
su

m
pt

io
n 

(m
J)

Direct via WiFi (in the Watch)
Relaying via BT Classic (in the Phone)
Relaying via BT Classic (in the Watch)

Relaying via BLE (in the Phone)
Relaying via BLE (in the Watch)



GetMobile    September 2017 | Volume 21, Issue 310

[past➔Future]

REFERENCES
[1] T. Danova. “The wearables report: Growth 

trends, consumer attitudes, and why 
smartwatches will dominate,” http://www.
businessinsider.com.au/the-wearable-computing-
market-report-2014-10 , October 2014.

[2] Android.com, “Sending and syncing data”, 
https://developer.android.com/training/
wearables/data-layer/index.html.

[3] D. Naylor, A. Finamore, I. Leontiadis, 
Y. Grunenberger, M. Mellia, M. Munafò, 
K.Papagiannaki, and P.Steenkiste, “The cost of  
the “S” in HTTPS”, CoNEXT ’14, Dec. 2014,  
pp. 133-140.

[4] J. Rosskind, “Multiplexed transport over UDP,” 
Google White Paper, 2013.

[5] Bluetooth SIG, “Bluetooth core specification,”  
https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[6] H. Kolamunna, J. Chauhan, Y. Hu, K. 
Thilakarathna, D. Perino, D. Makaroff and 
A. Seneviratne, “Are wearable devices ready 
for HTTPS? Measuring the cost of secure 
communication protocols on wearable devices,” 
https://arxiv.org/abs/1608.04180, December 2016.

[7] Link Labs, “Bluetooth vs. bluetooth low energy: 
What’s the difference?” https://www.link-labs.
com/blog/bluetooth-vs-bluetooth-low-energy, 
November 2015.

cost in BT-Classic and TLS handshake 
phase in HTTPS. Therefore, direct 
Internet communication via Wi-Fi is 
the best method in terms of energy 
consumption in the smartwatch for larger 
file sizes. However, the cumulative energy 
consumption in the smartwatch and the 
smartphone is larger in BLE relaying than 
in direct communication for all the sizes. 

All the considered applications in the 
previous section require 1 KB or larger files 
transmission. In this case, Wi-Fi provides 
the minimal power/throughput ratio, and is 
thus more power efficient than BT-Classic 
and BLE relaying. We have shown that the 
direct Internet communication is much 
more efficient than any other relaying 
method for object sizes currently used in 
wearable apps.

CONCLUDING REMARKS 
Secure, direct Internet Wi-Fi connectivity 
on wearables is practically feasible. In 
fact, the direct Internet communication 
reduces energy consumption and improves 
performance compared to the current 
norm of Bluetooth relaying. Therefore, 
we advocate that wearable app/system 
developers should leverage these advanced 
capabilities of wearables to drive a 
paradigm shift toward standalone wearable 
devices. In particular, we provide the 
following recommendations:

• 	Relayed communication via smartphone 
is not imperative for functionality of 
many apps and, thus, wearable apps can 
directly communicate with the Internet. 

• 	The relative cost of enabling secure 
direct communication on wearables is 
comparable to smartphones, despite 
the resource constraints on wearable 
devices. Thus, standalone secure 
wearable applications can be practically 
realized utilizing existing secure 
protocols such as HTTPS. 

• 	Although TLS overhead is significant 
for smaller data transfers, keeping the 
connection live is only beneficial if the 
interval in between two transfers is less 
than 500 ms for modern wearables with 
Wi-Fi connectivity, which is almost a 
continuous stream of data. 

• 	Bluetooth Low Energy (BLE) is not  
energy- and time-efficient for transferring  
1 KB or larger files. As typical wearable 

data communications involve 1 KB 
or larger files, we do not recommend 
BLE be used for relayed Internet 
communication from wearables.

• 	Most current wearable apps leverage the 
smartphone for Internet connectivity, 
regardless of device capability. However, 
Bluetooth relaying increases both the 
energy consumption and data transfer 
time. Therefore, future wearables apps 
can be developed to leverage direct Wi-Fi 
connectivity whenever Wi-Fi connectivity 
is available. To realize this, we recommend 
that app developers utilize basic networking 
APIs rather than Wearable APIs (e.g., 
HttpsURLConnection class rather than 
Wearable Data Layer APIs) for Android 
Wear. n
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