
Geographically-Distinct Request Patterns for
Caching in Information-Centric Networks

Alireza Montazeri and Dwight Makaroff
Department of Computer Science, University of Saskatchewan

Saskatoon, Canada (Email: alm164@mail.usask.ca, makaroff@cs.usask.ca)

Abstract—The current Internet architecture follows a host-
centric communication model, intended for machine to ma-
chine connection and message passing. Modern Internet users
are mainly interested in accessing information by name, irre-
spective of physical location. Information centric networking
(ICN) was developed to rethink Internet foundations. In-
network caching is one of the main features of ICN. Studying
the performance of different caching algorithms in ICN
requires a good understanding of users’ request distributions
in such networks. Most studies use simplifying assumptions
for user request patterns since ICNs are not yet deployed.

Geographically localized and global request patterns have
both been observed to possess Zipf-like properties, although
the local distributions are poorly correlated with the global
distribution. Several independent Zipf distributions combine
to form an emergent Zipf distribution in real client request
scenarios. We develop an algorithm that can generate realistic
synthetic traffic for geographic regions that possesses Zipf
power-law properties as well as a global Zipf distribution. Our
simulation results show that the caching performance would
have different behaviour based on users’ requests distribution.

I. INTRODUCTION

Hierarchical caching and content replication results in
shorter propagation delays, lighter network traffic and
smaller load on the servers. Several overlay distribution
architectures have been deployed in this regard, notably tra-
ditional centralized caches, Content Distribution Networks
(CDN), distributed Peer-to-Peer (P2P) content delivery, and
hybrid CDN-P2P networks [1].

Underlay in-network caching [2] has been offered as
a mechanism whereby ICN routers are equipped with
caches. Policy details of ICN caches have been the subject
of performance modelling studies [3] as well as caching
support for video streaming [4] and mobility [5]. Studying
the performance of different caching algorithms in ICN
requires an understanding of users’ request distributions.

Global and local request patterns of Internet services
have been studied independently and collectively. Studies
show that the users’ requests in both contexts follow Power
law distributions [6], [7]. Observations also show that the
geographically local distributions are poorly correlated with
the global distribution [8]. This suggests that several in-
dependent Zipf distributions combine to form an emergent
Zipf distribution in real client request scenarios. Correlation
between regions is shown to vary with respect to geographic
location and/or other demographic qualities [9].

In this paper, we develop an algorithm that can generate
synthetic traffic for geographical regions that possesses Zipf
power-law properties as well as a global Zipf distribution.

We provide initial experimentation suitable for an hierar-
chical cache typical of deployment in an ICN.

II. RELATED WORK

To make different request patterns in different regions,
several techniques have been employed. We list a selection.
• Rossini et al. randomly generate an object i according

to a global Zipf popularity distribution. Then, they
map this new request for i to a random user u in
the network, attached to an access ICN router C(u).
Once subsequent requests for i are generated, they bias
the user extraction process so to favor the selection of
users closer to C(u). In other words, the request will
then be mapped to user v with a probability P (d)
that monotonously decreases with d that is distance
between C(u) and C(v).

• Fayazbakhsh et al. [10] explore the effect of spatial
skew. A spatial skew of 0 means that all locations fol-
low the same global popularity distribution. A spatial
skew of 1, at the other extreme, implies that the most
popular object at one location may become the least
popular object at some other location.

• Traverso et al. proposed Shot Noise Model (SNM)
[9] that captures temporal and geographical locality
of content popularity. The basic idea is to represent
the overall request process as the superposition of
populations of independent inhomogeneous Poisson
processes, each referring to a data item.

None of these approaches guarantee that both the global
and local distributions follow Zipf distributions.

III. TRAFFIC GENERATOR PRINCIPLES

Having notations in Table I and Γr = {1, 2 . . . N}, the
popularity of data items in region r for users’ traffic (ex-
ogenous traffic) follows a Zipf distribution with parameter
αr (i.e. pr,i ∝ (1/Πr,i)

αr). Consequently, the request rate
for data item i in r is calculated as λr,i = pr,iλr.

We suppose two subregions, u and v. The order of data
items’ popularity in either u or v is different from the order
in region r and satisfies the following conditions: Πu 6= Πr,
Πv 6= Πr, Πu 6= Πv , Γr = Γu = Γv , and λu + λv = λr.
In particular, Πu, Πv , αu, αv , λu and λv are not known.
Algorithm 1 divides the global set of data items’ popularity
into two subsets, each one providing a Zipf distribution.
The algorithm uses Sλr , the Zipf parameter range (α−/α−),
threshold t as input and returns the unknowns.

TABLE I: Notation

N , number of data items
R , set of all regions
C , the overall cache budge; C =

∑
∀r∈R Cr

αr , Zipf parameter in region r
pr,i , item i’s popularity in region r
λr , request rate in region r
λr,i , item i’s request rate in region r
Sλr , set of λr,i, 1 ≤ i ≤ N : {λr,1, λr,2 . . . λr,N}

Πr,i , rank of item i’s popularity in region r
Λr,j , request rate of an item with rank j in region r

Πr , function mapping item i to Πr,i 1 ≤ i ≤ N
Γr , set of data items in region r
Cr , available cache at router in region r

Algorithm 1 Pseudo-Bisect Zipf distribution

1: procedure DIVIDE–ZIPF
2: INPUT:
3: Sλr , α−, α

−, t
4: OUTPUT:
5: Πv , Πu, αv , αu, Sλv and Sλu
6: Is-Zipf-like← false
7: while !Is-Zipf-like do
8: T ← {1, 2 . . . N}
9: i←Weight-Random(T);

10: T ← T − {i}; Πu,i ← 1
11: Randomly pick λu,i: 0 < λu,i < λr,i
12: λv,i ← λr,i − λu,i
13: Pick up random αu, α− < αu < α−

14: θ ←
∑N
k=1(1/k)αu

15: pu,i ← 1/θ
16: λu ← λu,i/pu,i; λv ← λr − λu
17: for j from 2 to N do
18: Λu,j ← λu

(
(1/j)αu/θ

)
19: end for
20: j ← 2
21: while T 6= ∅ do
22: k ← Weight Random(T)
23: if Λu,j ≤ λr,k then
24: Πu,k ← j; λu,k ← Λu,j ; T ← T − {k}
25: λv,k ← λr,k − λu,k
26: j ← j + 1

27: end if
28: end while
29: Is-Zipf-like← Evaluate(Sλv , t,Πu, αv)

30: end while
31: end procedure

The algorithm starts with a weighted random selection
of data item i, (the most popular data item in region u (line
9, 10)). Then, a portion of λr,i is assigned to λu,i (line 11).
The remaining request rate for i is assigned to λv,i (line 12).
The algorithm then randomly selects αu (line 13). Based
on λu,i and αu, λu could be now calculated (lines 14-16).
Having λu and αu, the algorithm then calculates the request
rate for other ranks in u (lines 17-19).

In the next stage, the algorithm assigns data items to
ranks in [2, N] for region u (lines 20-28). The algorithm
starts with the second rank in u (line 20) since i is already
assigned to the first rank. For the jth rank in region u and
among the data items in T with request rate larger than
Λu,j , k is randomley selected and considered as the jth

most popular item in u (lines 22-27). Correspondingly, the
request rate for item k in region v is obtained.

In the final stage, the algorithm evaluates the distribution
of requests in v to determine how Zipf-like it is (line
29, details omitted for space reasons). Function Evaluate
repeatedly creates z as a Zipf-like distribution. It then
compares the popularity distribution of data objects in the
region v with z, using the coefficient of determination. If the
correlation exceeds a threshold t, we return success along-
side αv , as the parameter of closest Zipf-like distribution to
users’ requests in v, and Πv . If v’s distribution is sufficiently
Zipf-like, the algorithm ends. Otherwise, we find a new
order for u by repeating lines 7-30.

To create k sub-request patterns, Algorithm 2 applies
Algorithm 1 to the highest rate existing subregion. Table
II shows some subregions for 1000 data objects, k = 10,
λr = 15 and αr = 1.2. Different subsets have different λu,
αu and Πu.

Algorithm 2 creating k Zipf-like sub-request patterns

1: procedure DIVIDE–ZIPF–TO–K
2: INPUT:
3: Sλr , α−, α

−, t, k
4: OUTPUT:
5: Π1 . . .Πk, α1 . . . αk, S

λ
1 . . . S

λ
k

6: W ← {}
7: while |W | < k do
8: Divide-Zipf(Sλr , α−, α

−, t,Πu,Πv, αu, αv, S
λ
u , S

λ
v)

9: W ←W
⋃
u
⋃
v

10: r ←MaxRequestRate(W)

11: end while
12: end procedure

TABLE II: A sample output of Algorithm 2.

x λx αx Πx
u1 1.46 0.91 12 30 17 6 56 16 128 65 31 13 . . .
u2 1.04 0.53 7 33 151 90 133 72 9 28 242 199 . . .
u3 1.03 0.79 31 9 6 40 93 47 120 19 70 55 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
u10 1.11 0.51 25 11 10 95 63 73 56 2 145 169 . . .
r 15 1.2 1 2 3 4 5 6 7 8 9 10 . . .

To study the independence properties of subregions, we
perform a series of experiments on Algorithm 2. We also
compute the following two correlations: (1) average global-
region-correlation between the global traffic distribution
and all regional traffic distributions; (2) average pairwise-
region-correlation between the traffic distribution of all
regions.

Figure 1 and Figure 2 demonstrate the correlations for
N = 20, 000 and α = 1.0. Figure 1 depicts the correlations

based on σα, the variation of αu between the regions.
Neither correlation is affected by σα. Note that the global
correlation is substantially higher than the local pairwise
correlations. This is to be expected as we choose the most
popular item in a subregion among the most popular items
in the remaining largest region. Pairwise correlation is very
low.

Figure 2 shows correlations over σα, the variation of
λu between the regions. Larger σλ results in smaller
correlation for both pairwise local and global distributions.
Similar behaviour for both correlations over σα and σλ is
observed for αr = {0.8, 1.2, 1.4} and other datasets for
populations of 1000, 5000, and 10,000.

0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

σ
α

R
2

global−region−correlation
pairwise−region−correlation

Fig. 1: Global/pairwise correlation vs. σα.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

σ
λ

R
2

global−region−correlation
pairwise−region−correlation

Fig. 2: Global/pairwise correlation vs. σλ.

We investigated the relationship between global-region-
correlation and different values of N and α. Our obser-
vations show that the correlation decreases with N , since
larger population sizes result in more possible permutations,
producing sub-distributions with differing orders of data
items. We also show that the correlation increases with α.
A higher α generates fewer popular data items as choices
for the “most-popular” data items in sub-distribution u (i.e
a higher popularity decay); sub-distributions have similar
content at the head of the distributions. Pairwise correla-
tions show a similar trend.

A. Dividing the cache budget proportionally among regions

The following four policies/scenarios are considered to
divide the cache budget:

1) Proportional-Edge-only (s1): the cache size of an
edge router is proportional to the its corresponding
region’s request rate (Cu ∝ λu if u is an edge region;
otherwise Cu = 0).

2) Proportional-all-network (s2): the cache budget is
distributed among the all regions proportional to the
each region’s request rate.

3) Equal-Edge-only (s3): (Cu = C/k if u is an edge
router; otherwise Cu = 0).

4) Equal-all-network (s4): (Cu = C/|R|).
Our process to allocate the cache budget gets C, R and

exogenous request rate for each data item i at region r, plus
the structure of overlay ICN tree. The output will be the
portion of cache budget dedicated to region r, ∀r ∈ R.

Having λr initially only for the edge routers, we divide C
proportionally among those routers. The miss rates of items
in region r, (λ′r,i), for all the data items and edge routers are
calculated depending on the replacement algorithm. Next,
the algorithm calculates the request rate at the parents of
edge routers. To complete a level in the tree, the parent
nodes are then included in the cache distribution, since
their request rates are now known approximately. Any
intermediate router cache allocation will increase the miss
rate at children caches. We continue calculating miss rates
and cache sizes for routers at higher levels incrementally
in the ICN tree.

IV. PERFORMANCE EVALUATION

In this section, we conduct a simple proof-of-concept
cache performance experiment with identical and differen-
tial request patterns in the following four topologies: Geant,
Tiger, Level3 and Dtelecom (see Table III).

TABLE III: Specification of topologies.

name Number of Routers Number of Edge Routers depth
Level3 68 61 4

Dtelecom 46 41 3
Geant 22 10 5
Tiger 22 10 4

A. Experimental Methodology

We assume each node in the four topologies represents a
different region, with one caching router. We also assume
only one region has a content server with the original
copy of the data item. We use ccnSim [11] as a ICN
simulator and each simulation represents 106 seconds (11.6
days). The server is the root of an ICN overlay tree for all
communication. Users are connected to edge regions only;
edge routers receive exogenous traffic and intermediate
routers receive endogenous traffic. For the geographical
locality generation, k is the number of edge routers.

Three metrics are used to express the caching perfor-
mance: (1) the hit ratio; (2) the request rate arrived at the
content server; and (3) distance to the first copy of the
data item (a measure of latency). 2-LRU is used in this
paper as the caching replacement algorithm, since Garetto
et al. showed it outperforms LRU [3]. We set N = 20000,
global Zipf shape parameter αr = 1.0, the global request
rate λr = 40, α− = 0.5, α− = 2.0.

B. Baseline Configuration

As the baseline configuration, we consider identically
distributed requests. Figure 3 shows the metrics for all
four scenarios. For Dtelecom and Level3 topologies,
proportional cache allocation in the entire network results

 0

 10

 20

 30

 40

 50

 60

 70

Level3 Dtelecom Geant Tiger

C
ac

h
e

h
it

 (
%

)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(a) Hit ratio

 0

 0.5

 1

 1.5

 2

 2.5

 3

Level3 Dtelecom Geant Tiger

D
is

ta
n

ce
 (

#
 o

f
h

o
p

s)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(b) Distance

 0

 5

 10

 15

 20

 25

 30

 35

Level3 Dtelecom Geant Tiger

R
at

e
(R

eq
u

es
ts

/S
ec

o
n

d
)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(c) Request rate at the server

Fig. 3: Identical Zipf distribution for all regions.

 0

 10

 20

 30

 40

 50

 60

 70

Level3 Dtelecom Geant Tiger

C
ac

h
e

h
it

 (
%

)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(a) Hit ratio

 0

 0.5

 1

 1.5

 2

 2.5

 3

Level3 Dtelecom Geant Tiger

D
is

ta
n

ce
 (

#
 o

f
h

o
p

s)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(b) Distance

 0

 5

 10

 15

 20

 25

 30

 35

Level3 Dtelecom Geant Tiger

R
at

e
(R

eq
u
es

t/
S

ec
o
n
d

)

Topology

Proportional, edge only
Proportional, all network

Equal, edge only
Equal, all network

(c) Request rate at the server

Fig. 4: Geographical locality.

in better performance while all three metrics in Geant and
Tiger topologies are always similar with a slight edge to
proportional allocation in the entire network.

C. Influence of geographically localized traffic

Figure 4 depicts the cache performance with geographic
locality. The bars represent the average of 5 runs, with error
bars indicating 1 standard deviation. The three metrics for
Level3 and DTelecom topologies for proportional allocation
are very close since a high percentage of nodes are at the
edges (refer to Table III).

Proportional allocation is effective in improving all three
metrics for all four topologies, as to be expected since
equal allocation ignores geographic locality in rate. On
the other hand, dedicating cache budget to the intermediate
routers in the network does not improve performance with
geographical locality. Intermediate routers obtain only a
5−10% hit ratio. Intermediate router traffic, (the aggregate
of edge misses), does not have a Zipf-like distribution. This
makes LRU-2 and LRU caching replacement algorithms in-
efficient. A different replacement policy for interior caches
may make better use of resources is part of future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm to generate
locally biased request patterns which follow different Zipf
distributions for each region, and combine to form a Zipf
distribution. Then, we studied the performance of the sys-
tem in four different scenarios. Simulation results show that
geographical locality causes the different system behaviour
in the simple test scenarios.

We also confirm that caching in the core of network has
little advantage compared to caching only in edge routers.
We will examine alternate strategies for off-path caching,
and on-path caching in terms of search strategy and replica

placement. Hierarchical consideration of regional popular-
ity will also be explored. This would be combined with
potential correlations between geographically distant, but
culturally similar demographics (university campuses).

REFERENCES

[1] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and
B. Li, “Design and deployment of a hybrid CDN-P2P system for live
video streaming: Experiences with LiveSky,” in ACM Multimedia,
Beijing, China, Oct. 2009, pp. 25–34.

[2] J. M. Wang, J. Zhang, and B. Bensaou, “Intra-AS cooperative
caching for content-centric networks,” in SIGCOMM Workshop on
Information-centric Networking, Hong Kong, China, Aug. 2013, pp.
61–66.

[3] M. Garetto, E. Leonardi, and V. Martina, “A Unified Approach to
the Performance Analysis of Caching Systems,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems,
vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[4] C. Anastasiades, A. Gomes, R. Gadow, and T. Braun, “Persistent
caching in information-centric networks,” in IEEE LCN, Clearwater
Beach, FL, Oct. 2015, pp. 64–72.

[5] S.-E. Elayoubi and J. Roberts, “Performance and cost effectiveness
of caching in mobile access networks,” in ACM ICN, San Francisco,
CA, Oct. 2015, pp. 79–88.

[6] L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet,”
Glottometrics, vol. 3, pp. 143–150, 2002.

[7] A. B. Downey, “Evidence for Long-tailed Distributions in the
Internet,” in ACM SIGCOMM Workshop on Internet Measurement,
San Francisco, CA, Nov. 2001, pp. 229–241.

[8] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch Global, Cache Local:
YouTube Network Traffic at a Campus Network: Measurements and
Implications,” in SPIE Multimedia Computing and Networking, San
Jose, CA, Jan. 2008, pp. 1–13.

[9] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Unravelling the impact of temporal and geographical
locality in content caching systems,” IEEE Transactions on Multi-
media, vol. 17, no. 10, pp. 1839–1854, Oct. 2015.

[10] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable ICN,” in ACM SIGCOMM, Hong
Kong, China, Aug. 2013, pp. 147–158.

[11] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnSim: An highly
scalable CCN simulator,” in IEEE International Conference on
Communications, Budapest, Hungary, Jun. 2013, pp. 2309–2314.

