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Abstract—The majority of available wearable computing de-
vices require communication with Internet servers for data
analysis and storage, and rely on a paired smartphone to enable
secure communication. However, many wearables are equipped
with WiFi network interfaces, enabling direct communication
with the Internet. Secure communication protocols could then
run on these wearables themselves, yet it is not clear if they can
be efficiently supported.

In this paper, we show that wearables are ready for direct
and secure Internet communication by means of experiments
with both controlled local web servers and Internet servers. We
observe that the overall energy consumption and communication
delay can be reduced with direct Internet connection via WiFi
from wearables compared to using smartphones as relays via
Bluetooth. We also show that the additional HTTPS cost caused
by TLS handshake and encryption is closely related to the
number of parallel connections, and has the same relative impact
on wearables and smartphones.

Index Terms—Security, Wearables, Network Measurements

I. INTRODUCTION

Wearables such as smartwatches, smartglasses and fitness
bands, are becoming increasingly popular and were predicted
in 2016 to become commodity devices in the same manner as
smartphones [5], [11], [17]. These devices are equipped with
a rich set of sensors that can continuously monitor a wide
variety of attributes of the human body, physical surroundings
and online user behaviours not available through any other
means [16].

Many wearable applications (apps) upload users’ personal
information collected from body-worn sensors to cloud servers
for analysis. Due to the sensitivity of the personal data
collected by wearables, they must be transferred using a
secure communication protocol. Today, most of the apps rely
on a smartphone counterpart for communication with cloud
services and in this way take advantage of secure com-
munication protocols such as HTTPS. A wearable typically
communicates with a paired smartphone via Bluetooth. Such
communication is usually considered secure solely due to the
low transmission range. However, the majority of wearables
are already equipped with WiFi capability while Cellular
networking is becoming a reality. These technologies enable
direct Internet connectivity from wearables; it is thus vital to
understand whether or not secure communication protocols
can be efficiently realized by wearables directly.

In this paper, we address this critical question through an
experimental study. As nearly 50% of today’s Internet traffic
is HTTPS, it is a natural candidate for secure communication
for standalone wearables. Naylor et al. [13] show that the cost
of HTTPS is not negligible even in the case of smartphones.
We thus study the impact of HTTPS on wearables compared
to HTTP in terms of the amount of downloaded data, data
transfer time and energy consumption. We leverage two pop-
ular categories of wearables (smartglass and smartwatch), and
take measurements from both a controlled web server and
landing webpages of popular Internet websites. This allows us
to characterize the resource consumption for each phase of the
protocols precisely to derive the main factors contributing to
the HTTPS performance difference, and to measure the impact
when multiple parallel TCP connections and multiple external
servers are used to access web resources from these devices.

We make the following main observations. First, the relative
cost of HTTPS to HTTP in terms of downloaded data and
data transfer time on wearables is comparable to that of
smartphones, validating the fact that wearables are ready for
HTTPS in terms of computing and networking capabilities.
Second, because of the smaller battery capacity on wearables,
the normalized energy consumption by the 100% battery
capacity is higher on wearables than the smartphone. However,
the overall energy consumption considering both wearables
and smartphone is reduced (by ∼80% in the smartwatch
and 100% in the smartphone) with direct and secure In-
ternet communication from wearables primarily due to the
elimination of the overhead of data exchange between the
devices. Moreover, relaying incurs additional delay in real-
time communication with external servers compared to the
direct connectivity from wearables. Finally, we verify that the
additional cost of HTTPS is mostly due to the TLS handshake
(KEY exchange) phase and that the magnitude of the cost
is closely related to the amount of data exchanged, and the
number of parallel connections. These observations lead us
to conclude that wearables of today are ready for direct and
secure internet communication via WiFi.

The remainder of the paper is organized as follows. We
first provide the background and discuss the related work.
The experimental methodology is described next. We then
present our analysis of HTTPS overhead in a controlled
testbed environment followed by the results of web-browsing

2017 IEEE 42nd Conference on Local Computer Networks

© 2017, Harini Kolamunna. Under license to IEEE.
DOI 10.1109/LCN.2017.109

321



experiments. Finally, we synthesize the implications of these
findings into a set of recommendations that is followed by the
conclusion and suggestions for future work.

II. BACKGROUND AND RELATED WORK

A. Transport Layer Security (TLS) Background

The most widely used protocol to achieve secure commu-
nications over the Internet is HTTPS (HTTP over TLS) [10],
[14]. We first describe the phases in HTTPS and HTTP con-
nections followed by the TLS session negotiation procedure
and the associated cryptographic algorithms.

Consider establishing a HTTPS connection (see Figure 1).
The first phase is the TCP handshake, which is a three-
way handshake between the server and the client. Next,
server authentication and encryption key exchange takes place
during the TLS handshake. Then the encrypted messages are
exchanged during the Data exchange phase. Once message
passing is finished, the TLS and TCP connections terminate
in the Connection termination phase. An HTTP connection
has three phases: TCP handshake, followed by Data exchange
(plaintext messages), and Connection termination.

Next, we describe the TLS handshake phase in detail.
1) A TLS session is initiated by sending a Client Hello

message to the server. The Client Hello message spec-
ifies the client’s TLS capabilities, including the TLS
version, cipher suites, a random number that will be
used later to compute the final symmetric key, and com-
pression method options. A cipher suite encompasses
the choices/options for the cryptographic algorithms
available for the different phases of the TLS session
negotiation and data transfer: key exchange algorithm,
authentication algorithm, bulk cipher algorithm, and
MAC (message authentication code) algorithm.

2) Then, the server replies with a Server Hello message
that contains the TLS version, cipher suite and compres-
sion method selected by the server from the mutually-
supported choices offered by the client. Additionally, the
server sends a random number in the message.

3) The server then sends messages containing Certificate,
Server Key Exchange that includes server’s public key,
and a Server Hello Done message.

4) The client first verifies the server certificate. It then
generates a pre-master secret that is encrypted using the
server public key. The pre-master secret is then sent over
to the server using a Client Key Exchange message.

5) The server decrypts the Client Key Exchange message
using its private key to obtain the pre-master secret.

6) The server uses a combination of the pre-master secret,
the random number it sent to the client in the Server
Hello message and the random number it got from the
client in the Client Hello message to compute the master
secret. The client computes the master secret in the same
manner.

7) The client sends a Change Cipher Spec notification to
the server indicating that all subsequent messages will be

Fig. 1. HTTPS message sequence diagram with detailed TLS handshaking
steps.

authenticated and encrypted using the master secret. The
client replies with an encrypted Client Finished message.

8) Finally, the server sends a Change Cipher Spec back
to the client, completing the handshake. After the TLS
negotiation phase is over, the encrypted application data
is transferred between the client and the server.

TLS Cryptographic Algorithms. Cryptographic Algorithms
are comprised of four types of algorithms [2]:
Key Exchange Algorithm: The key exchange algorithm de-
fines how the keys should be generated and exchanged be-
tween the client and server during the TLS session setup.
The commonly-available Key Exchange algorithms include
RSA (Rivest-Shamir-Adleman), DH (Diffie-Hellman), ECDH
(Elliptic Curve Diffie-Hellman) and ECDHE (Elliptic Curve
Diffie-Hellman Ephemeral). Both RSA and DH (as well as
variations of DH) are asymmetric algorithms, meaning that
they use two different keys: a public key for encryption
and a private key for decryption. The advantage of Elliptic
curve based algorithms over RSA is that they provide same
security level as RSA with smaller key sizes. ECDHE provides
PFS (perfect forward secrecy). PFS ensures that the sessions
recorded in the past cannot be retrieved even if the server’s
long-term private keys are compromised.
Authentication Algorithm: The authentication algorithm deter-
mines if the client is communicating with the correct server
entity. The authentication is generally done by exchanging
certificates. RSA, Digital Signature Algorithm (DSA), and
Elliptic Curve Digital Signature Algorithm (ECDSA) are the
commonly used authentication algorithms. All the authentica-
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tion algorithms are asymmetric and differ in the mathematical
operations underlying the algorithm.
Bulk Cipher Algorithm: After the initial session setup phase,
the user data between the client and the server is encrypted
and decrypted using bulk cipher algorithms. All the bulk
cipher algorithms are symmetric algorithms using the same
key for encryption/decryption. The bulk cipher algorithms
include block-based algorithms such as DES (Data Encryption
Standard), 3DES, AES (Advanced Encryption Standard), and
stream-based algorithms such as RC4 (Rivest’s Cipher).
MAC Algorithm: The integrity of the application data is
maintained using the MAC algorithm. It provides the means
for a receiver to know that the application data is not altered
en-route. The common MAC algorithms are MD5 (Message
Digest 5) and SHA (Secure Hash Algorithm).

B. Related Work
Much previous research has investigated the performance

of HTTPS on different computing platforms such as web
servers [1], [4] and mobile devices [12], [13], [15], [18]. Apos-
tolopoulos et al. [1] measured the performance of TLS using
the SPECWeb96 benchmark on Apache and Netscape web
servers. Their results showed that the use of TLS decreases
the number of web transactions that a server can handle by
a factor of two. A comprehensive study by Coarfa et al. [4]
on TLS web servers revealed that RSA operations incur the
largest performance cost. The study also found out that RSA
accelerators are effective for e-commerce type workloads as
they experience low TLS session reuse.

Youngsang et al. [18] compared the performance of the
TLS protocol between PDAs and laptops in secured WEP
and open WiFi environments. The studies confirmed that the
additional delay for TLS handshake is three times more on
a PDA than for a laptop. However, the major factor is not
cryptographic computation but network latency and other PDA
architecture issues. In other work, Naylor et al. [13] studied
the collected dataset from large ISPs to examine the world-
wide adoption rate of HTTPS. The study indicated that HTTPS
adds significant latency in the mobile networks and that the
cost of TLS on smartphones is not negligible.

Miranda et al. [12] measured the energy consumption of
TLS on Nokia N95 mobile phones on WiFi and 3G networks
and showed that the energy required for transmission and
I/O during TLS handshake far exceeds the energy spent on
computing cryptographic operations. Potlapally et al. [15] per-
formed a comprehensive performance analysis by studying the
impact of various TLS cryptographic algorithms with varying
bit sizes on the energy consumption of a PDA device. The
main findings of the study suggested that the asymmetric and
hash algorithms have the highest and the least energy costs,
respectively, and a better trade-off between the encryption and
energy consumption can be achieved by tuning parameters
such as the key size.

Our study differs from previous work as we are expanding
the context of evaluating web security protocol overhead with
respect to the wearable platform. To the best of our knowledge,

TABLE I
HARDWARE CHARACTERISTICS OF THE DEVICES.

Device CPU Memory Battery

Watch Quad-core processor 1.2 GHz 512 MB 410 mAh
Glass Dual-core processor 1 GHz 2 GB 570 mAh
Phone Quad-core processor 1.5 GHz 2 GB 2100 mAh

we are the first to quantify the performance of HTTPS vs.
HTTP experimentally in terms of energy consumption, data
transfer time and downloaded data on weafrables and compare
them to HTTPS performance on smartphones.

III. EXPERIMENTAL METHODOLOGY

We first present the devices used in the experiments, fol-
lowed by the scenarios and the evaluation metrics.

A. Devices
We select two devices representative of two popular wear-

able categories: smartglasses and smartwatches. Specifically,
we use Google Glass Explorer edition running Android XE
18.11 as an example of smartglasses, and LG G Watch R
running Android Wear 5 as an example of smartwatches.
Baseline results are obtained from a Nexus 4 smartphone
running Android 5. All communication to the Internet is done
via WiFi while the smartphone and smartwatch communicate
via Bluetooth Classic. The hardware specifications for all the
devices is shown in Table I.

B. Experimental Scenarios
We perform two sets of experiments; 1) within a controlled

testbed of a customized web server and client-side application,
and 2) with publicly available Internet web servers and existing
client applications. We focus on file download only (i.e., GET),
as the same observations and trends also hold true for the file
upload (i.e., POST).

Controlled Testbed. We run a web server in the local
network that supports HTTP and HTTPS file requests. The
server runs Apache server 2.4.7 on Ubuntu 14.04; we disable
caching and page encoding by setting the specific headings
in the downloaded PHP files. On the client side, we develop
a custom mobile/wearable app that is compatible with all the
three devices, and can generate a single GET or single POST
request to the web server. We were not able to leverage existing
wearable apps as they do not allow the user to select between
HTTP and HTTPS protocols, nor to collect performance
statistics. We run the following two sets of experiments in
the controlled testbed. Each experiment is repeated 30 times
and we present cumulative results averaged over all the runs.

1) Exp1: downloading a single file (GET request) from the
local web server, which allows us to characterize the cost
associated with different phases of a HTTP/HTTPS session
precisely. We also vary the file size to understand the main
factors contributing to this cost on wearables. For this ex-
periment, as the reference TLS parameters, we use TLS 1.0
version with the following set of algorithms: ECDHE for key
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TABLE II
WEBSITES USED IN OUR EXPERIMENTS.

Website Url ID

Bing www.bing.com B
Apple www.apple.com A
VK www.vk.com V

Terraclicks www.terraclicks.com T
Java www.java.com J

Douban www.douban.com D

exchange, RSA for authentication, AES 128 for bulk cipher,
and SHA for MAC.

2) Exp2: downloading a single file from the local web
server with different combinations of TLS cryptographic al-
gorithms. We vary the supported TLS algorithm combinations
one by one and tested them on a fixed file size of 100 KB. As
there are many options available for each of the four major
types of algorithms involved in TLS, we focus on the ones
frequently used on modern devices. For the key exchange
algorithm, we select RSA (2048 bits) and ECDHE (65 bytes).
The former is one of the oldest algorithm developed for key
exchange and is still in wide use [8]. The latter is the preferred
choice on modern devices and web servers. For the authentica-
tion algorithm, we select RSA, since RSA signed certificates
are the most used on the web. We do not consider ECDSA
as the usage of ECDSA signed certificates on the web is still
in a very earlly stage. We choose to experiment with AES
(128 and 256 bit) and RC4 for bulk cipher algorithm. We test
RC4 to compare stream-based algorithms against block-based
algorithms such as AES. For the MAC algorithm, we choose
SHA. Modern web servers use AES as bulk cipher algorithm
and SHA as the MAC algorithm, as they are the most secure
algorithms available in their respective categories [7], [19].

Internet Experiments. We investigate the impact of
HTTPS on wearables in realistic settings with public web
servers and existing web browsers. Specifically, Exp3 allows
us to measure the impact of TLS when multiple parallel
TCP connections and multiple external servers are used to
access web resources from the wearables. Each experiment is
repeated 5 times and we present the average results of all the
runs.

3) Exp3: We select a subset of websites from the Alexa top
5001 and download the landing webpages of those websites.
The selected websites support both HTTP and HTTPS and
transfer all objects using one of the two protocols. It turns out
that only 6 websites satisfy our requirements (Table II), while
the others either support only one of the two protocols, or use
a mix of HTTP and HTTPS for the data exchange. As our goal
is to understand the cost of HTTPS with multiple connections
and servers and not to provide an in-depth analysis of the
impact of HTTPS on user web experience, we believe these
websites are sufficient for Exp3. On the client side, we use
web browsers as apps because we need to parse the website’s
entire root page, and recursively fetch embedded objects. We

1http://www.alexa.com/topsites

also disable HTTP/2 in order to avoid long-lived HTTPS
connections [9], and caching. Specifically, we use Android
WebView2 for the smartphone and smartglasses, and Android
Wear Internet Browser3 for the smartwatch as WebView is not
supported on the smartwatch.

C. Evaluation Metrics
We consider the amount of downloaded data, the data

transfer time and the energy consumption as the main metrics
for our analysis. To measure the downloaded data and data
transfer time, we first run tcpdump on each device to capture
the packets for each experiment. We then extract the total
number of bytes downloaded, as well as the time taken by
each phase of the HTTP/HTTPS connections by analyzing the
TCP packet transmissions between the server and the client.

We consider both the raw energy usage and the energy con-
sumption normalized by the battery capacity of each device.
Raw energy consumption is measured for every experiment
with a Monsoon power monitor4 directly connected to each
device via USB. Energy is obtained by integrating the in-
stantaneous power values calculated using current and voltage
measurements sampled at 0.2 ms time intervals. We carry
out all the experiments with a fully charged battery to pre-
vent additional current being drawn from the power monitor.
Hence, the current drawn from the power monitor is only
required to perform the task associated with the experiments
and background processes. The exact energy usage of the
experiment is computed by deducting the energy utilization
of the background processes. Background process energy use
is approximately constant when the device is in the idle state.

IV. CONTROLLED TESTBED

In this section, we present a set of experiments performed
in a controlled testbed to characterize the impact of TLS on
wearables. We first present a detailed analysis of a single file
exchange for different sizes (Exp1), and then investigate the
influence of TLS algorithms (Exp2).

A. Understanding the Cost of TLS
As an illustrative example, Figure 2 shows an instance of

the power consumption profile for the smartwatch when down-
loading a 500 KB file from the local web server. The profile
shows the different phases of the data transfer, namely TCP
handshake, TLS handshake, Data exchange, and Connection
termination. Additionally, we can observe Application start-up
and High power idle phases in the power consumption profile.

We clearly observe that each phase has a different character-
istic value for each metric. The highest power level is reached
during the Data exchange phase for both HTTP and HTTPS,
on average 534.12 mW and 516.38 mW respectively. This cost
is primarily due to the active radio transmitters/receivers. The
power profile for the data exchange phase is closely correlated
with the data transfer rate. By observing the elapsed time

2http://developer.android.com/reference/android/webkit/WebView.html
3https://play.google.com/store/apps/details?id=com.appfour.wearbrowser
4https://www.msoon.com/LabEquipment/PowerMonitor/
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(b) LG G Watch R power profile for HTTPS.

Fig. 2. Energy consumption profile when downloading a 500 KB file.

and bytes downloaded, we can infer a lower downlink data
rate for HTTPS than HTTP due to the processing overhead
of encrypting data (i.e., 2.1 Mbps vs. 2.6 Mbps). Despite
the lower average power, the total power consumption for
data exchange is larger for HTTPS, because of the encryption
and the longer data exchange time due to the combination of
additional encryption bits and lower data rate.

TCP connection management (i.e, TCP handshake and
Connection termination) consumes very little energy as it is
composed of only a few packets. Energy consumption for
Application start-up is not negligible, although there is no data
exchanged during this period. High power idle profile (∼200
mW for ∼200 ms) is similar for both HTTP and HTTPS as
it is independent of the higher layer protocols.

As explained in the background section, TLS handshake is
an additional phase in HTTPS where the client and server
agree upon the TLS attributes for the session and exchange
keys for payload encryption/decryption. Although the TLS
handshake generates limited data, it has a significant energy
footprint as this phase takes about 147 ms and 405.22 mW
on average; we further examine the performance details in the
following paragraphs.

Figures 3(a) and 3(b) present the average values of data
transfer time and energy consumption for each phase of the
HTTP/HTTPS connection respectively, while Table III reports
the downloaded data in bytes for each phase. Overall, as
expected, we observe that TLS increases the data transfer time
by ∼75% to ∼90%, the amount of downloaded data by ∼2%
and the energy consumption by ∼70% to ∼100% for all the
devices when downloading a 500KB file.

Also as expected, the large file size used in this experiment

TABLE III
DOWNLOADED DATA AMOUNT (BYTES) FOR DIFFERENT CATEGORIES.

Protocol TCP TLS Data Connection
hand. hand. down. term.

HTTP 74 - 523212 66
HTTPS 74 5421 524390 132

TABLE IV
HTTPS
HTTP RATIO OF DOWNLOAD DATA AMOUNT (BYTES) FOR DIFFERENT

TLS PARAMETERS.

RSA+ RSA+ RSA+ ECDH+ ECDH+ ECDH+
RC4 AES128 AES256 RC4 AES128 AES256

1.0515 1.0524 1.0524 1.0548 1.0557 1.0557

makes the impact on the total amount of data exchanged of
the other phases negligible as can be seen from Table III.
The smartphone provides the best performance in terms of
data transfer time followed by smartwatch and smartglass
(cf. Figure 3(a)). This reflects the hardware capabilities of
the different devices, which in turn influences the energy
consumption as shown in Figure 3(b). On the one hand, larger
devices consume more power as we observe on the left-
hand side (from the middle) of Figure 3(b). On the other
hand, as the battery capacity of smartphone is larger than
their wearable counterparts, the relative energy consumption is
more significant on the wearables as shown on the right-hand
side (from the middle) of Figure 3(b). To further validate our
results, in particular our baseline, we compared the energy
consumption and data transfer time of smartphone with the
previously reported results. Miranda et al. [12] showed that
the energy values are between 100 mJ and 150 mJ per
HTTPS transaction using the same TLS parameters as in our
experiments; whereas our average energy consumption value is
128 mJ. Similarly, the data transfer times in [12] are between
100 ms and 200 ms whilst our results show 110 ms average.

We further analyze the TLS handshake process in detail
for all the devices in Figure 3(c). We make two main ob-
servations. First, the different duration of the TLS handshake
across devices reflects their hardware characteristics. Second,
certificate validation and key computation on the client side
(TLS handshake sub-phases 3 through 7, as explained in the
background section) is taking ∼87% of the total time of TLS
handshake.

Take-away message: The energy consumption and data
transfer time during the costly TLS handshake phase depend
on the hardware capabilities of the device. As expected, the
cost of TLS is more significant in the lower resourceful
wearable devices than in the smartphones.

B. Impact of the Wireless Communication Technology

Bluetooth communication is utilized if smartwatch apps
leverage the smartphone to connect to the Internet (BT relay-
ing), as this is the chosen method for most current applications
[3]. We measured the energy consumption and data transfer
time for BT relaying via Bluetooth, and compare them to direct
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Internet communication using HTTP and HTTPS over WiFi.
We assume that the smartwatch and smartphone are already
paired and are less than 1 metre apart for BT relaying. Fig-
ure 4 shows the smartwatch energy consumption normalized
by 100% battery capacity and the data transfer time. The
energy consumption of this additional data exchange between
smartwatch and smartphone is ∼6 times higher than via WiFi
on a smartwatch. Also, Bluetooth relaying adds ∼4 seconds
of additional data transfer time. WiFi guarantees the minimal
power/throughput ratio [6], and is thus more power efficient
than Bluetooth for file transfer. Also, the Bluetooth transfer
significantly increases the transmission delay because of the
lower transmission rate compared to WiFi and the additional
relaying with the smartphone.

Take-away message: Direct Internet communication re-
duces energy consumption and data transfer time compared
to the current norm of Bluetooth relaying.

C. Impact of Transfer File Size
The effect of TLS protocol selection on the varying sizes

of downloaded files is shown in Figure 5. Overall, the HTTPS
HTTP

ratio is comparable across devices and decreases as the file
size increases for all the metrics: the larger the file, the more
the cost of TLS handshake is amortized.

The ratio of data transfer time ( HTTPS
HTTP ) is highest in thes-

martglasses followed by the smartwatch and smartphone for all
file sizes (Figure 5(a)). However, the magnitude of the down-
load bytes ratio ( HTTPS

HTTP ) is almost identical for all three devices

as they use the same TLS parameters (Figure 5(b)). Finally,
Figurse 5(c) and 5(d) show the impact of TLS to be higher
on the phone, but the impact is relatively lower as the phone
battery has a larger total capacity. Also, despite the higher
HTTPS
HTTP energy consumption ratio for small files, the relative

impact of these protocols is higher for large files because of the
longer data transfer duration and encryption/decryption being
done for more bytes.

Take-away message: Despite the lower resources in wear-
ables, the relative cost of enabling secure direct communica-
tion on wearables is comparable to smartphones.

D. Impact of Cryptographic Algorithms
The results of data transfer time ratio and energy consump-

tion ratio obtained by running different combinations of cryp-
tographic algorithms are shown in Figure 6(a) and 6(b), while
Table IV shows the downloaded bytes ratio. Moreover, Figures
6(c) and 6(d) show the effect of changing TLS parameters
on Data exchange and TLS handshake phases. As expected,
various cryptographic algorithms have different impacts on
HTTPS performance for all the devices. Overall, changing
cryptographic parameters is less significant than modfying the
other parameters (e.g., file size).

Using ECDHE instead of RSA leads to an increase in the
downloaded bytes, data transfer time, and the energy con-
sumption. As mentioned earlier, the key exchange algorithm
has a significant impact on the key exchange phase for all
the three devices. For example, changing the key exchange
algorithm from (RSA+RC4) to (ECDHE+RC4) leads to a
∼7% increase in downloaded bytes, ∼10% increase in data
transfer time and ∼1% increase in energy consumption on the
smartwatch’s key exchange phase. This is because ECDHE
uses more complex mathematical operations than RSA to
perform the encryption/decryption.

The choice of bulk cipher algorithm in TLS does not have
a significant impact on the metrics. For example, changing the
bulk cipher algorithm from (RSA + RC4) to (RSA + AES128)
leads to ∼0.1% increase in downloaded bytes, ∼1% increase
in data transfer time and ∼1% increase in energy consumption
on the smartwatch’s application data transfer phase.

Take-away message: Changes in the cryptographic param-
eters do not have a significant impact on the considered
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(c) Energy consumption.
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Fig. 5. Impact of file size on data transfer time, data downloaded and energy consumption.
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(a) Data transfer time.
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(b) Energy consumption.
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Fig. 6. Impact of TLS parameters on data transfer time and energy consumption.
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Fig. 7. (a)-(b)-(c) Analysis of the number of connections/servers involved in data exchange between mobile devices and Internet websites. Refer to Table II
for website identifiers. (d) Ratio of RTT values HTTPS

HTTP .

evaluation metrics.

V. INTERNET EXPERIMENTS

In this section, we present a set of experiments performed
with Internet websites to understand the impact of TLS
when multiple parallel TCP connections and multiple external
servers are involved in a data exchange. We first analyze
the properties of data exchange when mobile devices interact
with the web content (i.e., number of connections and servers
involved in the data exchange and RTT). We then investigate
the role of the main data exchange parameters (i.e. number
of servers, number of connections) on the TLS cost. For
all experiments in this section, we follow the experimental
methodology Exp3, using the websites reported in Table II.

A. Understanding Data Exchange with Web Servers
We start our analysis by investigating the main character-

istics of the data exchange between the devices and external
websites. The goal is to identify the main parameters that may
affect the cost of HTTPS and quantify their effect.

Figures 7(a), 7(b), and 7(c) depict the average number
of connections and servers involved in each data exchange
for HTTP and HTTPS for each device type. As expected,
we observe the number of servers and connections involved
in the communication varies between websites. Specifically,
the numbers of servers ranges between 1 and 7, while the
number of connections is between 4 and 13. Indeed, those
parameters are specific to each website and are related to the
number of embedded objects and the servers from which they
are delivered to the users.

We also notice that the same websites on different devices
use a different number of connections and servers, even for the
same protocol. For instance, https://www.apple.com
(A) opens 6, 7, and 8 connections for HTTPS in smartwatch,
smartglass and smartphone respectively. This is due to two
main factors. First, websites provide different versions to users
according to the device type. These versions may differ on the
data exchange parameters (e.g., servers, connections), but can
also differ in the actual content (e.g., embedded objects, main
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Fig. 8. TLS cost distribution of websites in the three devices. The marker identifies a website (Table. II) and the device.

page). Second, different devices and browsers have a different
level of support for websites’ features (e.g., Javascript, Flash).

B. Analysis of the Cost of TLS in the Wild
Figures 7(a), 7(b), and 7(c) show that the number of

servers and connections varies between HTTP and HTTPS for
most websites due to the reasons that were explained in the
previous subsection. It is not possible to identify a clear trend,
however, as the number of servers and connections increases
with TLS for some websites while it decreases for others. As
an explanation for this behaviour, we note that the number of
connections basically depends on TCP connection reusability,
where if there is an existing open connection, the browser tries
to use that connection to fetch a new web object rather than
opening a new connection. Most websites have different data
exchange parameters for HTTP and HTTPS, and that those
parameters are specific to each website.

We report the average Round Trip Time (RTT) ratio ( HTTPS
HTTP )

for each website in Figure 7(d). The RTT value always
increases with HTTPS (i.e., from ∼10% to ∼90%), due to
the additional processing overhead at both the servers and
the clients required for data encryption/decryption. Intuitively,
we expect low-resource wearables to have a larger increase
in RTT, which is not what we observe, as the increase
is approximately similar for all devices. This suggests that
HTTP/SSL computation on low-resource client devices has a
lower impact on the RTT than on the server side.

Figure 8(a) depicts the ratio ( HTTPS
HTTP ) of downloaded bytes

for each website and device. The larger the size of the website,
the lower the cost of TLS in terms of downloaded bytes (i.e.,
the ratio is ∼1.5 when the file size is 100 KB and ratio goes
down to ∼1.05 when the file size increases up to 1 MB). This
confirms that the trend noticed in Exp1 also holds true for the
data exchange with Internet websites. Among the measured
websites, www.terraclicks.com (T) has the smallest
size, yet TLS has the greatest performance impact. Moreover,
as highlighted in the previous section, since websites provide
different content for different devices and hence use a different
number of connections in those devices, the volume of data
exchanged is different. Therefore the downloaded bytes ratio
( HTTPS

HTTP ) varies across devices for the same website.
In Figure 8(b), we show the relation between the number

of connections and the downloaded bytes ratio ( HTTPS
HTTP ) for

each website across devices. As expected, due to extra bytes

added by the TLS handshake for each and every connection
in HTTPS, the HTTPS

HTTP ratio increases with the number of con-
nections (i.e., ∼1.05 for 4 connections to ∼1.4 for 12 connec-
tions). However, in cases such as www.terraclicks.com
(T), the byte overhead is dominated by the small size of the
website rather than the number of connections. Due to the
different sizes of certificates and different configurations of
TLS parameters supported by different servers, the number
of extra bytes added to each connection varies. This causes
slight deviations to the expected trend for the ratio ( HTTPS

HTTP )
vs. number of connections.

As observed in Exp1, the data exchange time ratio impacts
the energy consumption ratio the most. Therefore, we analyze
the energy consumption ratio (Figure 8(c)) as a linear function
of the data exchange time ratio (in the range ∼1.05 to ∼1.5).
As highlighted in Exp1, TLS handshake time and lower data
transferring rate in HTTPS are the major causes of the longer
duration in HTTPS.

Take-away message: The impact of the device type for data
transfer time is less when accessing the Internet servers than
the controlled testbed, due to the fact that the server side
latency is more significant than in the client side. Moreover,
the impact of TLS on the evaluation metrics have the similar
behavior in both controlled testbed and Internet results.

VI. MAIN FINDINGS AND RECOMMENDATIONS

The main finding of the paper is that secure direct Inter-
net connectivity via WiFi on wearables is feasible, improves
performance and reduces energy footprint. In light of that, we
provide the following recommendations to wearable applica-
tion/system developers:

• Although wearables have the ability to connect to the In-
ternet directly, most current wearable applications lever-
age the smartphone to connect to Internet. However,
this requires the transfer of data from wearables to the
smartphone via Bluetooth, and results in an increase in
both data transfer time and energy consumption.
By using direct secure Internet communication instead
of Bluetooth relaying for a typical website download,
it is possible to achieve ∼78% energy savings on the
wearable (as well as 100% in the smartphone) and reduce
elapsed time by ∼40%. Therefore, we recommend that
app developers should utilize direct Internet connectivity
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via WiFi from wearables eliminating the additional costly
step of Bluetooth relaying.

• Despite the resource constraints on wearables, the rel-
ative cost of HTTPS, (i.e. the HTTPS

HTTP , ratio) in terms
of data transfer time is comparable on wearables and
smartphones for all the sizes. The amount of downloaded
data is the same for any size of data download, if all the
TLS algorithms used are the same for all the devices.
Thus, standalone secure wearable applications can be
practically realized utilizing the existing secure protocols
such as HTTPS.

Moreover, we have the following observations that hold true
for both smartphones and wearables.

• As expected, the impact of HTTPS is mostly driven
by the size of the object (e.g., webpage, file) and the
number of TCP connections, and it is dominated by
the TLS handshake processing and delays. For small
objects, TLS induces a significant increase in the energy
consumption, the data transfer time, and the volume
of downloaded data. However, for large objects, the
TLS cost is relatively smaller, and can be in the order
of 15%. These costs also increase with the number of
connections and the servers. The TLS handshake is the
main contributor to the additional cost of HTTPS, while
data encryption/decryption has a much lower impact.
Therefore, the traditional approaches used in the mobile
communications such as bulk transferring and reducing
the number of TLS sessions can be exploited to improve
the performance.

• The choice of TLS algorithms has a limited impact on
the overall TLS cost. Key exchange is the stage that can
be influenced the most by the choice of the algorithm and
therein lies a security/performance trade-off. Conversely,
different bulk cipher algorithms provide similar perfor-
mance, and the one guaranteeing stronger security can
thus be selected without adding much overhead.

VII. CONCLUSION

In this paper, we answered the critical question – “Are
wearables ready for HTTPS?” – through a systematic experi-
mental measurement study using of-the-self wearable devices.
We ran our experiments of downloading files over HTTP and
HTTPS from an internal server that we have control over and
also downloading 6 of the most popular websites according
to Alexa ranking that support both HTTP and HTTPS. We
consider the amount of downloaded data, the data transfer
time, and the energy consumption as the main metrics for our
analysis.

The experimental results showed that current wearables are
ready for HTTPS, i.e. for secure and direct Internet connec-
tivity. In fact, direct Internet communication via WiFi reduces
energy consumption and improves performance compared to
the current norm of Bluetooth relaying through a smartphone.
Therefore, we advocate that wearable app/system developers
should leverage these advanced capabilities of wearables to
drive a paradigm shift toward standalone wearable devices. We

also showed that relative impact of securing the connection in
wearable is similar to smartphones and provided recommen-
dations to app/system developers to further optimize efficiency
and improves security using existing techniques.

Finally, important directions for future work are to study
the cost of HTTPS in the cellular interface when it becomes
common in consumer wearables, and to evaluate the perfor-
mance of other commonly used protocols such as HTTP/2 and
QUIC on wearables.

REFERENCES

[1] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security:
How Much Does It Really Cost?” in INFOCOM, Mar 1999, pp. 717–
725.

[2] D. Berbecaru, “On measuring ssl-based secure data transfer with
handheld devices,” in 2005 2nd International Symposium on Wireless
Communication Systems, Sept 2005, pp. 409–413.

[3] J. Chauhan, S. Seneviratne, M. A. Kaafar, A. Mahanti, and A. Senevi-
ratne, “Characterization of early smartwatch apps,” 2016 IEEE In-
ternational Conference on Pervasive Computing and Communication
Workshops, PerCom Workshops 2016, no. May, 2016.

[4] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance Analysis of
TLS Web Servers,” ACM Trans. Comput. Syst., vol. 24, no. 1, pp. 39–69,
Feb. 2006.

[5] T. Danova, “THE WEARABLES REPORT: Growth trends,
consumer attitudes, and why smartwatches will dominate,” pp.
1–4, 2014. [Online]. Available: http://www.businessinsider.com/
the-wearable-computing-market-report-2014-10?op=1

[6] R. Friedman, A. Kogan, and Y. Krivolapov, “On Power and Throughput
Tradeoffs of WiFi and Bluetooth in Smartphones,” IEEE Trans. on Mob.
Comput., vol. 12, no. 7, pp. 1363–1376, Jul. 2013.

[7] P. Hoffman and B. Schneier, “Attacks on cryptographic hashes in internet
protocols,” Tech. Rep., 2005.

[8] L.-S. Huang, S. Adhikarla, D. Boneh, and C. Jackson, “An experimental
study of tls forward secrecy deployments,” IEEE Internet Computing,
vol. 18, no. 6, pp. 43–51, 2014.

[9] IEFT, “RFC 7540 - Hypertext Transfer Protocol Version 2 (HTTP/2)
http://tools.ietf.org/html/rfc7540,” pp. 1–96, 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7540

[10] IETF, “The Transport Layer Security (TLS) Protocol Version 1.2,”
https://tools.ietf.org/html/rfc5246.

[11] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen,
“Characterizing smartwatch usage in the wild,” in Proceedings of the
15th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’17. ACM, 2017, pp. 385–398. [Online].
Available: http://doi.acm.org/10.1145/3081333.3081351

[12] P. Miranda, M. Siekkinen, and H. Waris, “TLS and Energy Consumption
on a Mobile Device: A Measurement Study,” in ISCC, Jun. 2011, pp.
983–989.

[13] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Marco,
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