
A Fast and Reliable Hybrid Approach for Inferring L-systems∗†

Jason Bernard1, Ian McQuillan1

1University of Saskatchewan, Saskatoon, SK
jason.bernard@usask.ca, mcquillan@cs.usask.ca

Abstract

Lindenmayer systems (L-systems) are a formal grammar sys-
tem that iteratively create new strings from previous strings
by rewriting each of its symbols in parallel according to a
set of rewriting rules. The symbols in the string sequence
produced can be taken as instructions to produce a visual-
ization of a process over time. They have been especially
useful for creating accurate simulations of plants. The L-
system inductive inference problem is the problem of infer-
ring an L-system that initially produces a given sequence of
strings. Here, a new tool to solve this problem, PMIT-D0L is
introduced, that combines projected solutions with linear dio-
phantine equations, heuristics, and genetic algorithm. PMIT-
D0L was validated using 28 previously developed determinis-
tic context-free L-systems of different complexity, and it can
infer every L-system in the testbed with 100% success rate in
less than 4 seconds, a significant improvement over existing
implemented tools.

Introduction
In 1968, Lindenmayer (Lindenmayer, 1968) proposed a for-
mal grammar system, later called L-systems, to model cel-
lular interactions. Since then, L-systems have been rec-
ognized as a robust modeling tool in many diverse re-
search domains such as plant modeling (Lindenmayer, 1968;
Prusinkiewicz and Lindenmayer, 1990), arterial branching
(Zamir, 2001; Galarreta-Valverde et al., 2013), sedimen-
tary channels (Rongier et al., 2017), and theoretical com-
puter science (Prusinkiewicz and Hanan, 1992). Within
a few years of the introduction of L-systems, researchers
started laying the theoretical groundwork for the L-system
inductive inference problem (e.g., (Feliciangeli and Herman,
1973; Herman and Walker, 1972)). One variant of inductive

∗This research was supported in part by a grant from the Plant
Phenotyping and Imaging Research Centre.

† Published in: The 2018 Conference on Artificial Life: A
Hybrid of the European Conference on Artificial Life (ECAL)
and the International Conference on the Synthesis and Simula-
tion of Living Systems (ALIFE) 2018 NO. 30, 444-451. https:
//www.mitpressjournals.org/loi/isal https://
doi.org/10.1162/isal_a_00083. c© 2018 The MIT
Press.

inference is, given a sequence of input strings, find an L-
system that initially generates the sequence.

Currently, most L-systems models are found manually by
experts one problem at a time, which can take a considerable
amount of time and effort (Prusinkiewicz et al., 2001). Such
models can then be used by domain experts to conduct ex-
periments by simulating in silico, which is generally much
less expensive than experimenting in the real world. Infer-
ring an L-system algorithmically would be possibly much
quicker, hopefully scaling to the creation of thousands of
new models in custom scenarios from images over time.

There are many different types of L-systems; however,
this work is focused on deterministic context-free L-systems
(D0L-systems). A D0L-system is an ordered tuple G =
(V, ω, P), consisting of an alphabet V , an axiom ω (a word
using letters of V), and a finite set of productions P . A pro-
duction (sometimes called a rewriting rule) is of the form
A → u, where A ∈ V (called the predecessor) and u is a
word over V (called the successor of A). In a deterministic
L-system, only one successor exists for each predecessor,
denoted by succ(A). A derivation step, denoted by ⇒, in-
volves replacing every symbol in a string with its successor.
In a context-free L-system, rewriting rules are applied solely
based on each symbol, i.e. without considering neighbour-
ing symbols. Usually, derivations start from the axiom, i.e.
ω ⇒ ω1 ⇒ ω2 ⇒ · · · .

L-systems are often used for modeling, by interpreting
some of the symbols in the alphabet as instructions for draw-
ing an image, and each string as a sequence of instructions,
and then sequences of strings correspond to a process. One
common approach for visualization is the turtle graphics in-
terpretation (Prusinkiewicz and Lindenmayer, 1990). Con-
ceptually, a virtual turtle has a state consisting of coordi-
nates in 2D or 3D Euclidian space, and an orientation, and
the symbols can adjust these state variables. When the tur-
tle’s coordinates change, it may optionally draw a line be-
tween the new and old coordinates. For 2D systems, the
turtle graphics are to turn left (+) or right (−) by a fixed an-
gle, and move forward a fixed distance while drawing (F)
or not drawing (f). Additional symbols for 3D allow for

https://www.mitpressjournals.org/loi/isal
https://www.mitpressjournals.org/loi/isal
https://doi.org/10.1162/isal_a_00083
https://doi.org/10.1162/isal_a_00083

yaw, pitch, and rotational control (Prusinkiewicz and Lin-
denmayer, 1990). For processes that need branching, the
symbols [and] start and end a branch by pushing and pop-
ping the turtle’s state respectively. Other non-graphical sym-
bols can also be used.

Several algorithmic approaches for inferring L-systems
exist, and are surveyed in (Ben-Naoum, 2009). In (Mock,
1998), L-systems are created that are based on aesthetics. In
(Jacob, 1995), they are evaluated based on certain metrics
(e.g., how many blooms and leaves exist). These types of
methods do not infer an L-systems for a specific sequence
of input strings, i.e. for a specific problem. Some meth-
ods algorithmically infer an L-system based on a sequence
of inputs strings; e.g, (Nakano and Yamada, 2010; Bernard
and McQuillan, 2018; Runqiang et al., 2002). This type of
method is the focus of this research. It requires no ongoing
interaction with the user, no a priori knowledge, and only
a sequence of strings. This can be seen as an intermedi-
ate step towards inferring from a sequence of images, which
has been attempted in a preliminary fashion by (Runqiang
et al., 2002). They use a genetic algorithm (GA) to infer an
L-system from an input image by using image processing
techniques for their fitness function to match the resulting
image from the candidate projected to the input image. This
method was found to be 100% successful at inferring three
variants of the “Fractal Plant” L-system (Prusinkiewicz and
Lindenmayer, 1990) that have one symbol, and 66% suc-
cessful the other three variants that have two symbols.

The Plant Model Inference Tool (PMIT) (Bernard and
McQuillan, 2018) used a GA to search for an L-system com-
patible with a sequence of input strings after using heuristics
based on necessary conditions to reduce the search space.
It was successful compared to other existing tools that in-
fer from strings (Runqiang et al., 2002; Nakano and Ya-
mada, 2010) and could infer all systems tested where the
total number of symbols added across all successors was at
most 140, and those required a maximum of approximately
300 seconds. However, larger systems could not be solved
in 4 hours of computation time. In all, PMIT solved 15 of
28 previously developed L-systems. By comparison, LGIN
(Nakano and Yamada, 2010) attempts to infer an L-system
from a single string. LGIN was evaluated on six “Fractal
Plant” variants and was found to be able to infer all of them
in, at most, a few seconds. Three of these variants have a
one symbol alphabet and three have a two symbol alphabet.
In their paper, they call the two symbol case “immensely
complicated” (Nakano and Yamada, 2010), and they did not
evaluate LGIN on any larger alphabets.

Here, a new method called PMIT-D0L is created that also
uses a genetic algorithm with a different encoding scheme
based on successor lengths instead of an ordered sequence
of symbols. As before, heuristics (both new and some previ-
ously described in (Bernard and McQuillan, 2018)) are used
to reduce the search space. Finally, linear diophantine equa-

tions are used to eliminate some possible length combina-
tions, drastically reducing the overall search space. With
these modifications, PMIT-D0L is able to infer all of the
D0L-systems with 100% success rate in the testbed of 28
previously existing systems. These include systems with up
to 31 symbols in the alphabet and a sum of successors of
282, and all are solved in at most 3.192 seconds. Hence, this
is a significant improvement from previous approaches. In
particular, 13 of 28 L-systems tested were immediately in-
ferred in approximately 1 millisecond from the diophantine
equations without the need for heuristics or searching.

Background
This section begins with some notation used throughout the
paper. An alphabet, V , is a finite set of symbols. A word,
ω, over V is any sequence of symbols a1a2 · · · an, ai ∈ V ,
1 ≤ i ≤ n. The length of a word ω is denoted as |ω|; further,
the number of occurrences of letter a in ω is denoted as |ω|a.
The set of words over V is denoted as V ∗.

Given two words x, y ∈ V ∗, x is a substring of y if y =
uxv, for some u, v ∈ V ∗; additionally, y is said to be a
superstring of x. Also, x is a prefix of y if y = xv for some
v, and x is a suffix of y if y = ux for some u.

A genetic algorithm (GA) is an optimization algorithm
described here only informally; see Back (Bäck, 1996) for
definitions and more explanation. A GA is based on con-
cepts from evolutionary biology, which states that the genes
from parents are intermixed in offspring, and over subse-
quent generations the “species” will become more fit to their
environment. With a GA, an encoding scheme is used to
represent a solution to a problem as a set of values called a
genome consisting of genes. Each gene represents a com-
ponent of the solution to the problem, and the gene’s value
is mapped to an option for that component, and so is de-
coded in a problem specific fashion. For this work, a literal
encoding is used, which means each gene’s value directly
represents an option in the problem solution (Bäck, 1996).
Furthermore, PMIT-D0L uses the following simple standard
operators for processing steps of the GA: roulette wheel se-
lection, uniform crossover, uniform mutation, and elite sur-
vival (Bäck, 1996). The crossover and mutation steps are
controlled by the weight parameters.

There have been various approaches towards inductive in-
ference (Ben-Naoum, 2009). A technique used here is that
of Doucet (Doucet, 1974), who recognized an algebraic re-
lationship between the productions and the words generated
by an L-system, that can be described as a set of linear equa-
tions. If ωi−1 ⇒ ωi, then for every A ∈ V , |ωi|A is equal
to the sum of the number of As produced by every sym-
bol in ωi−1. For example, if it is known that ABA ⇒
ABABBBABA, then 2×|succ(A)|A+1×|succ(B)|A =
4. Repeating this for every derivation step will give a set
of linear equations. Given an alphabet of n letters, and a
sequence of words % = (ω1, . . . , ωm), consider the set of

linear equations represented as a matrix equation

YM = Z, (1)

where position (i, j) of Y is the number of the jth letter in
ωi−1, and position (i, j) of Z is the number of the jth let-
ter in ωi. For a D0L-system G, the matrix M(G) where
entry (i, j) is the number of the jth symbol in the succes-
sor of the ith symbol, is called the growth matrix of G.
If one is only given the sequence % and not the grammar
generating %, then Y and Z are known while M(G) is not.
However, the growth matrix M(G) of any D0L-system G
generating % is a solution to Equation 1. In general though,
there can be additional solutions to Equation 1 that are not
growth matrices of D0L-systems generating %. If the ma-
trix Y is invertible, then M = Y −1Z (substituting M(G)
for M is a solution, following the behavior of matrix multi-
plication). This process is described in more detail in (Mc-
Quillan et al., 2018) where inductive inference is shown to
be solvable in polynomial time when Y is invertible. Fur-
thermore, even in cases where Y is not invertible, one can
use solutions to linear diophantine equations to obtain so-
lutions. For example, if ABA ⇒ ABABBBABA ⇒
ABABBBABABBBBBBBBBABABBBABA, then
the matrices would be appear as in Equation 2:[

2 1
4 5

]
×M =

[
4 5
8 19

]
(2)

where the growth matrix is a solution for M. The possible
values in the growth matrix can be solved for by, for ex-
ample, Gauss-Jordan Elimination. Each possible solution
for M can be tested against the input strings to see if they
represent the growth matrix of a D0L-system, and if so, it
represents a compatible solution to the input strings. Doucet
did not implement his method.

LGIN (Nakano and Yamada, 2010) uses a similar ap-
proach by creating equations describing the growth relation-
ships for each symbol in the alphabet. LGIN then exhaus-
tively tries to find the appropriate successor(s) to describe a
single input string that satisfies the growth equations.

Inferring D0L-Systems
This section describes the process and techniques used by
PMIT-D0L to infer D0L-systems. Conceptually, PMIT-D0L
works by logically deducing three categories of facts about
the successors of the (hidden) L-system to aid in a search
for the L-system. First, for each A ∈ V , lower and up-
per bounds on |succ(A)| are determined, called Amin and
Amax respectively. Second, lower and upper bounds on
|succ(A)|B , are denoted by (A,B)min and (A,B)max re-
spectively. These lower and upper bounds are treated as pro-
gramming variables in this paper, so their values are updated
as PMIT-D0L runs if an improved value is found. PMIT-
D0L assumes that the D0L-systems are non-erasing so ini-

tially Amin = 1 for each A ∈ V . Furthermore, it is as-
sumed that each turtle graphics symbol (T) except “F” has
an identity production, e.g. + → +. Thus, (T, T)min =
(T, T)max = 1 and (T,A)min = (T,A)max = 0 for each
A ∈ V,A 6= T . For the “F” symbol, if it has an identity
production this is assumed to be known and the previous
statement applies; otherwise, it is treated as a non-graphical
symbol for the purposes of inferring the L-system (it is also
tested without this assumption). Additionally, branching
symbols are paired in all successors, e.g. there is no “[” with-
out a “]” in any successor. Third, successor relationships, of
which there are five types, are defined as follows:

• A word ω is an A-complete if ω = succ(A).

• A word ω is an A-subword if ω is a subword of succ(A).

• A word ω is an A-prefix if ω is a prefix of succ(A).

• A word ω is an A-suffix if ω is a suffix of succ(A).

• A word ω is an A-superstring if ω is a superstring of
succ(A).

Scanning for Successors
Previous attempts to infer L-systems by searching have fo-
cused on directly finding the correct symbols in the succes-
sor in the proper order (Mock, 1998; Runqiang et al., 2002;
Bernard and McQuillan, 2018). Although intuitive, this ap-
proach is inefficient for two reasons. First, from an encod-
ing perspective, every additional symbol in the successors
requires another gene; thereby, causing the solution space
to grow very quickly for even fairly short successors. Sec-
ond, the search will find and assess many solutions that are
not possible. For example, consider the strings ω1 = ABA
and ω2 = ABABBBABA such that ω1 ⇒ ω2. With such
strings, considering a solution with A→ AAA is inefficient
as the subword AAA does not exist in ω2. Approaches that
try to directly construct the successor as an ordered sequence
of symbols struggle to avoid considering such successors.
Logically, if from a subword u, u ⇒ v, and |u|A > 0, then
succ(A) must be a subword of v. For this paper, the ap-
proach used to find successors is by searching for the lengths
of succ(A), i.e. |succ(A)|, for every A ∈ V and then select
a subword from the input strings of length |succ(A)| for the
first A encountered in the input strings.

Transforming a set of successor lengths into a set of suc-
cessors (and hence the L-system) is indeed straightforward
and efficient (McQuillan et al., 2018). It is done by scanning
each pair of consecutive words ωi−1 = a1a2 · · · a|ωi−1| and
ωi = b1b2 · · · b|ωi| from left-to-right. If one possibility is
|succ(a1)| = 3, and |succ(a2)| = 2, then this implies that
succ(a1) = b1b2b3 and succ(a2) = b4b5. Proceeding un-
der these assumptions finds the corresponding successor of
each symbol, or finds an incompatibility. Hence, the goal is
to search the space of possible successor lengths to find an
L-system compatible with a sequence of strings.

The process flow for searching for a set of successor
lengths is to first execute a series of heuristics (discussed
next). The heuristics deduce facts about the successors relat-
ing to the upper and lower bounds of |succ(A)|, |succ(A)|B
and finding A-subwords and A-superstrings of the succes-
sors. The heuristics are run in a loop until they no longer
produce any new information. Afterwards, the problem is
divided into sub-problems by solving for the non-graphical
symbols and then adding in graphical symbols one at a time.
Finally, each sub-problem is solved by Gauss-Jordan elimi-
nation either providing a unique solution for the length ma-
trix, or allowing for searching for a set of successor lengths
that satisfy the diophantine equations.

Heuristics and Forming Independent Problems
If there is a solution to a D0L-system inference problem,
then it must exist in the space of all possible D0L-systems.
However, since this space is extremely large, heuristics
based on necessary conditions are used to reduce its size.
Three categories of heuristics are used to minimize the dif-
ference between Amin and Amax for every A ∈ V , based
on growth, length, and successor relationships.

A summary of the heuristics used by the earlier version
of PMIT are briefly described in this paragraph as they are
still used by PMIT-D0L, with a detailed description avail-
able in (Bernard and McQuillan, 2018). The growth heuris-
tics examine each pair of consecutive words, ωi−1 ⇒ ωi,
and counts the number of times A appears in ωi−1 and the
number of times B appears in ωi for every A,B ∈ V . By
dividing, this gives a maximum number an upper bound on
|succ(A)B |. Then by assuming every symbol except one,
B, produces their maximum, a minimum number of sym-
bols B produced by A can be deduced. For the first non-
turtle graphic symbol in each string, the successor relation-
ship heuristic finds an A-prefix by using the first Amin sym-
bols from the next string. Similarly, it is possible to find
an A-suffix using the last non-graphical symbol, and A-
superstrings using Amax.

More detail is given to the last technique of breaking
down the inference process into independent sub-problems
since it plays a significant role in the new heuristic using so-
lutions (described later). A projection of a word ω ∈ V ∗

to a smaller alphabet V ′ ⊂ V keeps all letters of V
′

and
erases those in V − V ′ . To determine the successor of each
symbol A, first determine succ(A) projected to the non-
graphical symbols, i.e. find the successors consisting only
of the non-graphical symbols. Then it is possible to inde-
pendently determine where each graphical symbol should
be placed. For example, if V = {A,B,C, [,],+, -}, then the
first problem is to find each successor of A,B,C projected
to V

′
= {A,B,C}. Then there would be an independent

problem for adding [and] together (as they exist in pairs)
into the successors, then one for +, and -. This simplifies the
inference problem by making the difference between Amin

and Amax lower. Although more searches are needed, one
for each sub-problem, they are each in a smaller search space
and so decreases the size overall.

Symbols as Markers Any symbol for which the succes-
sor is known can drastically reduce possibilities for neigh-
bouring symbols. Conceptually the idea is to line up every
symbol A that has a known successor in a word ωi−1 with
its successor as derived in ωi. To illustrate this, Equation 3
shows a simple example. Since the + only ever derives the
+ symbol, it can be seen that the + symbol in ω1 must pro-
duce the + in ω2. This allows ω1 to be separated into two
parts, ω1,1 = A and ω1,2 = B, and ω2 into ω2,1 = ABA
and ω2,2 = BBB. Since ω1,1 ⇒ ω2,1, this implies that
A→ ABA and B → BBB are productions.

ω1: A+B

ω2: ABA︸ ︷︷ ︸
succ(A)

+ BBB︸ ︷︷ ︸
succ(B)

(3)

However, it is unusual for a single symbol to uniquely as-
sociate with one position of the next word except for any
turtle graphics symbols at the beginning or end of the word.
More commonly, there are a set of possible matches. For
example if ω2 had contained two +’s, ω2 = ω2,1+ω2,2+ω2,3,
then either the + in ω1 associates with the first + in ω2, which
would imply that ω1,1 ⇒ ω2,1 and ω1,2 ⇒ ω2,2+ω2,3, or
the + associates with the second + in ω2, which implies
ω1,1 ⇒ ω2,1+ω2,2 and ω1,2 ⇒ ω2,3. The list of possible
associations between a position of one word and a position
of the next word is referred to as a marker map. If a position
can be uniquely associated to a position in the next string,
then this association is referred to as a marker. Both indi-
vidual positions and sequences of positions are considered.
In an example like, A[+B][-B]A[+[-C]][-[+D]], the individ-
ual symbols [,], +, and - alone might not uniquely associate;
however, a sequence of symbols such as][- or]][-[+ are much
more likely appear less often, drastically simplifying the
problem. Hence, a marker map is built between each pair of
consecutive strings, for every symbol that has a known suc-
cessor referred to as a candidate marker. Of note, although
graphical symbols are used in the example, non-graphical
symbols may be used so long as their successor is known.
Indeed, non-graphical symbols often make excellent mark-
ers as their successors tend to be more distinctive. Mapping
a candidate marker onto its successor takes into account that
a number of symbols N must be reserved for the succes-
sors of any symbols that follow the marker. For example, if
ω1 = A+BC-, ω2 = A+BC+C-, Bmin = Cmin = 1, and
+ associates with both +’s in ω2, both are candidate markers.
But sinceBmin+Cmin+-min = 3 the final 3 symbols of ω1

produce at least the +C- of ω2. This eliminates the second +

in ω2 as being produced by the + in ω1, and the + in ω1 can
only be associated to the first +. If, after reserving symbols
a candidate marker cannot be associated uniquely, then it is
removed from the marker map.

Consider a pair ωi = ωi,1A1ωi,2 · · ·Anωi,n+1, and
ωi+1 = ωi+1,1succ(A1)ωi+1,2 · · · succ(An)ωi+1,n+1, each
Aj in ωi is a marker which is associated to the annotated
successor in ωi+1. It follows that ωi,j ⇒ ωi+1,j for all j,
1 ≤ j ≤ n + 1. The process is then repeated for all j sub-
words, e.g. ωi,1 ⇒ ωi+1,1. This process terminates when
for some ωi,j has only one symbol A with an unknown suc-
cessor an A-complete is found, or, if no marker is found,
then an A-prefix, A-suffix, and A-superstring may be found
for the first and last symbols in the subword.

Successor Relationships from Projected Solutions As
previously described, PMIT-D0L breaks down inference of
successors first by using a projection to non-graphical sym-
bols and then adding in remaining symbols one at a time.
Let a solution to one of these sub-problems be called a pro-
jected solution, as it partly describes the final successors.
After each sub-problem, each pair of consecutive strings
(ωi−1 ⇒ ωi) can be scanned using the projected solution
to build successor relationships for the next sub-problem.
This works very similarly to the marker process described
above. Every symbol in ωi−1 is associated with its successor
from the projected solution. If a symbol can be associated
to only one successor location, then the symbol instance is
called certain; otherwise, the instance is said to be uncer-
tain. When an instance is uncertain, the match that results
in the shortest successor can be assumed for the remaining
subwords to be shown as A-subwords. Every non-graphical
symbol must produce every symbol between beginning and
end of its associated positions. If the symbols before and af-
ter are certain, then an A-prefix, A-suffix, or an A-complete
can be found.

For example, assume that the first sub-problem is to solve
the successors projected onto the non-graphical symbols re-
sulting in the projected successor of A as ABA and of B as
BA. Equations (4) to (6) show an example of the process of
finding successor relationships from this projected solution.
In Equation 4, it can be seen that the + is uncertain; how-
ever, it must produce one of the two annotated + symbols
(it cannot produce the first + as there are no surrounding [
and] symbols). So, + is associated such the shortest suc-
cessor for A is produced, which is to assume the + produces
the first + of the pair. Then since from the projected solu-
tion of A ABA, succ(A) must contain everything between
the ABA, which is A[+B]A (α in Equation 4) and this is an
A-prefix due to the uncertainity of the + symbol. In Equa-
tion 5, the + production is still uncertain so the association
used is that which produces the shortest successor for B;
i.e., that the + produces the second + of the pair allowing
a B-subword to be identified. With respect to the -, at first

glance it may appear uncertain; however, from the projected
solution of B as BA, the - cannot produce the - between
the B and [+A]. The subword B-[+A] (β) is a B-suffix due
to the uncertainty of the preceding symbol. Finally, shown
in Equation 6, an A-subword is formed for A based on the
projected solution; however, in this case, both the preceding
symbol is certain and there are no following symbols; there-
fore, this is A-complete. Note, that this A-complete now
makes the production of the first + certain (in Equation 4),
since it is now known that A did not produce it. Therefore
the B-complete +B-[+A] could be produced. Since all of
the heuristics together are executed in a loop until no new
information is found, this would be found on the next pass.

ω1:A+B-A

ω2:A[+B]A︸ ︷︷ ︸
α

++B-[+A]-A[+B]A (4)

ω1:A+B-A

ω2:A[+B]A++B-[+A]︸ ︷︷ ︸
β

-A[+B]A (5)

ω1:A+B-A

ω2:A[+B]A++B-[+A]-A[+B]A︸ ︷︷ ︸
succ(A)

(6)

Diophantine Equations
As discussed in the previous section, Doucet (Doucet, 1974)
recognized that the productions could be represented as a
matrix equation, so as a step towards improving PMIT-D0L,
a similar approach was implemented. In Doucet’s original
work, he solves for a growth matrix in Equation 1. In this
equation,M(G) can be replaced with the length of each pro-
duction, called the successor length matrix, and Z replaced
with the length of each word after the first. In the cases
where Y is invertible, Y −1Z is still the unique solution, and
the lengths of the successors are sufficient to assess compat-
ibility and find the L-system.

Gauss-Jordan elimination cannot guarantee a unique solu-
tion for each successor length, often resulting in a set of lin-
ear diophantine equations, where the successor lengths are
the variables, e.g. 5 × X1 + 3 × X2 = 24. Each succes-
sor length only gets substituted for variables that appear in
exactly one equation. When Gauss-Jordan elimination does
not uniquely determine values for the variables there are an

infinite number of possible solutions. However, when in-
ferring L-systems, the successor lengths are constrained to
be natural numbers and within the bounds on the lengths
provided by the lengths of the words in %, and is there-
fore finite. For each equation, the encoding scheme used
to search for a solution has N genes, where N is number
of variables in an equation. The range of values for each
gene is Amin to Amax for the symbol A the gene is repre-
senting. Using the equations means that only possible solu-
tions need be checked as opposed to simply iterating over all
possible length, thereby reducing the search space size. So,
the value of the gene is dynamically changed, if the current
value would result in a non-solution to the equations. For
example, say A + B + C = 10, and A,B,C have ranges 5
to 7, 1 to 5,1 to 5 respectively. If the GA picks A = 7, and
B = 4 for the second gene, then B can be dynamically re-
duced to 2 allowing C = 1. This is a deterministic mapping
and therefore permissible for a GA.

Methodology
Data
The test suite used to evaluate PMIT-D0L consists of known
L-systems and generated L-systems. Twenty-eight known
D0L-systems were taken from the “virtual laboratory” (Uni-
versity of Calgary, 2017), which consists of 16 fractals (in-
cluding the six “Fractal Plant” variants used to evaluate
LGIN (Nakano and Yamada, 2010)), “Fibonnaci Bush” (a
non-species specific but realistic 3D bush model), 10 algaes,
and “Apple Twig with Blossoms”. This test suite alone is
larger than those used in literature, which tend to focus on
a subset of the six “Fractal Plant” variants (Nakano and Ya-
mada, 2010; Runqiang et al., 2002). These L-systems range
from 2 to 32 symbols, with a sum of successor lengths from
3 to 282. To infer an L-system with a K letter alphabet,
K + 1 strings were used as input.

Performance Metrics
PMIT-D0L is evaluated using two performance metrics. The
first metric is success rate (SR), the percentage of 100 exe-
cutions where PMIT successfully returns a compatible D0L-
system for each of the 28 known L-systems in the test suite.

The second performance metric is mean time to solve
(MTTS), which is the average time it takes for PMIT-D0L
to return either a L-system that gives the input strings as its
initial sequence, or to report that no L-system could be found
over the 100 executions. In order to keep the overall experi-
mental time practical, PMIT-D0L is only allowed to execute
for a maximum of four hours (14400 seconds) for an sin-
gle execution. After four hours, execution is stopped and it
is counted as a failure. All times were calculated on a sin-
gle core of an Intel 4770 @ 3.4 GHz with 12 GB of RAM on
Windows 10. MTTS is used by LGIN (Nakano and Yamada,
2010) as a performance metric.

Parameter Optimization
The ease with which a GA will search a solution is, in part,
determined by the value of the control parameters; however,
optimal values for the control parameters are problem spe-
cific (Bergstra and Bengio, 2012). Previous studies have
found that Random Search (RS) is an effective algorithm for
optimizing a GA’s control parameters (Bergstra and Bengio,
2012). RS works by assessing N randomly created parame-
ter settings, called trials, within a neighbourhood of the cur-
rent best configuration. The best trial is considered the new
best configuration, and the process is repeated until none of
the trials is better than the best configuration. In (Bergstra
and Bengio, 2012), they found that N = 16, is effective
for optimizing the control parameters for a wide variety
of problems. The control parameters for PMIT-D0L were
bound based on the suggestions by Grefenstette (Grefen-
stette, 1986). The population size was bound from 10 to
125 in increments of 5. Crossover weight was bound from
0.6 to 0.95 in increments of 0.05. Finally, mutation weight
was bound from 0.01 to 0.20 in increments of 0.01, with
the additional values of 0.001 and 0.0001 permitted. The
optimal parameter settings for PMIT-D0L were found to be
P = 100, C = 0.85, and M = 0.1.

Fitness Function
The fitness function for the GA assesses a genome as fol-
lows. The genome is transformed into a D0L-system, called
the candidate system, as previously described. The first in-
put string is treated as the axiom for the candidate system.
The candidate system is used to produce a number of strings
equal to the number of input strings. Sequentially, starting
from the first input string, it is compared symbol by sym-
bol to the corresponding string from the candidate system.
Every symbol in the same position that does not match is
counted as an error. The absolute difference in length be-
tween the two compared strings is added to the error count.
Since errors early will compound into later errors, a pair of
strings is only checked if the total error so far is zero. Fi-
nally, the error count is divided by the total number of sym-
bols in the input strings, giving a real value between 0 and
1. Then 1 is added to the fitness for every string that was not
compared. This encourages the GA to find solutions that in-
crementally solve more and more generations, while trying
to focus on the earliest generations first as they are generally
easier to solve due to having fewer symbols.

Results
Table 1 shows the MTTS for PMIT-D0L executed in three
different ways to highlight the effect of the heuristics and
GA. The first column shows the MTTS for the complete al-
gorithm, the second column shows it without using diophan-
tine equations, and the third column uses a brute force search
instead of a GA (also without using diophantine equations).
In the first column, systems solved without searching, i.e.

solved uniquely using the diophantine equations without the
need for searching, are marked with an “*”.

With respect to SR, PMIT has a 100% success rate re-
gardless of using diophantine equations or not for the 28
D0L-systems in the testset. However, in nearly every in-
stance, using the diophantine equations makes PMIT-D0L
faster. In particular for Dipterosiphonia v1, Pterocladel-
lium and Tenuissimum, the MTTS is significantly faster.
These three L-systems have the largest alphabets and using
diophantine equations sub-divides the alphabet into smaller
sub-problems. Overall, the diophantine equations are bene-
ficial since it lowers the peak MTTS to 3.192 seconds from
1565.095 seconds. When using a brute force search, the
MTTS climbs considerably and the three L-systems with
the largest alphabets fail to solve in the four hour time limit.
Overall, the brute force search takes much longer even when
100% successful. Brute force search is quicker for the “Fi-
bonacci Bush” L-system, which is simply a matter of chance
that the correct solution happens to come early in the search
space. In comparison to LGIN, PMIT-D0L is much quicker
at solving the Fractal Plant models due to the lack of any
searching.

Furthermore, it is observed that, on average, when a
search is needed, approximately 80% of the time taken to in-
fer an L-system is consumed by solving the sub-problem for
the non-graphical symbols. Using the projected solution to
find successor relationships makes all subsequent problems
generally much easier, except when a successor is composed
of only turtle graphics. Even in this case, effective projected
solutions can be made by solving the turtle graphics in the
following order: “[”, “]” (no search is required here, as these
symbols must be balanced), “+”, “-”, any 3D symbols, “F”,
“f”. With such an order, the “F” and “f” symbols are gen-
erally found relatively easily. This is due to using a combi-
nation of using markers and projected solutions to find suc-
cessor relationships. The projected solutions process elim-
inates the need to find any graphical symbols in the middle
of the successor, as they are always found; thereby, leaving
only those at the prefix and suffix of the successor. These
in turn are found by the markers process, after which only
a few uncertain cases remain. Ultimately, the difference be-
tweenAmin andAmax is equal to the length of the uncertain
section, which is usually just a few symbols. Finally, PMIT-
D0L can still infer L-systems with 100% success rate if the
assumption on known successors is relaxed to only assuming
the identity production of [and], and assuming that any ori-
entation changing symbols can produce themselves or their
inverse; e.g., + → + or + → - are the only successors per-
mitted for +. This increases the average MTTS by a factor
of approximately 20.

With respect to using the diophantine equations, they only
found a unique solution for some of the fractal systems.
Since the biological models have larger alphabets it is more
likely than any pair of symbols,A,B will be mathematically

related, i.e. that as A increases by X , B increases by nX .
In such a case, there will be no unique solution from Gauss-
Jordan elimination. Additionally, for those L-systems with
smaller alphabets, e.g. Ditria Reptans, the successors have
symbol combinations that result in ambiguous strings, i.e.
there are different possible successors to describe the se-
quence of strings. However, as mentioned above, the dio-
phantine equations are removing combinations of successor
lengths from consideration.

Model PMIT GA Brute
Only Force

Algae 0.001* 0.001 0.001
Cantor Dust 0.001* 0.001 0.001

Dragon Curve 0.001 0.001 0.001
E-Curve 0.029 0.001 0.078

Fractal Plant v1 0.001* 0.001 0.001
Fractal Plant v2 0.001* 0.001 0.001
Fractal Plant v3 0.001* 0.001 0.001
Fractal Plant v4 0.001* 0.001 0.002
Fractal Plant v5 0.001* 0.001 0.002
Fractal Plant v6 0.001* 0.001 0.002
Gosper Curve 0.001* 0.001 0.026
Koch Curve 0.001* 0.001 0.001

Peano 0.221 0.052 0.945
Pythagoras Tree 0.001* 0.001 2.894

Sierpenski Triangle v1 0.001* 0.001 0.002
Sierpenski Triangle v2 0.001* 0.001 0.001

Aphanocladia 0.007 0.006 0.047
Dipterosiphonia v1 1.639 664.206 14400.0
Dipterosiphonia v2 1.199 1.212 1.077

Ditira Reptans 0.003 0.001 0.002
Ditira Zonaricola 0.007 0.012 0.011

Herpopteros 0.006 0.017 0.079
Herposiphonia 0.015 0.383 2.492
Metamorphe 2.387 1.589 10.769

Pterocladellium 3.192 751.886 14400.0
Tenuissimum 1.141 1565.095 14400.0
Apple Twig 0.970 1.348 11.186

Fibonacci Bush 0.108 1.620 0.185

Table 1: Comparison of results for PMIT-D0L complete, us-
ing GA only, and using Brute Force

Conclusion
This paper has shown a hybrid approach for inferring
deterministic context-free L-systems (D0L-systems) called
PMIT-D0L. This has been a long-standing problem for
which existing approaches have only solved the case where
|V | ≤ 2 and a sum of successors of 20 symbols. A previ-
ous version of PMIT-D0L (Bernard and McQuillan, 2018),
raised this limit to alphabets with 17 symbols and a sum

of 140 symbols across all successors. This new hybrid ap-
proach raises the limit further, as PMIT-D0L can infer D0L-
systems with up to 31 symbols and a sum of 282 symbols.
PMIT-D0L is able to infer the L-systems in the test suite in
less than 4 seconds; therefore, PMIT-D0L is a fast, reliable
tool for inferring L-systems.

The results from this work also show that the most dif-
ficult problem when inferring D0L-systems is finding the
non-turtle graphics in the successors. The use of projected
solutions makes finding the graphical symbols fairly simple
within the limits described. This should be used as guidance
for future L-system inference algorithms.

Currently, L-systems are typically crafted by experts us-
ing scientific knowledge about the process to be modeled.
This is time consuming for any single problem and requires
every individual problem in a domain to be investigated sep-
arately. Algorithmically inferring L-systems is quicker and
for a general-purpose algorithm, like PMIT-D0L, requires
only a sequence of strings observed from the hidden L-
system, i.e. PMIT-D0L is domain agnostic. Such an algo-
rithm can reveal scientific knowledge about the mechanics
of a process by inferring an appropriate L-system that can
then be analyzed by an expert. This has the potential to have
a large impact on multiple domains where L-systems are al-
ready used, such as plant modeling (Prusinkiewicz and Lin-
denmayer, 1990; Watanabe et al., 2005), anatomical model-
ing (Galarreta-Valverde et al., 2013; Zamir, 2001), and geo-
logical modeling (Rongier et al., 2017). Also, a fast, reliable
tool such as PMIT-D0L opens up the possibility of investi-
gating modeling applications of L-systems in other domains.

The future for PMIT-D0L will focus on other types of
L-systems and to explore inferring L-systems under sub-
optimal conditions. This work assumes that the scanning
process to produce the strings does so perfectly, so meth-
ods for inferring L-systems when there are errors in the
strings or strings missing completely will be investigated.
Finally, PMIT-D0L should be used to infer a D0L-system
from strings produced by an actual hidden L-system.

References
Bäck, T. (1996). Evolutionary Algorithms in Theory and Prac-

tice: Evolution Strategies, Evolutionary Programming, Ge-
netic Algorithms. Oxford University Press.

Ben-Naoum, F. (2009). A survey on L-system inference. INFO-
COMP Journal of Computer Science, 8(3):29–39.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search, 13(Feb):281–305.

Bernard, J. and McQuillan, I. (2018). New techniques for inferring
L-systems using genetic algorithm. In Proceedings of the 8th
International Conference on Bioinspired Optimization Meth-
ods and Applications, Lecture Notes in Computer Science.
Springer.

Doucet, P. (1974). The syntactic inference problem for D0L-
sequences. L Systems, pages 146–161.

Feliciangeli, H. and Herman, G. T. (1973). Algorithms for produc-
ing grammars from sample derivations: a common problem
of formal language theory and developmental biology. Jour-
nal of Computer and System Sciences, 7(1):97–118.

Galarreta-Valverde, M. A., Macedo, M. M., Mekkaoui, C., and
Jackowski, M. (2013). Three-dimensional synthetic blood
vessel generation using stochastic L-systems. In Medical
Imaging: Image Processing, page 86691I.

Grefenstette, J. J. (1986). Optimization of control parameters for
genetic algorithms. IEEE Transactions on Systems, Man and
Cybernetics, 16(1):122–128.

Herman, G. and Walker, A. (1972). The syntactic inference prob-
lem as applied to biological systems. Machine Intelligence,
7:341–356.

Jacob, C. (1995). Genetic L-system programming: breeding and
evolving artificial flowers with Mathematica. In Proceedings
of the First International Mathematica Symposium, pages
215–222.

Lindenmayer, A. (1968). Mathematical models for cellular inter-
action in development, parts i and ii. Journal of Theoretical
Biology, 18(3):280–315.

McQuillan, I., Bernard, J., and Prusinkiewicz, P. (2018). Algo-
rithms for inferring context-sensitive L-systems. In 17th In-
ternational Conference on Unconventional Computation and
Natural Computation, Lecture Notes in Computer Science.
Springer.

Mock, K. J. (1998). Wildwood: The evolution of L-system plants
for virtual environments. In Proceedings of the 1998 IEEE
World Congress on Computational Intelligence, pages 476–
480. IEEE.

Nakano, R. and Yamada, N. (2010). Number theory-based induc-
tion of deterministic context-free L-system grammar. In In-
ternational Conference on Knowledge Discovery and Infor-
mation Retrieval, pages 194–199. SCITEPRESS.

Prusinkiewicz, P. and Hanan, J. (1992). L-systems: From formal-
ism to programming languages. In Lindenmayer Systems,
pages 193–211. Springer.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithimic
Beauty of Plants. Springer Verlag, New York.

Prusinkiewicz, P., Mündermann, L., Karwowski, R., and Lane, B.
(2001). The use of positional information in the modeling
of plants. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 289–
300. ACM.

Rongier, G., Collon, P., and Renard, P. (2017). Stochastic simu-
lation of channelized sedimentary bodies using a constrained
L-system. Computers & Geosciences, 105:158–168.

Runqiang, B., Chen, P., Burrage, K., Hanan, J., Room, P., and Bel-
ward, J. (2002). Derivation of L-system models from mea-
surements of biological branching structures using genetic
algorithms. In Proceedings of the International Conference
on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, pages 514–524. Springer.

University of Calgary (2017). Algorithmic Botany.

Watanabe, T., Hanan, J. S., Room, P. M., Hasegawa, T., Nakagawa,
H., and Takahashi, W. (2005). Rice morphogenesis and plant
architecture: measurement, specification and the reconstruc-
tion of structural development by 3d architectural modelling.
Annals of Botany, 95(7):1131–1143.

Zamir, M. (2001). Arterial branching within the confines of frac-
tal L-system formalism. The Journal of General Physiology,
118(3):267–276.

	Introduction
	Background
	Inferring D0L-Systems
	Scanning for Successors
	Heuristics and Forming Independent Problems
	Diophantine Equations

	Methodology
	Data
	Performance Metrics
	Parameter Optimization
	Fitness Function

	Results
	Conclusion

