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Abstract—Transposable elements (TEs) are DNA sequences
that can move or copy to new positions within a genome. Due to
their abundance in many species, predicting the evolution of these
TEs within a genome is a major component of understanding the
evolution of the genome generally. The sequential interruption
model is defined between TEs that occur in a single genome,
which has been shown to be useful in previous literature in
predicting TE ages and periods of activity throughout evolution.
This model is closely related to a classic matrix optimization
problem: the linear ordering problem (LOP). By applying a well-
studied method of solving the LOP, tabu search, to the sequential
interruption model, a relative age order of all TEs in the human
genome is predicted in only 38 seconds. A comparison of the TE
ordering between tabu search and the previously existing method
shows that tabu search solves the TE problem exceedingly more
efficiently, while it still achieves a more accurate result. The speed
improvements allow a complete prediction of human TEs to be
made, whereas previously, ordering of only a small portion of
human TEs could be predicted. A simulation of TE transpositions
throughout evolution is then developed and used as a form of in
silico verification to the sequential interruption model. By feeding
the simulated TE remnants and activity data into the model, a
relative age order is predicted using the sequential interruption
model, and a quantified correlation between this predicted order
and the input (true) age order in the simulation can be calculated.
An average correlation over ten simulations is calculated as 0.738
with the correct simulated answer.

Index Terms—transposable elements, the human genome,
evolution, interruptional analysis, tabu search, linear ordering
problem

I. INTRODUCTION

Transposable elements (TEs) are one type of repetitive DNA
sequences that are found in both eukaryotic and prokaryotic
organisms, which have the ability to move or copy to new
positions within a genome. TEs are traditionally classified
into two broad classes on the basis of their transposition
mechanism and sequence organization [1]: Class I elements
(“copy-and-paste” mechanism) are those that transpose via
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reverse transcription of an RNA intermediate, referred to as
retrotransposons; Class II elements (“cut-and-paste” mecha-
nism) move primarily through a DNA-mediated mechanism of
excision and insertion, and are often called DNA transposons.
The impact of TEs on genome evolution appears to be exten-
sive and they are even believed to promote speciation [2] and
can therefore be seen as a driver of evolution. They also can
represent a massive fraction of many genomes, from humans
(45%) to wheat (>80%). Therefore, the evolutionary history
of TE families in a species represents a key component of
information regarding the evolution of the genome. Moreover,
evidence is emerging that active TEs play a significant role
in human biology and disease. They create genetic diversity
and integrate preferentially into genes associated with certain
functions [3], potentially causing disease. For example, it was
found that a molecular mechanism of the Alzheimer’s process
could be caused by Alu elements (one family of TE) leading
to dementia [4]. In [5], a method was introduced that could
predict the evolutionary history of TEs from a single genome.
Using a single genome, rather than requiring sequences from
multiple genomes as is commonly required for phylogeny, is
useful in situations where many closely related genomes are
not available. However, the computational method in [5] was
too slow to be able to provide a solution for all human TEs. A
method that is efficient enough to not only accurately predict
the evolution of all human TEs, but also for any genome,
would be important. This is especially significant for large
plant genomes that often evolve rapidly, that can have a large
TE fraction, and that are less well-studied. As an example,
the recent genome assembly of wheat [6] was significantly
complicated by the large number of active TEs, and the vast
differences from other related genomes. For this reason, it
should be efficient enough to be usable on all TEs of very
large genomes. This work provides such a method.

A method called interruptional analysis in [5] estimates
relative TE ages based on the frequencies with which every
TE has inserted itself into every other TE in a genome. It
is strategized in two major steps (summarized from [5]):
1. generate an interruption matrix based on the identified
pairwise insertion frequencies; 2. generate a TE chronological
order using a repositioning method to minimize the sum of
non-zero entires above the diagonal, which has the effect
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of ordering the TEs in a hypothetical chronological order
of decreasing age (from oldest to youngest). This prediction
works because the top-right portion of the matrix represents
older TEs interrupting younger TEs, which should be mainly
populated by zeros, meaning that there are no interruptions;
the bottom-left portion of the matrix represents younger TEs
interrupting older TEs, where most non-zero values should
appear. Essentially, this interruptional analysis method uses
exhaustive search with a worst-case computational complex-
ity of O(n!) total possible orders, which is computational
intractable. Though the authors in [5] tried different strategies
to decrease the complexity, it is still not practically feasible
when the number of TEs in consideration is large. Therefore,
they were only able to do so on 405 of the over 1000 human
TEs. The interruptional analysis method has the benefit of
not relying on any other related genomes. The predictions in
[5] were reasonably consistent with traditional phylogenetic
analysis, but the authors did not give a complete quantitative
assessment.

II. METHODS: LINEAR ORDERING PROBLEM AND TABU
SEARCH FOR SEQUENTIAL INTERRUPTION ANALYSIS

Previously, we have defined the sequential interruption
linear ordering problem [7] — a formal model defined between
the interruptions of TEs that occur in a single genome and con-
nected it with the linear ordering problem. In order to describe
and compute a solution of the sequential interruption linear or-
dering problem, a set of matrix rearrangement operations using
linear algebra and the original linear ordering problem were
also examined. The sequential interruption analysis described
in [7] in terms of the linear ordering problem was defined as:
given a set of genomic sequences, S, a set of TEs with a fixed
ordering on its elements, χs = {X1, X2, . . . , Xm}, and an
interruption matrix of χs on S, IM = [|ΞS(Xi, Xj)|]i=1,...,m

j=1,...,m
(calculated from the pairwise interruptions that occur in S),
the problem is to find a permutation π of χs, corresponding
to the column and row indices {1, . . . ,m}, such that the value
f(π) =

∑m
i=1

∑m
j=i+1 IM

(π(i),π(j)) is maximized. Note that
in the LOP, the permutation π provides the ordering of both
the columns and the rows. The resultant permutation π of
χs corresponds to a hypothetical chronological order of TE
families in χs of increasing age.

The LOP is a relatively well-studied problem, known to
be NP-hard in computer science [8]; this implies that there
likely does not exist a polynomial time algorithm for always
calculating an optimal solution (unless P = NP). Given an
interruption matrix of n TEs by the sequential interruption
model, an exhaustive search can be used to find the best
permutation by applying all possible permutations to the
interruption matrix and calculating the sum of the values
above the diagonal for each permuted matrix. The ordering
of the matrix that achieves the maximum score is the optimal
permutation. The exhaustive search algorithm has a complexity
of O(n2×n!) (the n2 does the additions of the upper triangle),
which is only usable for very small data sets. Speed is indeed
an important issue for predicting TEs ages in this problem

because the previous method in [5] was not able to solve
it with all human TEs. Heuristic and meta-heuristic methods
attempt to find a good, but not necessarily optimal solution
to the problem, which is in contrast to exact methods that
guarantee to give an optimum solution. Nevertheless, the time
taken to search an optimal solution to a difficult problem by an
exact method is often much greater than heuristic and meta-
heuristic methods. Thus, heuristic and meta-heuristic methods
are often used to solve real optimization problems. In the next
subsection, one of the meta-heuristic methods, tabu search [9],
will be described, then the result of tabu search applied to the
sequential interruption model will be provided and compared
with the published result in [5].

A. Tabu search and results

Tabu search keeps a table of solutions that are forbidden to
guide the search, so that the selection of solutions is limited
according to the table of tabu status. Tabu search begins
in the same way as an ordinary local search, moving from
one solution to another repeatedly until a number of global
iterations are performed without improving the best solution
found so far. If the search space is seen as a huge set of
solutions and only a tiny part of the set can be explored,
then tabu search guides the local search process to examine
the solution space beyond local optimality. It consists of
two search strategies — intensification and diversification —
with complementary objectives to search in the solution set.
Intensification favours the exploration of promising areas of
the solution space, while diversification moves the search to
new regions of the solution space.

Given the interruption matrix, IM(1015 × 1015), calcu-
lated on the human genome hg38, the sum of the over-
all matrix excluding the sum of the diagonal is 381,201.
By inputting IM to the tabu search program, a TE or-
dering that achieves the best superdiagonal score, f(π) =∑m
i=1

∑m
j=i+1 IM

(π(i),π(j)) = 377, 417, is calculated. Since
the tabu search is a meta-heuristic algorithm, this score is not
guaranteed to be optimal. However, it only took 38 seconds
to calculate the best score of this matrix of size 1,015 on
MacBook Pro (2.9 GHz Intel Core i5 processor with 16 GB
memory). The ability to solve this problem on such a big
matrix has made tabu search outperform the method proposed
in [5] in terms of efficiency, which was only able to solve a
much smaller matrix also without a guarantee of finding the
optimal solution.

The resultant ordering from tabu search is then compared
with the ordering published in [5] (Giordano et. al.) in two dif-
ferent ways. First, as the method in [5] is compute-expensive,
though there were about 1, 000 TEs with interruptions, only
405 were selected for calculating their ordering in the paper.
Among these selected 405 TEs, there were 359 of them that
are in common with the TEs in the IM that was calculated on
the human genome hg38. This might be caused by the ongoing
updates in Repbase Update [10] during these years, which was
required to identify the TEs. The set of the n = 359 common
TEs are denoted by χn. The resultant ordering from tabu



search of χn is denoted as πtabu, and the ordering published
in Giordano et. al. [5] of these TEs is denoted as πG. The sub-
matrix of IM on χn is denoted as IMχn . The superdiagonal
scores of the two permutations πtabu and πG on IMχn are
f(πtabu) =

∑n
i=1

∑n
j=i+1 IM

(πtabu(i),πtabu(j))
χn = 165, 980

and f(πG) =
∑n
i=1

∑n
j=i+1 IM

(πG(i),πG(j))
χn = 165, 591.

Hence, the ordering calculated by tabu search achieves a higher
score for this (reduced) data set, which indicates that tabu
search is performing better than the method in [5] in terms of
the final score.

Second, the similarity between the ordering calculated from
tabu search (πtabu) and the ordering published in [5] (πG) are
compared with each other using the Pearson’s coefficient of
correlation calculated as ρ = cov(πG,πtabu)

σπtabuσπG
= 0.943522, which

shows a strong positive correlation (agreement) between the
two orderings (a correlation of 1 means that the two orders
are identical, 0 means that there is no correlation, and -1
means negative correlation). The two orderings are then plotted
against each other in Fig. 1.

Fig. 1. A comparison between the ordering calculated in [5] (πG) and
the ordering calculated by tabu search (πtabu). The red thick diagonal line
represents the case when the two orderings are exactly the same.

As TEs can be active for a period of time, more than one
TE can be active at the same time, in parallel. Hence, it is
reasonable that the relative age order of these parallelly active
TEs are shuffled within a region of the overall ordering, which
results in these TEs being “around” the red thick diagonal line
in the plot. It can be seen from the figure that most of the
elements agree in the two orderings very well as they are very
“close” to the red line. There are also some “outliers”, which
indicate that their positions are distant (very different) in the
two orderings. The elements that have a distance of more than
100 positions in the two orderings are marked with their names
and types in brackets in Fig. 1.

A preliminary biological analysis and verification of their
actual positions (actual evolutionary age) of the elements
relative to other TEs was done in [5]. However, another
standard technique for verification is to use the help of a
simulation, which is created in the next section.

III. TE EVOLUTION SIMULATION

In this section, a simulation is created to imitate a sim-
plification of the evolutionary history of TE propagation. By
simulating the TE activities through evolution, the remnants
of TEs with their positions in a simulated genome can

be generated. Such a simulation is an important tool for
understanding transpositions and the evolution of genomes
generally. Furthermore, it can be used as a verification tool
for TE prediction problems as the ground truth is known. If
the known ages and lifespans of TEs from a simulation, and
the predicted age order calculated by the theoretical model
using the simulated remnants are similar, this serves as an in
silico verification of the prediction.

The simulation starts from a point in evolutionary time (e.g.,
200 million yeas ago or MYA), and simulates the mutations
in a genome and the insertions and degrading activities of
TEs. As time progresses, TEs are activated when the “current”
time matches their input ages. The activated TEs start their
transpositional activities while accumulating mutations at the
same time. The mutations in TEs decrease the activity levels
of these TEs, until they become inactive. The simulation can
imitate the activity of the entire lifespan of these TEs in a
genome.

A. The PhyloSim simulation package

The PhyloSim [11] (License: GNU General Public Li-
cense Version 3) is an object-oriented framework of Monte
Carlo simulation (a numerical experimentation technique to
obtain the statistics of the output variables of a computational
model, given the statistics of the input variables [12]) of
sequence evolution written in R, which simulates the evolution
of DNA or protein sequences by using substitution models of
the type of the sequence.

Our simulation of TE transpositions through sequence evo-
lution is written in the R language and built on top of the
PhyloSim package. This is because PhyloSim provides
functions that simulate random substitutions through sequence
evolution, and the TE transposition simulation imitates the
replication and insertion of active TEs on a dynamically
changing genomic sequence through evolution. Therefore, the
PhyloSim package provides the necessary generality on
which to extend its functionality. Unlike PhyloSim that
simulates sequence evolution of multiple species under the
guidance of a phylogenetic tree, the TE transposition simu-
lation currently only simulates one genomic sequence, as the
TE predictions work on a single genome. The workflow of the
TE transposition simulation starts from an evolutionary time T
and an original genomic sequence. As time is being consumed,
mutations are introduced into the genome randomly using the
functions provided by PhyloSim following a substitution
model and the mutation rate; at the same time, TEs are being
activated when the current time reaches the input ages of
these TEs, and transpositions occur through evolution. This
is repeated until time is exhausted. The modified genomic
sequence at the end of the simulation represents the current-
day genome, which encodes the history of TE activities by
their positions of insertions and their interruption patterns,
similar to the current-day human genome.

The simulation is subject to a number of parameters such as
mutation rate, transposition rates, substitution model etc., and



a set of input data, which are listed and explained in details
in the next subsections.

B. Parameters

Some parameters are useful for the simulation as follows.

• Mutation rate (µ): 0.17% (per site) (per Mys)
• Substitution model (p): JC69
• Evolutionary time to simulate (T ): 200 MYA
• Length of initial genomic sequence (seq.len): 10,000 bp
• Transposition rate (Tr.rate): 10 mutations per insertion
• Threshold to deactivate a TE (PID): 90%

An assumption that any site in the sequence has the same
neutral mutation rate of 0.17% per site per million years [13]
is made for simplicity. Similarly, the same substitution model
is applied to each site in the nucleotide sequence for simplicity
as well. In our simulation, the JC69 model [14] (one of the
most common DNA substitution models) is applied to the
genomic sequence. As mentioned in the study of [15], no Alu
elements with more than 10% mutations were active in the cell
culture in [16]. Therefore, the threshold of percent identity to
deactivate a TE in the simulation is set to be PID = 90%. The
transposition rate, denoted as Tr.rate, for the Alu elements
has been estimated as approximately 1 insertion for every 20
births in humans [17]. We assume that transposons have the
same mutation rate as their surrounding DNA loci after they
are inserted into the genome. We also assume that both the
transposition rates and mutation rate are constant over time.
Given a neutral mutation rate of 160 mutations per diploid
genome per generation in human [18] (this is is comparable
to the mutation rate of 0.17% per site per Mys in [13]), the
transposition rates of Alu elements in the human genome can
then be converted and represented relative to the sequence
evolution in our simulation as:

Tr.rate =
160 mutations (per diploid genome) (per generation)

1/20 Alu insertion (per diploid genome) (per generation)
= 3, 200 mutations (per Alu insertion).

However, to make the time taken to execute the simulation
practical, only a small set of 20 TEs (2% of the TEs in
the human genome) will be simulated on a small genome of
length 10,000 bp (3.33× 10−4% of the human genome size).
Moreover, in order to generate a large number of insertions and
interruptions in a practical amount of time in the simulation,
the transposition rate is set to Tr.rate = 10 mutations (per
insertion) for simplicity.

It should be noted that this simulation only imitates the
transposition of retrotransposons (transpose using copy-and-
paste mechanism), not DNA transposons (transpose using
cut-and-paste mechanism). This is because each insertion of
retrotransposons is stable through evolutionary time, and is
a “fossil” of a unique transposition event. The transposition
of DNA transposons involves not only insertions, but also
excisions, with different rates, which requires more studies.

C. Inputs

The simulation takes TEs and their properties as input,
including TE consensus sequences, ages, and harmful regions
of these TEs.

i. TE consensus sequences: a list of n TEs whose prop-
agation will be simulated along with their consensus
sequences. The consensus is randomly generated with a
length of 30 bp (10% of the length of Alu).

ii. TE ages: the list of n TEs are input together with their
age of activities (ranging from 200 Mys to 30 Mys). The
TEs will be activated once the current time reaches their
age (when the TEs start appearing in the genome).

iii. Harmful regions: certain genomic positions in the con-
sensus sequences of the TEs are called harmful regions.
If mutations occur within the harmful regions of a TE,
the activity fraction of this TE will be decreased in the
simulation (mutations in certain regions of TEs are more
likely to affect activity [15]). According to the harmful
regions of real AluY elements calculated in [15], the
harmful regions covered 34.5% of the AluY consensus
sequence. Therefore, in the simulation, 30% of the con-
sensus sequences are marked as harmful regions, where
the positions of the regions are randomly generated.

D. General steps of the simulation

As previously discussed, the TE transposition simulation is
based upon the sequence evolution simulation, where random
mutations are introduced into the sequence for each time step
iteratively. For every Tr.rate (a transposition rate described
in terms of the number of mutations) mutations, introduce
a TE insertion. The inserted TE is replicated from either a
newly activated TE from the TE database (when the current
time matches the age of that TE) or from a randomly selected
active TE copy (from its activity fraction) that already existed
in the genome. Each active TE existing in the genome has
an attribute called activity fraction, denoted as activeFrac,
which is dynamically calculated by the current percent identity,
the number of mutations that occurred within the harmful
regions, and the lifespan of that TE. The mutations and
insertions are repeated until the simulation time is exhausted.

E. Simulation results

Although the simulation will be run 10 times and aggregate
statistics will be collected, one simulation will be described
in detail first as an example. This allows for a more detailed
discussion.

A simulation of 20 TEs was run for T = 200 Mys using
the parameters in Section III-B. The consensus and harmful
regions (that cover 30% of the length of the consensus)
of these TEs are randomly generated. The activation and
deactivation time and the lifespan of each TE in the simulation
are in Table I (from oldest to youngest). Note that the TEs
are labelled intentionally to be consistent with their age for
simplicity; for example, TE1 is the oldest, and TE20 is the
youngest. The example is continued in the next section.



TE name Input age order Year of activation Year of deactivation Lifespan # of fragments
(oldest to youngest) (MYA) (MYA) (Mys) in genome

TE1 1 199 138 61 80
TE2 2 195 171 23 6
TE3 3 189 168 22 3
TE4 4 185 151 34 1
TE5 5 180 112 68 77
TE6 6 170 119 50 13
TE7 7 160 89 71 58
TE8 8 150 86 64 59
TE9 9 140 69 71 19

TE10 10 130 55 74 122
TE11 11 120 97 22 1
TE12 12 110 62 48 7
TE13 13 100 63 37 9
TE14 14 90 13 76 129
TE15 15 80 39 41 5
TE16 16 70 8 61 22
TE17 17 60 0 60 60
TE18 18 50 0 50 53
TE19 19 40 0 40 33
TE20 20 30 0 30 29

TABLE I
THE INPUT AGE ORDER, ACTIVATION TIME, DEACTIVATION TIME AND
LIFESPANS OF TES IN THE SIMULATION. THE COLUMN OF INPUT AGE

ORDER IS MARKED IN RED, WHICH WILL BE COMPARED TO THE
PREDICTED AGE ORDERS LATER.

IV. VERIFICATION OF PREDICTED ORDERING BY
SIMULATION

An interruption matrix of sequential interruptions is calcu-
lated from the simulation, which is then fed into the sequential
interruption model to verify the prediction of the model.

First, the interruption matrix (IM) is fed into the tabu search
of the LOP to predict an age order from IM. The predicted age
order is then compared to the input age order of TEs, and the
correlation of the comparison will be reported reflecting the
accuracy of the predicted ages against the input known ages.

The predicted age order from the interruption matrix is
calculated and shown in Table II. Note that TE4 and TE11
were not involved in any interruptions, so their relative ages
are not predicted.

Predicted age order calculated
TE name by tabu search from IM

(oldest to youngest)
TE1 3
TE2 5
TE3 1
TE5 2
TE6 6
TE7 7
TE8 4
TE9 9

TE10 8
TE12 12
TE13 13
TE14 10
TE15 11
TE16 14
TE17 15
TE18 18
TE19 17
TE20 16

TABLE II
THE RELATIVE AGE ORDER CALCULATED BY TABU SEARCH FROM THE
INTERRUPTION MATRIX OF THE SEQUENTIAL INTERRUPTION MODEL.

NOTE THAT TE4 AND TE11 WERE NOT INVOLVED IN ANY
INTERRUPTIONS, SO THEIR RELATIVE AGES ARE NOT PREDICTED.

To quantify how much the predicted order is correlated
with the input order, the Pearson’s coefficient of correlation

is calculated between the predicted age order and the input
TE age order as:

ρ = 0.9401445,

which indicates that the predicted order and the input order
have strong positive correlation. Furthermore, Fig. 2 shows the
comparison between the predicted age order and the input TE
age order. As previously mentioned, it is reasonable that the
two orders in comparison are distributed “around” the diagonal
line, as TEs have overlapped lifespans. It can be seen that the
predicted age order calculated by tabu search agrees well with
the input age order.

Fig. 2. A comparison between the input age order and the predicted age order
calculated by tabu search from the simulated interruption matrix. The x-axis
is the predicted relative age order, the y-axis is the input relative age order,
and the diagonal line marked in red represents all points that agree between
the predicted and actual order.

To further evaluate how well the sequential interruption
model predicts the relative ages of TEs in general, the simula-
tion was run 10 times with the same parameters for 20 TEs for
T = 200 Mys using the same data input (TE consensus, age
order, and harmful regions). The same workflow is applied
to all the simulated data to compare the predicted orders
from the sequential interruption model to the input order. The
correlations are listed in Table III.

ρ

simulation 1 0.936
simulation 2 0.889
simulation 3 0.686
simulation 4 0.611
simulation 5 0.641
simulation 6 0.734
simulation 7 0.719
simulation 8 0.787
simulation 9 0.692

simulation 10 0.681
average 0.738

TABLE III
CORRELATIONS CALCULATED FROM TEN SIMULATIONS.

The correlations in the table suggest that the predicted age
order from the sequential interruption model agree well with
the input order with an average correlation of 0.738.

V. DISCUSSION

We have previously created the TE sequential interruption
model in [7] based on the abundance of TEs interrupting other



TEs, and the problem of predicting TE age was formulated
by this model as a well-studied matrix problem — the linear
ordering problem. In this paper, tabu search, one of the most
efficient known meta-heuristic methods for LOP, was used
to solve the problem very efficiently. As discussed, though
[5] did not report how long it took the repositioning method
in their interruptional analysis to solve the problem on the
reduced matrix (of size 405), it is likely long, as only a
portion of TEs were solved. In contrast, the tabu search solves
the LOP on the full size matrix (of size 1,015) in just 38
seconds, while achieving better results when restricting to the
elements common in both methods. This efficiency should
allow the method to be usable for all TEs in every genome.
Overall, interruptional analysis provides a novel analysis of the
evolutionary history of some of the most abundant and ancient
repetitive DNA elements in mammalian genomes by analyzing
only a single genome, which is important for understanding
the dynamic forces that shape the genomes during evolution.

Furthermore, a simulation is developed in the paper, which
simulates the evolutionary process of how TEs propagate
through time, built on top of the existing PhyloSim package
that simulates sequence evolution. It is based on several
assumptions, such as the mutation rate being constant both
through all genomic sites including inserted TEs, as well as
through evolution. It also assumes that the transposition rate
is constant for all the TEs in the simulation. The simulation
can be extended in different ways to include more parameters
and controls in order to closer approximate realistic situations.
The simulation method is also useful for future TE prediction
methods for verification.

VI. CONCLUSIONS

In conclusion, the LOP and tabu search in particular as
per the sequential interruption model is more practical than
existing approaches while achieving better results in predicting
the relative ages of TEs. The TE remnants in the simulated
genome and their actual ages in the simulation are used to
verify the sequential interruption model. As a performance
measurement of the prediction model, the predicted relative
ages calculated by tabu search based on the sequential in-
terruption model shows a strong positive correlation with
the input age order of TEs. With these newly established
methods, tabu search can be applied to any genome with TEs.
Moreover, the big speed improvements allow the possibility
for comparative analysis of TEs in any genome, and even
in multiple genomes, in order to advance our understanding
about evolution of multiple species where common TEs exist
between them.
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