Device-Specific Anomaly Detection Models for IoT
Systems

Abstract—

The Internet of Things (IoT) has transformed home automa-
tion, industry, and agriculture, yet security remains a major
challenge. IoT systems comprise a wide range of devices gen-
erating vast and heterogeneous data. This paper investigates
device-specific and device-type-specific anomaly detection models,
highlighting the potential of leveraging unique traffic patterns
from heterogeneous IoT devices. These models are compared
to a single model trained on data from all devices, using eight
different Machine Learning (ML), Deep Learning (DL), and One-
Class Classifiers (OCC) on two IoT-collected datasets.

The findings of this paper revealed that device-specific and
device-type-specific models outperform single models when the
data is dominated by one class or when using one-class clas-
sifiers. Typically, real-world IoT devices generate normal traffic
before any attack or intrusion. In this context, device/device-type
models can be more effective for real-time anomaly detection by
identifying attacks through deviations from the normal profile
established for each device or device type.

Index Terms—Internet of Things (IoT), Intrusion Detection
System (IDS), Anomaly Detection, Device-based Model, Machine
Learning (ML), Deep Learning (DL), One-Class Classifier (OCC),
IoT Datasets.

I. INTRODUCTION

The Internet of Things (IoT) aims to connect millions of
smart devices, revolutionizing domains like home automation,
healthcare, industry, and agriculture. The rapid growth of IoT
brings significant security and privacy challenges. Solutions
like Intrusion Detection Systems (IDS) must adapt to IoT’s
unique characteristics, such as low-computation capabilities
and diverse traffic types.

In traditional intrusion detection systems, a common prac-
tice involves employing a single model to analyze the entirety
of IoT network traffic in search of anomalies. In contrast,
adopting a “Device-Specific” or “Device-Type-Specific” ap-
proach involves creating intrusion detection models for each
individual device (e.g., camera A, camera B, etc.) or device-
type (e.g., cameras, home assistants, etc.). A major research
question is determining whether Device-Specific or Device-
Type-Specific intrusion detection models will enhance the
overall capability of an IDS system to detect anomalous
behaviour when contrasted with the conventional singular
model approach.

We build upon the premise that device-specific or device-
type-specific models, encapsulating the distinctive traits and
behaviours of individual IoT devices or those within specific
groups, are likely to exhibit enhanced accuracy in identifying

anomalous behaviour. The diversity in behavioural patterns
across different devices or device-types is anticipated to con-
tribute to a more effective intrusion detection system tailored
to the intricacies of IoT systems.

Device identification has been extensively studied, with
various methods proposed for automatically identifying IoT
device types within a network. Jmila et al. [1]] reviewed ML-
based approaches for classifying IoT devices by their network
traffic and Anthi et al. [2] applied ML to classify devices based
on traffic.

Despite many device identification approaches, few focus
on using device-specific or device-type-specific models for
anomaly detection. A device-specific model is trained on data
from a single IoT device, while a device-type-specific model
is trained on collective data from several devices of the same
type, such as cameras. Supervised learning approaches require
attack records and labelled datasets, which are costly and
labour-intensive to generate.

In large real-world IoT systems, devices primarily generate
normal traffic. This paper evaluates the efficiency of both
supervised and unsupervised learning for anomaly detection.
One-Class Classifier (OCC) methods, a type of unsupervised
learning, are trained on normal IoT traffic, treating deviations
as anomalies. We compare the performance of single, device-
specific, and device-type-specific models using eight different
Machine Learning (ML), Deep Learning (DL), and OCC
methods. We address the following research questions:

1) What is the comparative accuracy difference between a
single model for all IoT devices versus utilizing device-
specific models tailored to individual devices?

2) Which modelling approach yields better accuracy out-
comes: device-specific models tailored for each IoT
device or device-type-specific models that apply a model
to devices with similar type?

II. RELATED WORK

Fingerprinting device behaviour can be used for both device
identification and anomaly detection, where anomalies may
indicate device misbehaviour or cyberattacks. Device identi-
fication has been extensively studied, with various methods
proposed, such as AuDI, IoTTFID, and loTDevID. In contrast,
using device behaviour fingerprinting for anomaly detection in
IoT remains a relatively nascent field.

A few methods focus on profiling network traffic using
device/device-type models trained on normal device behaviour,



including one proposed by Sivanathan et al. [3]], ComplexIoT
(4], and DIoT [5].

Sivanathan et al. [3]] proposed an system that classifies IoT
devices based on network activity, dynamically adapting to
changes like firmware updates. Key traffic attributes are iden-
tified, traffic instances are grouped using K-means clustering
and device behaviour is represented using unsupervised OCC
models. ComplexIoT [4] classifies [oT traffic by assigning a
trust score to each flow based on complexity and variance,
leading to more precise anomaly detection boundaries for
simpler devices, and generalized boundaries for more complex
devices.

DIoT [3] leverages a device-type-specific anomaly detection
approach, comparing each device’s behaviour to a specific
device-type profile. The authors argue that a single model
for all devices can lead to high false positives or reduced
sensitivity due to IoT diversity. By employing dedicated
models for each device type, DIoT more accurately captures
behaviour patterns, improving anomaly detection. This system
uses Gated Recurrent Units (GRUs) within a federated learning
framework, to aggregate profiles across devices. Comparing
single vs. device type models, false positive rates of 0.67%
and 0%, and true positive rates of 97.21% and 95.6% are
achieved, respectively.

This study assesses anomaly detection performance using
device-specific and device-type-specific models across two
datasets with varying devices and types.

III. METHODOLOGY
A. Learning Methods

This paper employs various state-of-the-art ML, DL, and
OCC methods. The investigated ML and DL algorithms are
Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), and Deep Neural Network (DNN), while the OCC
methods include iForest (Isolation Forest), One-Class Support
Vector Machine (OCSVM), Local Outlier Factor (LOF), and
Deep Support Vector Data Description (DeepSVDD) [6].

iForest is an ensemble anomaly detection method that
isolates anomalies by recursively partitioning the data to
create a forest of trees [7]. OCSVM is an unsupervised
ML algorithm designed for novelty detection that learns a
decision boundary to encapsulate normal data points and
identifies deviations as anomalies [8]]. LOF is a density-based
anomaly detection method that estimates data point density by
measuring distances between points, identifying denser regions
as normal and less dense regions as outliers [[7]. DeepSVDD
is an OCSVM-related technique that uses a hypersphere to
separate data samples, leveraging neural networks to learn
useful feature representations for anomaly detection [6].

B. Datasets

To assess IoT security solutions, datasets representing IoT
behaviour, including normal and malicious behaviour, are
needed. To implement the experiments, device IDs are re-
quired. Only some datasets provide device IDs in their feature

vector. For others, the device IDs can be obtained from the
provided PCAP (Packet Capture) files, if available.

1) N-BaloT dataset: The N-BaloT dataset [9]] is collected
from nine commercial IoT devices with scanning, junk spam,
UDP and TCP flooding, ACK and SYN flooding attacks.
Behavioural snapshots of network flows are captured for
multiple time windows. There are 7,062,606 records, with 92%
attack records. The record distribution among devices in this
dataset is as follows: two devices hold approximately 5% of
the data each, while the remaining seven devices hold between
10% and 16% of the data each.

2) CICIoT2023-Packet dataset: The CICIoT2023 dataset
[10] was collected from 105 real IoT devices in a large
IoT testbed, and includes 33 distinct attacks, categorized into
seven groups: DDoS, DoS, reconnaissance, web-based, brute
force, spoofing, and Mirai. To create a dataset with Device
IDs, we generated CICIoT2023-Packet dataset from the PCAP
files of this dataset, using Tcpdump, Scapy, Socket, Numpy,
and Pandas Python packages with packet-level features. The
generated dataset was 820GB, thus subsampling was per-
formed, reducing the dataset to 9.8GB. All benign traffic was
retained as the data predominantly consisted of attack records.
For each attack subcategory, a maximum of 40,000 records
were randomly selected. The dataset was then cleaned and
preprocessed.

The generated dataset comprises data from 69 devices,
with a highly non-uniform data distribution among different
devices. Some devices are predominantly composed of normal
records, while others are predominantly composed of attack
records. Devices with minimal or no normal records were
excluded because one-class classifiers need a sufficient amount
of normal traffic to establish normal behaviour profiles, and
ML/DL models require adequate samples from both normal
and attack classes. The final dataset includes data from 62
devices belonging to seven groups. The data distribution is
highly non-uniform, with most devices holding less than 2%
of the data, while two devices hold 18% and 21%.

C. Performance Metrics and Experimental Design

This paper evaluates the performance of eight algorithms for
binary classification using metrics, such as accuracy, precision,
recall, and F1-score with a primary focus on accuracy and F1-
score. Accuracy indicates the ratio of correct classifications
on the entire test set, while F1-score is the harmonic mean of
precision and recall. These metrics are extensively described
in related works (e.g., [10]).

Records from each device (or device type) are randomly
split into 70% train set and 30% test set. Various ML/DL/OCC
algorithms are applied to the datasets. The binary classification
results, averaged over five independent runs, include both the
average and standard deviation. ML and DL methods are
trained on the entire train set, while OCC methods are trained
on the normal records from the train set. During evaluation,
records are classified as benign (normal) or anomalous.



IV. EXPERIMENT RESULTS
A. Device-Specific Models for Anomaly Detection

1) Device-Specific Models on the N-BaloT Dataset: Nine
device-specific models are trained on data from each of
the nine devices of the N-BaloT dataset using various
ML/DL/OCC methods. The accuracy and Fl-score of binary
classification for each of the nine models are averaged over
five runs. The accuracy results are displayed in a heatmap in
Figure [T} These findings are concluded:
o« ML/DL consistently outperformed OCC.
e Among OCC methods, DeepSVDD performed well
across all devices, especially #1 and #9.

e LOF ranked after DeepSVDD, with moderate perfor-
mance for most devices except #2 and #9.

« iForest showed the worst accuracy in almost all devices.
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Fig. 1. Accuracy of Device-Specific Models (N-BaloT dataset).

Table [I| presents the average scores of all device-specific
models implemented using various algorithms, showcasing
metrics along with their respective standard deviations (SD)
across the nine models.

TABLE I
AVERAGE SCORES OF DEVICE-SPECIFIC MODELS (N-BAIOT DATASET).
Accuracy Precision Recall F1-Score
’Me‘h"d H% [ Sb %% [ SD %% [ Sb %% [ SD %
LinearSVM [| 99.97 | .0013 | 99.98 | .0012 | 99.98 | .0005 | 99.98 | .0008
DT 100 .0002 | 100 .0001 | 100 .0001 | 100 .0001
RF 99.98 | .00I1 | 99.99 | .0012 | 99.99 | .0005 | 99.99 | .0007
DNN 99.99 | .0008 | 99.99 [ .0005 | 99.99 | .0005 [ 99.99 | .0005
iForest 40.73 |1 16.2 94.86 | 4.86 3573 | 18.4 4890 | 182
OCSVM 61.74 | 15.6 92.80 | 444 62.87 | 17.5 73.72 | 132
LOF 70.84 | 184 9779 | 2.83 68.68 | 20.6 7875 1 17.0
DeepSVDD || 88.40 | 10.0 99.42 [ .0039 | 87.90 | 11.3 92.14 | 824

To evaluate the effectiveness of device-specific models ver-
sus a single model for all devices, the performance of the sin-
gle model is compared with the average of all device-specific
models, presented in Table highlighting the improved

metrics. When using ML and DL algorithms, there were
minor or no differences in accuracy and Fl-score between
the two types of models. However, significant differences
emerged with OCC methods. Specifically, iForest and OCSVM
showed notable improvements with device-specific models,
with iForest’s accuracy and Fl-score nearly doubling, and
OCSVM’s metrics improving by 7.5% and 3%, respectively. In
contrast, LOF and DeepSVDD performed worse with device-
specific models, with LOF seeing a decrease in accuracy and
Fl-score by 29% and 21%, and DeepSVDD experiencing
a decrease of 4% and 3%, respectively. Overall, ML and
DL methods generally achieved higher accuracy. LinearSVM
and DNN showed slight improvements with device-specific
models, while other methods remained consistent. In terms of
F1-scores, two algorithms remained unchanged, RF improved,
and DNN declined when utilizing device-specific models.

TABLE 11
SINGLE MODEL VS. AVERAGE OF DEVICE-SPECIFIC MODELS: N-BAIOT.
Accuracy F1-score

Method Single [ Device | Single | Device

Model model | Model model

LinearSVM 99.96 99.97 99.98 99.98

ML: DT 100 100 100 100
RF 99.96 99.98 99.98 99.99

DL: DNN 99.99 99.99 100 99.99
iForest 20.78 40.73 24.14 48.90

OCSVM 57.42 61.74 71.53 73.72

OCC: | LOF 99.21 70.84 99.57 78.75
DeepSVDD 92.07 88.40 95.16 92.14

Figure 2 shows the performance comparison between single
and device-specific models by subtracting the accuracy of the
single model from the average accuracy of device-specific
models. Negative values (yellow to red) indicate the single
model’s superiority, while positive values (yellow to green)
indicate the device-specific models’ superiority. The results
revealed the following insights:

o The difference in performance between single-model and
device-specific approaches is minimal for ML/DL meth-
ods but varies significantly for OCC methods.

« Device-specific models using iForest consistently outper-
formed the single model across all devices.

o Device-specific models using LOF performed worse than
the single model.

o When considering same-type devices, the algorithm type
plays a more significant role in determining the best
approach, rather than differences within the devices them-
selves.

2) Device-Specific Models on the CICIoT2023-Packet
dataset: Device-specific models were trained on data from
62 devices using ML/DL/OCC. Due to its resource-intensive
nature, the OCSVM algorithm was executed on 5% of the data.
Similar to the N-BaloT dataset results, ML and DL methods
outperformed one-class classifiers.

Table [[T]] displays metrics averaged over all device-specific
models, along with standard deviations from the average across
all models.
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o The single model based on ML/DL algorithms exhib-
ited higher accuracy across all device types except for
NextGeneration devices.

o For NextGeneration devices, holding 43% of all data
and also dominated by one class (i.e., attack class),
device-specific models consistently outperformed the sin-
gle model across all algorithms.

o Generally, device-specific models using OCC methods
outperformed the single model across all algorithms,
except for OCSVM.
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Fig. 2. Accuracy Difference: Single vs. Device-Specific Models (N-BaloT).
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TABLE III
AVERAGE SCORES OF DEVICE-SPECIFIC MODELS (CICIOT2023-PACKET).
Accuracy Precision Recall F1-Score
Method % | SD % | SD % | SD % | SD
LinearSVM 81.56 10.3 84.53 15.3 55.18 | 31.2 | 61.79 | 285
DT 85.01 | 841 | 9690 | 470 | 56.99 | 294 | 67.18 | 24.4
RF 84.01 8.78 | 94.04 | 6.61 56.47 | 30.0 | 6559 | 254
DNN 81.88 | 10.1 | 5535 | 309 | 61.30 | 28.5 | 77.65 | 23.9
iForest 62.90 147 | 58.95 | 235 39.01 17.7 | 43.78 17.9
OCSVM 58.98 - | 55.02 - [ 77.46 - [ 60.06 -
LOF 77.38 145 | 95.51 11.0 | 44.12 | 26.8 | 56.29 | 24.8
DeepSVDD || 74.64 | 14.8 | 83.35 | 23.2 | 3947 | 282 | 49.18 | 28.0

Similar to the previous subsection, Table compares
device-specific models with a single model for all devices. The
results indicate that for ML and DL algorithms, a single model
outperforms device-specific models in both accuracy and F1-
score across all algorithms. However, for OCC, device-specific
models using iForest, LOF, and DeepSVDD achieved higher
accuracy than the single model, while only the device-specific
models using OCSVM showed lower accuracy.

TABLE IV
SINGLE MODEL VS. AVERAGE OF DEVICE-SPECIFIC MODELS
(CICIOT2023-PACKET).

Accuracy F1-score

Method Single | Device | Single | Device

Model model | Model model

LinearSVM 83.92 81.56 86.85 61.79

ML: DT 90.28 85.01 91.80 67.18
RF 84.55 84.01 87.80 65.59

DL: DNN 87.89 81.88 89.64 77.65
iForest 48.12 62.90 32.28 43.78
OCSVM 77.63 58.98 83.76 60.06

OCC: | LOF 69.01 77.38 65.48 56.29
DeepSVDD 53.63 74.64 37.88 49.18

Figure [3] denotes a comparison between the average of
device-specific models and the single model. The following
insights are derived:
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Fig. 3. Accuracy Difference: Single vs. Average of Device-Specific Models
(CICIoT2023-Packet).

B. Device-Type-Specific Models for Anomaly Detection

1) Device-Type-Specific Models on the N-BaloT Dataset:
The N-BaloT dataset includes nine devices across five cat-
egories: two doorbells, one thermostat, one baby monitor,
four security cameras, and one webcam. Device-type-specific
anomaly detection models are trained on data from each
category. Below are the key observations from these results on
accuracy of device-type-specific models, aligning with findings
on device-specific models for the N-BaloT dataset.

e ML/DL methods consistently outperformed OCC meth-

ods, demonstrating superior performance.

e« Among OCC methods, OCSVM and DeepSVDD per-
formed well across most device types, with OCSVM
achieving 92-94% accuracy and DeepSVDD exceeding
99% accuracy.

« iForest and LOF displayed notably low accuracy across
all types of devices.

Comparing device-type-specific models to a single model in
Figure |4] the difference is negligible for supervised ML/DL
methods. However, one-class classifiers showed significant
variation. Particularly, iForest and OCSVM models generally
performed better with device-type-specific models, sometimes
by a considerable margin. In contrast, LOF and DeepSVDD
showed higher accuracy with a single model.

Figure [5] compares device-type-specific models to device-
specific models for categories with multiple devices, which are
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BaloT).

doorbells (device #1 and #2) and security cameras (devices #5
to #8). The main insights are summarized as follows:

o Minimal difference is observed between these model
types with supervised ML and DL methods.

o For OCC methods, devices #1 and #2 had better accuracy
with device-type-specific models, while devices #5 to #8
performed better with device-specific models. Thus, the
optimal model choice depends on the device type.
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Fig. 5. Accuracy Difference: Device-Type-Specific vs. Avg. of Device-
Specific models (N-BaloT).

2) Device-Type-Specific Models on the CICIoT2023-Packet
Dataset: This dataset is comprised of 62 devices in seven
categories. There are seven audio devices, 14 cameras, six Hub
devices, 14 power outlets, eight home automation devices, six
lights, and seven next generation devices.

A model per device type is trained and evaluated for each of
the seven device groups. Figure [6] shows the accuracy of these
device-type models using various ML/DL/OCC algorithms.
Due to difficulties with large training sets, OCSVM results
were not obtained for this dataset. Camera and NextGen
device groups performed exceptionally well across almost
all algorithms, likely due to their large data share (43%
for NextGen and 34% for cameras) and the dominance of
one class, 99% attack records for NextGen and 84% normal
records for cameras. This data volume and class dominance
enhanced OCC method performance.

When comparing single and device-type-specific models
(Figure [7), the NextGen and camera device groups performed
better with device-type-specific models. In other groups,
the single model excelled with supervised ML/DL methods,
whereas device-type-specific models outperformed with iFor-
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Fig. 6. Device-Type-Specific Model Accuracy (CICIoT2023-Packet).

est and DeepSVDD. Consistent with the N-BaloT dataset
results, LOF resulted in outperforming the single model.
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Comparing device-type and device-specific models shows
varied performance by device group. In the camera group,
device-type models outperformed device-specific models
across all algorithms due to the high volume of data from
devices 11 and 13. In contrast, device-specific models con-
sistently outperformed device-type models in the Hub device
group across all ML/DL/OCC methods.

V. DISCUSSION

The experiments presented in this paper provide insights
into the performance of various modelling approaches, includ-
ing single, device-specific, and device-type-specific models.
It is revealed that supervised ML and DL methods generally
showed high accuracy in anomaly detection for device-specific
models. However, OCC methods had mixed results, with
DeepSVDD and then LOF performing acceptably across all
datasets.
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Comparing single vs. device/device-type models on the
N-BaloT dataset revealed similar performance when using
ML/DL methods. On the CICIoT2023-Packet dataset, the
single model generally outperformed device/device-type mod-
els with ML/DL methods, except for NextGen and camera
devices. Device/device-type models consistently outperformed
the single model for NextGen and camera groups across all
algorithm. These two categories hold 77% of the dataset,
NextGen at 43% and camera at 34%. Both groups are
dominated by one class, 99% of NextGen data is attack
records and 84% of camera data is normal. This suggests
that device/device-type models are particularly effective for
anomaly detection when IoT devices have ample data and are
dominated by a single type of traffic pattern. The effectiveness
of device-specific versus device-type-specific models depends
more on device types and their data rather than on the
algorithm used.

The results differ between the two datasets due to their dis-
tinct data distributions. The N-BaloT dataset has a more bal-
anced data distribution among devices, while the CICIoT2023-
Packet dataset has significant data imbalances.

To overcome the cold start issue in distributed IDS for IoT
devices with limited initial data, a strategy involves preloading
devices with pre-trained models based on device types. These
models, initially trained on extensive data, undergo fine-tuning
using local data through transfer learning. Michau and Fink
[11] proposed an unsupervised transfer learning framework
using OCC for industrial applications.

VI. CONCLUSION AND FUTURE WORK

In pursuit of a practical Intrusion Detection System (IDS)
tailored to the needs of Internet of Things (IoT), device-
specific and device-type-specific models were evaluated and
compared with a single model for all devices. While a single
model requires less storage space, device/device-type models
trained on data from individual IoT devices or groups of

similar devices prove to be beneficial in IoT systems where
heterogeneous devices generate unique traffic patterns.

Device/device-type models are superior to single models
when either the data is dominated by one class or when
using one-class classifiers. IoT systems predominantly pro-
duce benign traffic before any attacks occur. By training
device/device-type models on an IoT device’s stream of traffic,
an IDS agent can build a normal profile and then detect
any deviations from the normal profile as intrusions. In this
context, use of One-Class Classifier (OCC) methods emerges
as a viable solution instead of supervised Machine Learning
and Deep Learning methods, which rely on pre-generated and
labelled datasets. Attack traffic is usually scarce, and collecting
attack data is difficult and costly, making supervised methods
impractical in large IoT systems.

Future work will explore device/device-type models in a
Federated Learning (FL) setting, enabling knowledge shar-
ing through model parameter weights while preserving data
privacy. We also plan to evaluate OCC models on a dataset
dominated by normal traffic, contrasting with the attack-
dominant N-BaloT and the imbalanced CICIoT2023-Packet
datasets, to analyze their accuracy in detecting anomalies in
IoT systems with predominantly normal traffic.
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