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Abstract

Transposable genetic elements are prevalent across many living organisms from bacteria to
large mammals. Given the linear primary structure of genetic material, this process is natural
to study from a theoretical perspective using formal language theory. We abstract the process
of genetic transposition to operations on languages and study it combinatorially and compu-
tationally. It is shown that the power of such systems is large relative to the classic Chomsky
Hierarchy. However, we are still able to algorithmically determine whether or not a string is a
possible product of the iterated application of the operations.
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1 Introduction

There are many different types of changes which can occur to a genome throughout evolution. These
include mutations, and small insertions and deletions. In addition, there is a large class of DNA
sequences which can move from one location to another within a genome. These are collectively
known as transposable elements or transpositions. They are extremely important biologically, as
they are estimated to occupy between 64% − 73% of corn [1]. Moreover, the dispersed repetitive
fraction of the human genome is estimated to be 46% [2].

See [3] for a good survey of transpositions. There are two main classes of transposable elements.
Class I are referred to as retroelements. These elements are produced by using reverse transcription
(which allows DNA to be produced from RNA) to make copies of themselves. The new DNA then
integrates at a new location of the genome. Intuitively, this class of transpositions operates similar
to a copy-and-paste mechanism. Class II are known as DNA transposons. They can operate with
either a copy-and-paste or cut-and-paste mechanism. Furthermore, many types of transposable
elements have a target site preference, which will affect the contexts around the DNA in which the
elements will be re-inserted.

These elements are quite natural to study theoretically using formal language theory, abstracted
to operations on words and languages. In this paper, we attempt to lay the foundations for the
study of this operation both mathematically and algorithmically. We then analyze some basic
properties of the operation.

In section 2, we give some mathematical preliminaries necessary for the rest of the paper. In
section 3, we give the definitions of different types of transpositions abstracted to operations on
words and languages. Sections 4 and 5 investigate the computational power of applying both classes
of transpositions iteratively. Section 6 investigates the properties of each type being applied a single
time. This section is useful towards the algorithmic study of transpositions, which is investigated
in section 7.

We were able to demonstrate that iterated type-1 transpositions produce arbitrary Recursively
Enumerable languages from finite initial and transposition languages modulo right quotient with a
regular language. In addition, we were able to closely characterize the non-iterated versions of the
operations. Then we found that we could algorithmically determine if a string is a possible product
of either iterated type-1 or type-2 transpositions, or even both together at once, so long as we can
determine membership in the initial and transposition language.

We hope that the study is useful for mathematical modelling, to improve our understanding of
transpositions, and also towards bioinformatics.

2 Mathematical Preliminaries

Let N be the set of positive integers and let N0 be the set of nonnegative integers.
We refer to [4] for language theory preliminaries. Let Σ be a finite alphabet. We denote, by

Σ∗ and Σ+, the sets of all words and non-empty words, respectively, over Σ and the empty word
by λ. A language L is any subset of Σ∗. Let L,R ⊆ Σ∗. We denote by R−1L = {z ∈ Σ∗ | yz ∈
L for some y ∈ R} and LR−1 = {z ∈ Σ∗ | zy ∈ L for some y ∈ R}.

Let x ∈ Σ∗. We let |x| denote the length of x. For each a ∈ Σ, we let |x|a be the number of
occurrences of a in x. If y = (x1, . . . , xn) is some n-tuple over Σ∗, then |y| = |x1|+ · · ·+ |xn|.

For i ∈ N, let x(i) be ai if x = a1 · · · ai · · · an, aj ∈ Σ, 1 ≤ j ≤ n, and undefined otherwise.
For n ∈ N0, let Σn = {w ∈ Σ∗ | |w| = n}, Σ≥n = {w ∈ Σ∗ | |w| ≥ n} and Σ≤n = {w ∈ Σ∗ |

|w| ≤ n}.



−−− u −−− xy −−−

u is copied and pasted between x,y, yielding:

−−− u −−− xuy −−−

Figure 1: We show a diagram illustrating a transposition of type 1.

−−− u −−− xy −−−

u is cut and pasted between x,y, yielding:

−−− −−− xuy −−−

Figure 2: We show a diagram illustration a transposition of type 2.

Let x, y ∈ Σ∗. We say x is a prefix of y, written x ≤p y, if y = xu, for some u ∈ Σ∗. We say x is
a suffix of y, written x ≤s y, if y = ux, for some u ∈ Σ∗. We say x is an infix of y, written x ≤i y,
if y = uxv, for some u, v ∈ Σ∗.

For each word x ∈ Σ∗ with Σ = {a1, . . . , an} using some fixed ordering, we associate its
Parikh vector, pΣ(x) by pΣ(x) = (|x|a1 , |x|a2 , . . . , |x|an). We extend pΣ to languages L ⊆ Σ∗ by
pΣ(L) =

⋃
x∈L pΣ(x). We omit Σ if it is understood. Given Σ and Parikh vector v, the Parikh

inverse set of v, p−1(v), is p−1(v) = {x ∈ Σ∗ | p(x) = v}. If x ∈ Σ∗ and L ⊆ Σ∗, then let perm(x) =
{y ∈ Σ∗ | pΣ(y) = pΣ(x)} and perm(L) =

⋃
x∈L perm(x). Note that p−1(p(x)) = perm(x) for all

x ∈ Σ∗.
A set of vectors is called semilinear if it can be represented as a union of a finite number of

sets of the form {v0 +
∑m

i=1 αivi | αi ∈ N0 for 1 ≤ i ≤ m} where vi ∈ Nn
0 for 0 ≤ i ≤ m, for some

dimension n. A language L is called semilinear if the set pΣ(L) is a semilinear set. Two languages
L,L′ are called letter-equivalent if and only if pΣ(L) = pΣ(L′). Thus, if two languages are letter
equivalent, then one is semilinear if and only if the other one is also. It is known that a language
L is semilinear if and only if it is letter-equivalent to a regular language [5].

A directed graph is a tuple G = (V,E) in the usual way. For v ∈ V , we let C(v) be the
connected component of v viewed as a subgraph of G.

3 Transpositions

Abstracting from the biology of Class I and Class II transpositions to the core transformations of
cut-and-paste and copy-and-paste, we define two types of formal transposition as follows. Let Σ be
a finite alphabet. A 4-tuple t = (x, u, y, z) is a transposition if x, y ∈ Σ∗, u ∈ Σ+, and z ∈ {1, 2}.
The transposition t is type-1 if z = 1; it is type-2 if z = 2.

The transposition-concatenation map hc : Σ∗×Σ+×Σ∗×{1, 2} → Σ+ is defined as hc(x, u, y, z) =

xuy, where t = (x, u, y, z) is a transposition. Also, we define hci to be the ith coordinate of the
transposition, for 1 ≤ i ≤ 4, and hc(T ) = {hc(t) | t ∈ T}. We also define T≤n = {t ∈ T | |hc(t)| ≤
n}.



A transposition schema is an ordered pair γ = (Σ, T ) where Σ is an alphabet and T is a set of
transpositions.

Given a transposition schema γ = (Σ, T ) and r, s ∈ Σ∗, we say that r is T -translatable to s (or
s is T -translatable from r), denoted r →T s if at least one of the following two conditions is true:

1. there exists (x, u, y, 1) ∈ T such that r = αuβ = x′xyy′ and s = x′xuyy′, for some α, β, x′, y′ ∈
Σ∗,

2. there exists (x, u, y, 2) ∈ T such that r = αuβ, αβ = x′xyy′, s = x′xuyy′, for some
α, β, x′, y′ ∈ Σ∗.

We abbreviate r →T s with r → s when T is understood. We say that r →+
T s if r = r1 →T · · · →T

rk = s, for some r1, . . . , rk, k ≥ 2. We say that r →∗T s if r →+
T s or r = s.

Intuitively, r →T s implies that applying some transposition in T to r can produce s. For a
type-1 transposition (x, u, y, 1) to be applied, u must appear in r, and then is pasted between sites
x and y. This is pictured in Figure 1. This closely reflects the copy-and-paste functionality of class
I transposable elements. Notice here that it is possible for u to overlap with xy. For example,
if r = αu1a1a2a3a4a5a6u2β, with u = u1a1a2a3a4a5a6u2, x = a1a2a3, y = a4a5a6, ai ∈ Σ and
(x, u, y, 1) ∈ T , then r →T s = αu1a1a2a3u1a1a2a3a4a5a6u2a4a5a6u2β. And indeed, biologically
it is possible for transpositions to insert into other transpositions throughout evolution [6]. With
type-2, u gets cut out of r before it is pasted between x and y. This is pictured in Figure 2

Let γ = (Σ, T ) be a transposition schema and let L ⊆ Σ∗. We define the non-iterated transpo-
sition of L to be γ(L) = {s | r → s, r ∈ L}. Furthermore, we define the following inductively,

γ0(L) = L,

γi+1(L) = γ(γi(L)), for i ≥ 0,

γ∗(L) =
⋃
i≥0

γi(L),

γ+(L) =
⋃
i>0

γi(L),

γ≤i(L) =
⋃

0≤j≤i
γj(L),

where γ∗(L) is referred to as the iterated transposition of L.
We say a transposition schema is a type-1 (respectively type-2) transposition schema if all

transpositions are of type-1 (respectively type-2). In this case, we identify the transpositions as
ordered triples and omit the final coordinate. We say a set of transpositions has finite contexts if
{u1u3 | (u1, u2, u3) ∈ T} is finite. We say the set has finite appearances if {u2 | (u1, u2, u3) ∈ T} is
finite.

In order to discuss T as belonging to a language family, we will often write T as being a subset
of #Σ∗$Σ∗$Σ∗# by identifying t = (x, u, v) in T as t = #x$u$y# where $ and # are any symbols
not in Σ.

Note that γ∗(L) = γ+(L) ∪ {L} in the above definition. Also, note that T is finite if and only
if T has both finite contexts and finite appearances. Intuitively, γ∗(L) will consist of all strings
which can be produced after applying any arbitrary number of transpositions to any string in L.
Note that “nested transpositions”, or transpositions being inserted into another transposition have
been found to occur [7].



4 Iterated type-1 transpositions

The contextual “copy-and-paste” nature of schemata restricted to type-1 transpositions suggests
a natural relationship with the pure insertion grammars. Pure grammars have no nonterminal
symbols and thus all words derivable from a finite set of axioms using a finite set of rules belong
to the language generated by the pure grammar.

Proposition 4.1 Let L ⊆ Σ∗ be a language generated by a pure insertion grammar G = (Σ, A, P ).
There exist finite languages L′, T ⊆ Σ∗ and a type-1 transposition schema γ = (Σ ∪ {$}, T ) such
that γ∗(L′)($Σ∗)−1 = L where $ 6∈ Σ.

Proof. We recall the definition of a pure insertion grammar [8], as a triple G = (Σ, A, P ) where Σ
is a finite alphabet, A ⊆ Σ∗ is a finite set of axioms and P ⊆ Σ∗×Σ∗×Σ∗ is a finite set of insertion
rules. The derivation relation (⇒) for a pure insertion grammar is defined such that for u, v ∈ Σ∗,
u⇒ v iff u = u′xyu′′, v = u′xwyu′′, for some (x,w, y) ∈ P , u, u′′ ∈ Σ∗. The language generated by
such a grammar is defined in the usual way.

Given a pure insertion grammar G, we denote by wP a word consisting of the concatenation
of the second component of all rules in P with an arbitrary, but fixed, ordering on P . Formally,
wP =

∏
p∈P π2(p), where π is the projection function.

We now construct a finite language L′ ⊆ Σ ∪ {$} and a type-1 transposition schema γ =
(Σ ∪ {$}, T ) as follows: for all w ∈ A, we include w$wP ∈ L′, as A is finite, so must be L′; for all
rules (x, u, y) ∈ P we include (x, u, y) ∈ T which, again, must be finite.

It is true that L(G) ⊆ γ∗(L′)($wp)
−1, as each derivation applied in G can be simulated by the

corresponding transposition in γ as the second coordinate of the transposition will appear in wp.
Thus, L(G) ⊆ γ∗(L′)($Σ∗)−1. It is clear that γ∗(L′)($Σ∗)−1 ⊆ L(G), as any transposition applied
acts on either the part of the word before $, or after $. If it gets applied before the $, then the
segment before $ is in L(G) (and indeed the same is true if it gets applied after the $).

Notice that the $ symbol is needed if one wants to perform a right quotient with Σ∗ as not every
pure insertion grammar generates a language closed under taking suffixes. However, if we weaken
the statement by taking right quotient with regular languages instead of Σ∗, then the $ symbol is
no longer necessary in the statement. The following corollaries are now immediate from [8], [9].

Corollary 4.1 For every recursively enumerable language L there exist homomorphisms h and g, a
finite language L′ and a finite type-1 transposition schema γ such that g(h−1(γ∗(L′)($Σ∗)−1)) = L.
There exist also a regular language R, a finite language L′′ and a finite type-1 transposition schema
γ1 such that γ∗1(L′′)(R)−1 = L.

Corollary 4.2 There exist non-semilinear languages which can be generated by a finite type-1
transposition schema acting on a finite language.

5 Iterated type-2 transpositions

In this section, we will explore basic mathematical properties and computational capacity of iterated
type-2 transpositions.

The following are immediate from the definitions of type-2 transposition systems:

Lemma 5.1 Let γ = (Σ, T ) be a type-2 transposition schema with L ⊆ Σ∗. Then the following are
true:



1. pΣ(L) = pΣ(γ∗(L)),

2. γ∗(L) ⊆ perm(L),

3. γ∗(L) is semilinear if and only if L is semilinear,

4. w ∈ γ∗(L) if and only if w ∈ γ̄∗(L′) where γ̄ = (Σ, T≤|w|) and L′ = perm(w) ∩ L.

5. If L is finite, then γ∗(L) = γ̄∗(L), where γ̄ = (Σ, T≤n), n = max{|v| | v ∈ L}

Proof. The first part is immediate as r → s implies pΣ(r) = pΣ(s), and the second and third parts
follow from the first. We will prove the fourth statement as follows:

“⇒” Assume w ∈ γ∗(L). It follows from part (2) that it is enough to use L′. There exist
v0, . . . , vn ∈ γ∗(L) and t1, . . . , tn ∈ T such that vi →{ti+1} vi+1 for every 0 ≤ i < n where v0 ∈ L.
In particular, in order for each ti to be used, by the definition of a transposition system, |ti| ≤ |w|.

“⇐” immediate.
The fifth statement follows from the fourth.

Thus, in terms of generative power, if L is finite, we can assume T is also, by ignoring rules of T
which are too long to be used.

Lemma 5.2 Let Γ = (Σ, T ) be a type-2 transposition schema with L ⊆ Σ∗ and {(λ, a, λ) | a ∈
Σ} ⊆ T . Then γ∗(L) = perm(L).

Proof. “⊆” This follows from Lemma 5.1 (2).
“⊇” This follows as, for any w ∈ L, we can move every letter a ∈ Σ to any position of w. Thus,

perm(w) ⊆ γ∗(L), and hence perm(L) ⊆ γ∗(L).

The following is now immediate, since we know that the families of regular and context-free
languages are not closed under permutation.

Corollary 5.1 The families of regular and context-free languages are not closed under type-2 trans-
positions with finite languages. Indeed they are not closed under transposition languages of size |Σ|.

Here, as is customary in formal language theory, a family of languages L1 is closed under
transpositions from L2 if the non-iterated transposition of a language in L1 with a transposition
set in L2 always yields a (usually different) language in L1.

We will revisit both iterated type-1 and -2 schemas in section 7.

6 Non-iterated transpositions

In this section, we will explore the power of applying the transformations a single time. These
results will become important for the next section which studies the operations algorithmically.

First we will see that under common formal language theoretic operations, closure under iterated
transpositions implies closure under non-iterated transpositions.

Proposition 6.1 Let z ∈ {1, 2}. Let L1 be a language family closed under λ-free homomorphism,
inverse homomorphism and intersection with regular languages, and let L2 be closed under in-
verse homomorphism and intersection with regular languages. If L1 is closed under iterated type-z
transpositions from L2, then L1 is closed under non-iterated type-z transpositions from L2.



Proof. First we will consider type-1. Let L ∈ L1, let γ = (Σ, T ) be a transposition schema,
T ∈ L2, T ⊆ #Σ∗$Σ+$Σ∗#, and let h be a homomorphism from (Σ ∪ {α})∗ to Σ∗, where α
is a new symbol, defined by h(a) = a, for each a ∈ Σ and h(α) = λ. Let R = (αΣ)∗α, a
regular language, and let L′ = h−1(L) ∩ R. Thus, each word of L has α inserted between every
two letters. Let T̄ = h−1(T ) ∩ #(αΣ)∗α$(αΣ)+$(Σα)∗#, and let γ̄ = (Σ ∪ {α}, T̄ ). Then, it
is evident that γ̄∗(L′) ∩ ((αΣ)∗αα(Σα)∗ ∪ (αΣ)∗αα(Σα)∗ΣΣα(Σα)∗) = γ̄(L′) because any word
in γ̄2(L′) − γ̄(L′) would produce either three consecutive α’s, or two sections of two α’s (words
in (αΣ)∗αα(Σα)∗ are produced via transpositions with an empty third component and words in
(αΣ)∗αα(Σα)∗ΣΣα(Σα)∗ are produced via transpositions with a non-empty third component).
Furthermore, h(γ̄(L′)) = γ(L), and every language family closed under λ-free homomorphism,
inverse homomorphism and intersection with regular languages is also closed under linear-erasing
homomorphisms. Thus type-1 follows.

The same proof works identically with type-2.

Although the conditions of the proposition are abstract, most nondeterministic machines defin-
ing families of languages, including each family from the Chomsky Hierarchy are closed under these
operations.

Proposition 6.2 Let z ∈ {1, 2}. The family of counter languages (and the context-free languages)
are not closed under non-iterated type-z regular transpositions with contexts of size 0. Furthermore,
the same is true with iterated transpositions.

Proof. We will start with type-1 transpositions. Assume otherwise. Let L = {anqanq | n ≥ 0},
and let T = {(λ, qanq, λ) | n ≥ 0}, and let γ = ({a, q}, T ) be a transposition system. Then consider
γ(L) ∩ a∗qa∗qqa∗q = γ∗(L) ∩ a∗qa∗qqa∗q = {anqanqqanq | n ≥ 0}, which isn’t a counter language,
a contradiction.

Next, we consider type-2 transpositions. Assume otherwise. Let
L = {anqpanpamqam | n,m ≥ 0}. Let T = (λ, panp, λ) | n ≥ 0}, and let γ = ({p, q, a}, T ) be
a transposition system. Then, γ(L) ∩ a∗qa∗qpa∗pa∗ = γ∗(L) ∩ a∗qa∗qpa∗pa∗ = {anqamqpanpam |
n,m ≥ 0}, which isn’t a counter language, contradiction.

We see however, that for the non-iterated version, it is the unbounded appearances which make
the difference. Similarly to Proposition 6.1, the conditions are satisfied by all standard families of
languages defined by nondeterministic machines.

Proposition 6.3 Let L be a language family closed under inverse homomorphism, λ-free homo-
morphism and intersection with regular languages. Then the following are true:

1. L is closed under regular type-1 transpositions with finite appearances,

2. If L is closed under arbitrary homomorphism, then L is closed under regular transpositions1

with finite appearances.

Proof. We will start by proving the second statement, restricted to type-2 transpositions, as both
statements are easy variants of this. Let γ = (Σ, T ) be a transposition system where T is a regular
language (which for simplicity’s sake, we will denote as being a subset of #Σ∗$Σ∗$Σ∗#), with
finite appearances. Let M = (Q,Σ, q0, F, δ) be a deterministic finite automaton accepting T . Let
L ∈ L, L ⊆ Σ∗. Let X = {hc2(t) | t ∈ T}, which is finite, and for each x ∈ X, let Q(x) =

1This can include both type-1 and type-2 transpositions.



{(q1, q2, q3, q4) | #u1$x$u3# ∈ T, δ(q0,#) = q1, δ(q1, u1) = q2, δ(q2, $x$) = q3, δ(q3, u3) = q4}. Each
of these sets is finite.

Let Σ̄ = {ā | a ∈ Σ}, and let h be a homomorphism from (Σ ∪ Σ̄)∗ to Σ∗ defined by h(a) =
h(ā) = a, for each a ∈ Σ. Let X̄ be the barred version of X and let L′ = h−1(L) ∩ Σ∗X̄Σ∗ ∈ L.

Next, we construct a nondeterministic gsm K which operates on L′ as follows: first, on input
u1u2u3, with u1u3 ∈ Σ∗, and u2 ∈ Σ̄∗, K nondeterministically guesses x ∈ X, and (q1, q2, q3, q4) ∈
Q(x). This is done by adding a λ transition from the initial state q0 to any state qx,z, where
x ∈ X, z ∈ Q(x). Then, in parallel it does the following

1. verifies h(u2) = x and erases u2,

2. while reading u1u3 = a1 · · · am (ie. ignoring barred letters), guesses positions i, j, k, 1 ≤ i ≤
j < k and verifies that δ(q1, ai · · · aj) = q2, then outputs x, then verifies δ(q3, aj+1 · · · ak) = q4.

We will describe how to implement condition 2, and it is clear that we can easily add in 1. We
use states (q1

x,z, q), q
2
x,z, (q

3
x,z, q), qf for all q ∈ Q (Q is the state set for the finite automaton).

There are transitions from qx,z on each letter a while outputting a, then there is a transition
from qx,z to (q1

x,z, q1) applied nondeterministically on λ input, then it transitions from (q1
x,z, p) to

(q1
x,z, q) on a letter a, while outputting a, if q ∈ δ(p, a). Then, from (q1

x,z, q2), it can transition
nondeterministically on λ input to q2

x,z while outputing x. Then, it switches to state (q3
x,z, q3) and

(similar to state (q1
x,z, q)) simulates M with the second coordinate until hitting (q3

x,z, q4), at which
point it switches to qf and outputs the input.

Then K(L′) = γ(L) and as every language family satisfying the assumptions is closed under
nondeterministic gsms, it follows that K(L′) ∈ L.

We shall next deal with type-1 transpositions. If in the proof above, we modify K so that it
does not erase u2, but rather outputs h(u2) = x, then K is λ-free, and K(L′) = γ(L).

Lastly, if T consists of both type-1 and type-2 transpositions, then the nondeterministic gsm
can guess at the beginning of its computation.

7 Membership of transpositions

We now discuss the algorithmic problem of deciding whether a given string is a possible product of
iterated transpositions. We will start with type-1 only.

Proposition 7.1 Let γ = (Σ, T ) be a type-1 transposition schema with L ⊆ Σ∗ and w ∈ Σ∗. Then
w ∈ γ∗(L) if and only if w ∈ γ̄≤|w|(L′) where γ̄ = (Σ, T≤|w|) and L′ = L ∩ Σ≤|w|.

Proof. “⇒” If w ∈ γ∗(L), then w ∈ γm(v) for some m ≥ 0 minimal and v ∈ L. Thus, |w| ≥ |v|+m,
which makes m ≤ |w| and |v| ≤ |w|.

“⇐” immediate.

We see that there is an algorithm as long as we can determine if a given string is in L and T .

Proposition 7.2 Let γ = (Σ, T ) be a type-1 transposition schema with L ⊆ Σ∗ where we can
decide membership in L and T and let w ∈ Σ∗. Then we can decide whether w ∈ γ+(L).

Proof. By Proposition 7.1, it suffices to decide if w ∈ γ̄≤|w|(L′) where γ̄ = (Σ, T≤|w|) and L′ =
L∩Σ≤|w|. As L and T have a decidable membership problem, we can effectively construct both L′

and T≤|w|. As L′ and T≤|w| are both finite, it follows that we can effectively construct the finite
language γ̄≤|w|(L′) and then we can test if w is in this language.



Next, we will study the same question for type-2 transpostions.

Let γ = (Σ, T ) be a type-2 transposition schema and let L ⊆ Σ∗. We wish to find an algorithm
that, given w ∈ Σ∗, will decide whether or not w ∈ γ+(L). We solve the problem first if L and T
are finite.

Proposition 7.3 Let γ = (Σ, T ) be a type-2 transposition schema and L ⊆ Σ∗ where L and T are
finite and effectively given, and let w ∈ Σ∗. Then there is an algorithm which can determine if
w ∈ γ∗(L).

Proof. It is immediate from the definition that γi+1(L) = γi(L) implies γ∗(L) = γi(L). Since γ
only permutes, γi(L) is finite for all i and there exists i such that γi(L) = γ∗(L) is finite and thus
we can decide whether w ∈ γ∗(L).

More generally, we can decide membership in γ+(L) as long as we can within L and T .

Proposition 7.4 Let γ = (Σ, T ) be a type-2 transposition schema, let L ⊆ Σ∗ where we can decide
membership in L and T and let w ∈ Σ∗. Then it is decidable whether w ∈ γ∗(L).

Proof. Indeed, as we can decide membership in L and T , it is possible to construct L ∩ perm(w)
and T≤|w| by testing whether v is in L, for each v ∈ perm(w) and by testing whether x is in T , for
each |x| ≤ |w|. The proposition then follows from Proposition 7.3.

Lastly, we will use these results to decide membership in γ+(L), even if γ contains both type-1
and -2 transpositions.

Proposition 7.5 Let γ = (Σ, T ) be a transposition schema (potentially containing both type-1 and
-2 rules), let L ⊆ Σ∗ where we can decide membership in L and T and let w ∈ Σ∗. Then it is
decidable whether w ∈ γ∗(L).

Proof. Let T1 (respectively T2) be the subset of T with type-1 (respectively type-2) rules. Let
γ1 = (Σ, T1) and γ2 = (Σ, T2).

Let L1 = L ∩ Σ and for all n ≥ 1, let

Ln+1 = (γ∗2(γ1(Ln) ∪ (L ∩ Σn+1)) ∩ Σ≤n+1) ∪ Ln.

We will show by induction that for all n ≥ 1, Ln = γ∗(L) ∩ Σ≤n.
It is clear that L1 = γ∗(L) ∩ Σ≤1. Let k ≥ 1 and assume Lk = γ∗(L) ∩ Σ≤k. It is immediate

that Lk+1 ⊆ γ∗(L) ∩ Σ≤k+1. Let w ∈ γ∗(L) ∩ Σk+1. Thus, either v → v′ →∗ w where v ∈ Lk =
γ∗(L)∩Σ≤k and v′ /∈ Lk (as Lk only consists of words of length less than or equal to k), or v →∗ w
where v ∈ L∩Σk+1 (depending upon whether w is obtained with at least one type-1 transposition
or only type-2). Assume the first case. Then |v| < |v′| = |w|, and thus |v′| must be obtained via
one application of a rule from γ1 followed by zero or more from γ2. Thus, w ∈ Lk+1. Assume the
second case. Then w must be obtained from v via zero or more applications of γ2 from L ∩ Σk+1

and thus w ∈ Lk+1. Hence, by induction, Ln = γ∗(L) ∩ Σ≤n, for all n ≥ 1.
Finally, to test whether w ∈ γ∗(L), it suffices to check whether γ∗(L) ∩ Σ≤|w|. To start, we

can construct the finite languages L′ = L ∩ Σ≤|w| and T≤|w| by deciding membership in L and T .
Then, we can iteratively construct L1, . . . , L|w| as follows: at iteration i+ 1, we add in all words in
L of length i + 1, all words of length i + 1 obtained via one application of a type-1 rule from Li,
and then all words obtained via iterated type-2 transpositions via these new words which we can
determine by Proposition 7.4. Thus, we can decide if w ∈ L|w| = γ∗(L) ∩ Σ≤|w| and if w ∈ γ∗(L).



8 Conclusions

We have abstracted the process of both classes of transposable elements to operations on strings
and languages. We investigated some basic mathematical properties and the computational power
of transpositions. In particular, it was shown that we can generate arbitrary recursively enumerable
languages from finite initial and finite transposition languages, modulo right quotient by a regular
set. Moreover, non-semilinear languages can be generated similarly. For type-2 transpositions,
we can generate only semilinear languages, but the operation is strictly more powerful than per-
mutation. Algorithmically, it was demonstrated that we can decide membership after application
of both iterated type-1 and iterated type-2 transpositions, so long as we can decide membership
in both the initial and transposition languages. Then, we were able to use these results to show
decidability even when both type-1 and -2 transpositions were present simultaneously.

Future work will consider the time complexity necessary to determine this and other decision
questions. Furthermore, we would like to study these complexity questions under certain realistic
assumptions, in an attempt for the algorithms to be useful from the perspective of bioinformatics
and the analysis of data.
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