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Abstract Transposable elements (TEs) are DNA sequences
that can either move or copy themselves to new positions
within a genome. They constitute approximately 45% of the
human genome. Knowing the evolution of TEs is helpful
in understanding the activities of these elements and their
impacts on genomes. In this paper, we devise a formal model
providing notations/definitions that are compatible with bio-
logical nomenclature, while still providing a suitable formal
foundation for computational analysis. We define sequential
interruptions between TEs that occur in a genomic sequence
to estimate how often TEs interrupt other TEs, useful in pre-
dicting their ages. We also describe the problem in terms of a
matrix problem - the linear ordering problem. We then define
the recursive interruption context-free grammar to capture
the recursive nature in which TEs nest themselves into other
TEs, and associate probabilities to convert the context-free
grammar into a stochastic context-free grammar, as well as
discuss how to use the CYK algorithm to find a most likely
parse tree predicting TE nesting. We also discuss improve-
ments on the theoretical model and adjust the parse trees to
capture both sequential and recursive interruptional activities
between TEs, and obtain more standard evolutionary trees.
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1 Introduction

In humans, coding sequences comprise less than 5% of the
genome, whereas 66% to 69% of the genome is repetitive or
repeat-derived [19], the majority of which are transposable
elements (TEs), or transposons. TEs were first discovered by
McClintock in 1949 as the genetic agents that are responsible
for the sectors of altered pigmentation on mutant Zea mays
kernels [28]. They are interspersed DNA sequences that can
move or transpose themselves to new positions within the
genome. TEs are found in nearly all species (both prokaryotes
and eukaryotes, such as bacteria, fungi, plants and animals)
that have been studied and constitute a large fraction of some
genomes [12]. Depending on the organism, the proportion
of TEs in the genome can differ widely, ranging from a few
percent (3% in the yeast Saccharomyces cerevisiae) to a huge
proportion encompassing almost the entire genome (>80%
in maize). In particularly, the human genome is rich in TEs,
at about 45% of the genome [25].

1.1 Classification

According to their mechanism of transposition, transposable
elements are traditionally classified into two broad classes on
the basis of their transposition mechanism and sequence orga-
nization [8]. Class I elements (“copy-and-paste” mechanism
as the conceptual diagrams shown in Figure 1 (a)) are those
that transpose via reverse transcription of an RNA intermedi-
ate, referred to as “retrotransposons”. The RNA intermediate
is transcribed from a genomic copy, then reverse-transcribed
into DNA by a TE-encoded reverse transcriptase, and each
complete replication cycle produces one new copy [32]. Con-
sequently, retrotransposons rapidly increase the copy num-
bers of elements and thereby increase genome size. Class
II elements (“cut-and-paste” mechanism as the conceptual
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Table 1 The information of each type of transposable elements in the human genome.

TE Type TE Class Mode of Transposition Length Copy Number Fraction of Genome

LINEs Retrotransposons Autonomous 6-8 kb 850,000 21%
SINEs Retrotransposons Non-autonomous 100-300 bp 1,500,000 13%
LTR Retrotransposons Autonomous 6-11 kb 450,000 8%

retrotransposons Non-autonomous 1.5-3 kb
DNA DNA transposons Autonomous 2-3 kb 300,000 3%

transposons Non-autonomous 80-3,000 bp

diagrams shown in Figure 1 (b)) which move predominantly
via a DNA-mediated mechanism of excision and insertion,
are often called “DNA transposons”.

Fig. 1 Conceptual diagrams representing the transposition mechanisms.
(a) Retrotransposons (“copy-and-paste” mechanism) copy themselves
in two stages: first from DNA to RNA by transcription, then from RNA
back to DNA by reverse transcription. The DNA copy is then inserted
into the genome in a new position. (b) DNA transposons (“cut-and-paste”
mechanism) do not involve an RNA intermediate. These transpositions
are catalyzed by various types of transposase enzymes.

TEs are also described as being autonomous or non-
autonomous based on whether or not they encode their own
genes for transposition. Those transposable elements that
possess a complete set of transposition protein domains are
called autonomous. However, the term autonomous does not
imply that an element is active or functional. Transposable
elements that clearly lack an intact set of mobility-associated
genes are called non-autonomous TEs, whose transposition
requires participation of one or more proteins encoded by an
autonomous element.

Within each of these classes, TEs can be further subdi-
vided into several types on the basis of the structural features
of their sequences. In general, the classification can be sum-

marized as a tree structure in Figure 2, and the information of
each type of TE is shown in Table 1 (information from [24]).

Fig. 2 The classification of transposable elements can be represented
as a tree.

1.2 Interruptional Activities

Each transposable element has a distinct period of transposi-
tional activity when it is active, in which it spreads through
the genome, followed by inactivation and accumulation of
mutations (they can also mutate while active). Though about
half of the human genome derives from transposable ele-
ments, there has been a marked decline in their activities
in the hominid lineage. DNA transposons appear to have
become completely inactive and LTR retrotransposons may
also have done so [24]. Because inactive TEs are so common
in many genomes, throughout evolution, newer TEs end up
nesting recursively, often multiple levels deep, inside existing
inactive TEs. The result of the transpositional activities, over
eons, can be described by (summarized from [10] and [22]):

1. older TEs are heavily interrupted by younger TEs, but
have not inserted into younger elements;

2. younger TEs, with a relatively recent period of activity,
have inserted into older elements that were present in the
genome, but are not interrupted by older elements;

3. TEs of intermediate age have both inserted into older
elements and been themselves fragmented by younger
elements.
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4. younger TEs interrupt not only older TEs, but also the
fragmented TEs that had been previously interrupted.
This makes the interruptions in the sequence even more
complex. That is, interruptions are nested together recur-
sively.

A novel method was introduced in [10] to estimate TE
ages in mammalian genomes based on the frequencies with
which every TE has inserted itself into every other TE. The
resultant ordering that was obtained from a positional distri-
bution agreed reasonably with published chronologies. This
is in contrast to the more common divergence-based methods
[17,1,30] to estimate TE ages, which has been unreliable,
especially for older more diverged elements.

1.3 Motivations and our Contributions

The completion of the first human genome sequence [24]
revealed that nearly half of our genome is derived from TEs,
as shown in Table 1. The hundreds of millions of years of ver-
tebrate evolution and the high density of TEs in our genome
poses the question: what impact have they had on human
evolution and human health? The composition and activities
of human transposable elements have been reported to cause
human diseases, including several types of cancer, such as
breast cancer, colon cancer, retinoblastoma, neurofibromato-
sis, hepatoma, etc., through insertional mutagenesis of genes
critical for preventing or driving malignant transformation [2].
Among all types of transposons, non-LTR retrotransposons
are the predominant source of TE-related mutagenesis in
the human genome. Thus, it is meaningful to understand the
evolution of TEs and their impacts on the evolutions of the
human genome, and the patterns of the activities of the TEs
that may potentially cause human diseases.

In this paper, we will create a formal model capturing
TE types and fragments within genomic sequences, called
the TE Fragment Model in Section 2. Our model consists of
initial definitions of TEs, the set of TEs, and the set of TE
fragments. The model does not attempt to simulate or capture
the molecular operations of TE movement (copying/cutting
and pasting throughout a genome), which would create clear
non-context-free patterns, making algorithmic analysis diffi-
cult. Rather, the model only describes the order and distance
between TE fragments in genomic sequences by grouping
homologous TEs together. At this level of abstraction, the
model can be used to capture and calculate interruptions and
their frequencies in a general way. We also give specialized
definitions for use when this model is used with data from
a prominent TE database called Repbase Update [16] and a
common TE identification tool called RepeatMasker [31].

On top of the TE Fragment Model, we construct two sep-
arate models for different purposes. We will briefly discuss
the method of estimating TE ages from [10] and calculate

essentially the same data they used for their estimation, but
using a specialized model called the Sequential Interruptions
Model (Section 3), built on top of the TE Fragment Model.
We will then associate our model to the linear ordering prob-
lem, a classic matrix optimization problem. This reduces the
problem that the authors of [10] used to estimate TE ages to
an existing well-studied problem in Section 4. Our second
extension, the Recursive Interruptions Model, is done with
a stochastic context-free grammar, used to capture recursive
TE nesting. This allows for polynomial time parsing to be
used to calculate a prediction of the nesting in Section 5. We
will also discuss an approach to transform the grammar parse
trees into evolutionary trees.

We attempt to make the models formal yet realistic and
compatible with the biological literature on TEs. For this
reason, the definitions are quite lengthy and make up a sig-
nificant portion of this paper. However, we feel that it is
necessary to contribute a suitable foundation for future com-
putational analysis. Furthermore, multiple extensions and
problems can be addressed on top of the same TE Fragment
Model.

2 The TE Fragment Model

The purpose of this section is to develop a formal model of
TEs and fragments of TEs in order to describe the biological
concepts and problems clearly. It will be the starting point in
which multiple other problems will be studied. We assume
knowledge with context-free grammars [14] and parse trees,
as well as common bioinformatics algorithms [15], such as
pairwise and multiple alignments, and consensus sequences.

As a large part of research on bioinformatics is based on
the analysis of DNA or amino-acid sequences, we will first
briefly define a general sequence/string and other mathemati-
cal preliminaries in Definition 1.

Definition 1 We define several terms and notations:
An alphabet Σ is an abstract and finite set of symbols.
A string is any finite sequence of characters over an

alphabet.
The length of s, denoted by |s|, is the number of charac-

ters in the string.
The empty word is denoted by λ and is of length 0.
The set of all strings (including the empty word) over Σ

is denoted by Σ ∗.
Let Σ be an alphabet and s = s1s2 . . .sn be a string, si ∈ Σ ,

1≤ i≤ n. Let j,k satisfy 1≤ j ≤ k ≤ n, then the substring
of s which begins at the jth character, and ends at the kth
character is

s( j,k) = s js j+1 . . .sk.

Moreover, s( j) = s j, is the jth character alone.
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Let s ∈ Σ ∗, then f rag(s) is the set of all possible frag-
ments (substrings) of s. That is

f rag(s) = {s(p,q) | 1≤ p≤ q≤ |s|}∪{λ}.

We extend this to sets of strings S⊆ Σ ∗ by

f rag(S) =
⋃
s∈S

f rag(s).

Given a set X , then |X | is the number of elements in X .

When talking about a transposable element, life scien-
tists usually are referring to a set of similar sequences that
evolved from a single TE sequence. Therefore, we define
a transposable element to itself be a set of strings (usually
these strings will be similar to each other). We also define
a set of TEs, an instance of a TE and the consensus TE in
Definition 2.

Definition 2 A transposable element (TE) X is a finite set of
strings (usually similar to each other) with X ⊆ Σ ∗.

An instance of a TE X is an element x ∈ X .
A consensus TE is a consensus sequence of the elements

of X .
A set of TEs χ is a finite set of TEs. That is, χ ⊆ 2Σ∗ , χ

is finite and each element of χ is finite.

Most of representative eukaryotic repetitive sequences
have been compiled and reconstructed in a database called
Repbase Update [16], which is a comprehensive database of
the consensus sequences of repetitive elements (not only TEs,
but also other repeats), that are present in diverse eukaryotic
organisms.

Because of different biological contexts, it is also possible
to interpret the set of TEs, χ , in multiple ways depending on
the purpose. For example, we could use as χ the set of all
TEs and TE instances that are present in a single genome,
or as the set of sequences collected in Repbase Update, or
any set of sequences that are all similar to the consensus
sequences in Repbase Update within a threshold.

Knowing that one transposable element contains a num-
ber of instances, and each instance itself is a string, now we
will define a TE fragments set. We expect to see many such
fragments scattered throughout genomes as TEs become frag-
mented within a genome as they become interrupted by other
TEs.

Definition 3 Let χ be a finite set of TEs. Then we call χ̄ ⊆
2Σ∗ a TE fragments set, if for each element X̄ ∈ χ̄ , there
exists X ∈ χ such that X̄ is a subset of f rag(X).

Thus, after picking a set of TEs, a TE fragments set is
any set where each element consists of fragments of one
transposable element in the set of TEs (separate elements
in χ̄ could contain fragments from different TEs). Then in
principle, we can pick any number of fragment sets for one

set of TEs. For example, if we pick for χ to be the set of
all TEs in the human genome, then we could have a TE
fragments set χ̄ where each element contains fragments of
separate TEs of length at least 50 (in this case, χ̄ = {X̄ |x ∈
X̄ implies |x|= 50, X̄ ⊆ f rag(X), X ∈ χ , for some X}).

Although we defined TE fragments sets in a general way,
we would also like to create a restriction to transposable el-
ements that occur in present-day sequences. RepeatMasker
(RM) [31] is the predominant library-based tool used in re-
peat identification, which has become a standard tool for any
search of repeats in genomes. It is a sophisticated program
that uses precompiled repeat libraries to find copies of known
repeats represented in the libraries. The program performs a
similarity search on both the “+” and “-” DNA strands based
on local alignments, then outputs masked genomic DNA and
provides a tabular summary of repeat content detected in
both DNA strands. In the following definitions, we connect
our general Definition 3 to the output of RepeatMasker.

Definition 4 Let s be a string representing some genomic
sequence and χs be the set of TEs existing in s, then χ̄(s RM←→
χs) is a RepeatMasker TE fragments set, running the program
with a set of consensus TEs χs, against the genomic sequence
s.

In other words, each element of χ̄(s RM←→ χs) is a subset
of some element of χ̄ , where only TE fragments detected by
the RepeatMasker program are selected.

For each TE fragment z of some TE X , and some X̄ ∈
χ̄(s RM←→ χs), we associate a tuple in Definition 5, whose at-
tributes are referred to in our model, which is also consistent
with the output of the RepeatMasker program.

Definition 5 Given a genomic sequence s and a set of TEs
χs, each TE fragment z in each X̄ ∈ χ̄(s RM←→ χs) is a tuple:

in f o(z) =(genoName,genoStart,genoEnd,

genoLe f t,strand,T EName,T EClass,

T EStart,T EEnd,T ELe f t).

(1)

We use the operator “.” to access the attributes. For ex-
ample, z.T Ename is the name of the TE to which fragment
z belongs. The definition of each attribute is summarized in
the list as follows (from [31]), and described in Example 1.

genoName: The name of the genomic sequence, where the
fragment was detected.

genoStart: The start position of the fragment in the ge-
nomic sequence.

genoEnd: The end position of the fragment in the ge-
nomic sequence.

genoLe f t: The opposite number of bases after the frag-
ment in the genomic sequence.
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Table 2 A table of two TE fragments in human chromosome 1.

Fragment genoName genoStart genoEnd genoLe f t strand T EName T EClass T EStart T EEnd T ELe f t
z1 chr1 430182 430604 -248820017 - MER4E1 LTR 0 781 334
z2 chr1 101403 101690 -249148931 + AluJr SINE 18 298 -14

strand: Relative orientation: “+” or “-”.
T EName: The name of the TE to which the fragment

belongs.
T EClass: The class of the TE to which the fragment be-

longs.
T EStart: The start position of the fragment in the TE

consensus sequence to which the fragment be-
longs, if strand is “+”; or the opposite number
of bases after the fragment in the TE consensus
sequence, if strand is “-”.

T EEnd: The end position of the fragment in the TE
consensus sequence.

T ELe f t: The opposite number of bases after the frag-
ment in TE consensus sequence, if the strand
is “+”; or the start position of the fragment in
the TE consensus sequence, if the strand is “-”.

Then, two TE fragments in the same set of TEs, X̄ ∈
χ̄(s RM←→ χs), have the same genoName. Also, a TE fragment
can be present in either “+” or “-” strand, however, in both
cases, we use the “+” strand coordinate to represent the lo-
cation where it occurs. The orientations of the TE fragment
are distinguished by the T EStart or T ELe f t attributes. For
example, given a fragment z,

z.T EStart ≥ 0 and z.T ELe f t ≤ 0,
if a fragment z is in the “+” strand,

z.T EStart ≤ 0 and z.T ELe f t ≥ 0,
if a fragment z is in the “-” strand.

In general, no matter in which strand a TE fragment occurs,
our notations in the formal model are consistent. Example 1
picks two TE fragments showing the meanings of their at-
tributes visually with respect to a genomic sequence and TE
consensus sequences.

Example 1 Compare the Human Genome1 chromosome 1,
s, against the library of human transposable elements in Rep-
base Update, χs. The two TE fragments, z1 and z2, taken
from two separate sets in the RepeatMasker TE fragments
set, χ̄(s RM←→ χs), are as listed in Table 2 with their detailed
attributes.

Fig. 3 (a) shows a fragment of the transposon MER4E1,
which was detected in the “-” strand of chromosome 1, and
Fig. 3 (b) shows a fragment of the transposon AluJr, which
was detected in the “+” strand of chromosome 1. Since the
two fragments are detected in different strands, they are ori-
ented oppositely as in Fig. 3.

1 hg19, the Feb. 2009 assembly of the human genome.

(b)

(a)

Fig. 3 The conceptual visualization of the TE fragments (in blue
shadow) in Table 2. (a) visualizes the fragment z1; (b) visualizes the
fragment z2. Note that the lengths of the visualized sequences in the
figure are not proportional to their actual lengths.

Most of the present-day copies of TEs are detected by lo-
cally aligning the consensus TE sequences against a DNA se-
quence, thus the DNA sequence is fragmented into segments
by the local aligned fragments. Some segments are detected
as fragments of those TEs, while some are non-transposon
DNA sequence. We then prune this DNA sequence to present
only the TE segments. This process is defined in Definition 6.

Definition 6 Let s be a genomic sequence, χs a fixed order-
ing of the set of TEs in s, where χs = {X1, . . . ,Xm}, and χ̄s is
a set of TE fragments. Assume s = w0z1w1z2w2 z3 . . .zkwk,
with z1, . . . ,zk in sets in χ̄s, and no fragment of w0,w1, . . . ,wk
are in sets in χ̄s. Then a pruned sequence s̄ of s with respect
to χ̄s is

s̄ = β0z1β1z2β2 . . .zkβk, where βi = |wi|, 0≤ i≤ k. (2)

That is, in a pruned sequence, we replace all non-TE frag-
ments with their length.

In addition, from s̄ and χs, we define an order pruned
sequence s̄o of s̄ as the string over {1, . . . ,m}∗,

s̄o = j1 j2 . . . jk, where zi ∈ X ji , for all i, 1≤ i≤ k. (3)

We can also extend a pruned sequence to a set of pruned
sequences. Let S = {s1, . . . ,sN}, then the set of pruned se-
quences of S is S̄ = {s̄1, . . . , s̄N}.
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Table 3 A table of six TE fragments in human chromosome 1.

Fragment genoName genoStart genoEnd genoLe f t strand T EName T EClass T EStart T EEnd T ELe f t
z1 chr1 33632576 33632977 -215617644 + L2a LINE 2941 3379 -47
z2 chr1 33633163 33633226 -215617395 + L2b LINE 3309 3374 -1
z3 chr1 33633332 33633389 -215617232 - MIR3 SINE -19 189 128
z4 chr1 33633467 33633769 -215616852 - L2a LINE -2 3424 3074
z5 chr1 33633802 33633941 -215616680 + MLT1J LTR 262 389 -123
z6 chr1 33634011 33634148 -215616473 - MER63A DNA -71 139 5

Example 2 is an example showing the pruned sequence
and the order pruned sequence of a given genomic sequence
segmented by the RepeatMasker detected TE fragments.

Example 2 A piece of the Human Genome chromosome 1
from position 33632576 to 33634148, s, is compared against
the library of human transposable elements in Repbase Up-
date, χs, where χs = {X1,X2,X3,X4,X5}, and the TE names
of X1,X2,X3,X4,X5 are L2a, L2b, MIR3, MLT 1J, MER63A.
The TE fragments taken from the RepeatMasker TE frag-
ments set, χ̄(s RM←→ χs), are as listed in Table 3 with their
detailed attributes.

As in Definition 6, the genomic sequence s is

s = w0z1w1z2w2z3w3z4w4z5w5z6w6.

This sequence is visualized in Fig. 4, where each frag-
ment in the sequence is also marked as the order and the
name of the TE, to which it belongs.

Fig. 4 The conceptual visualization of a genomic sequence (the Human
Genome chromosome 1 from position 33632576 to 33634148), with
the RepeatMasker detected TE fragments in Table 3. The TE fragments
zi, where i = 1, . . . ,6 in the sequence are also marked with the notation
of TEs X j ∈ χs, where j = 1, . . . ,5, and the TE names to which they
belong. Note that the lengths of the visualized sequences in the figure
are not proportional to their actual lengths.

From Definition 6, the pruned sequence of s is

s̄ = β0z1β1z2 . . .z6β6, where βi = |wi|, 0≤ i≤ 6,

and the order pruned sequence of s is

s̄o = 1 2 3 1 4 5, where zi ∈ X ji , for all i, 1≤ i≤ 6.

So far, we have defined some fundamental concepts as-
sociated with key biological terms, such as a transposable
element, a TE fragment, and a pruned sequence, and also
extended them to sets within what we call the TE Fragment
Model. In the next section, we will move the emphasis to
the first of two uses of the model, to describe the dynamic
interruptional activities between different TEs.

3 The Sequential Interruption Model

As discussed in Section 1.2, newer TEs tend to interrupt older
TEs, thereby fragmenting older TEs within the single linear
sequence. By analyzing that sequence, we are able to pre-
dict where and how often the insertional and transpositional
activities occurred throughout evolution, which is useful in-
formation in predicting an order that those activities occurred,
and further, potentially inferring the ages of these TEs.

We can capture these interruptional activities with our
model in this section. We will first describe and define se-
quential interruptions, then the interruption matrix. We will
also connect our model to the Linear Ordering Problem in
Section 4, whose methods can be used in solving our prob-
lem. We will also discuss other applications of our model
throughout this section to Section 5.

To analyze interruptional patterns, we are only interested
in TE fragments and their relative positions in a genomic
sequence. In [10], they classify an interruption as occurring
when one TE fragment is within a certain distance from a
fragment on the left and a fragment on the right, where both
are from the same TE, and the two fragments are “close
to” continuous within the TE. They then compile this infor-
mation into a so-called adjacency matrix, or interruptional
matrix, giving an estimate on the number of times each TE
interrupted each other. We can calculate this same analy-
sis using the TE Fragment Model, and in particular, pruned
sequences in Definition 6. This definition provides all that
is necessary to calculate our interruptional matrix. Before
defining a sequential interruption in Definition 8, we need to
define continuous TE fragments first.

Definition 7 Let s be a genomic sequence with a set of TEs
χs, TE fragment set χ̄(s RM←→ χs) and pruned sequence s̄ =
β0z1β1z2 . . .zkβk as in Equation (2). Then two TE fragments

zi and z j (i < j) are continuous TE fragments, zi
ε,E∼ z j, with

distance ε ∈ N (in the consensus sequence) and distance
E ∈N (in the genomic sequence), if they satisfy the following
conditions:

1. they belong to the same transposable element:

zi.T EName = z j.T EName

2. they are detected in the same DNA strand:

zi.strand = z j.strand
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3. they are either separated or overlap 2 with less than or
equal to a distance, ε , with respect to the TE consensus
sequence to which they belong:

abs(z j.T E Start− zi.T EEnd)≤ ε,

if zi and z j occur in the “+” strand.
abs(zi.T E Start− z j.T EEnd)≤ ε,

if zi and z j occur in the “-” strand.

4. They are in the genomic sequence within a distance, E,
of non-transposon DNA sequence:

j−1

∑
r=i

βr ≤ E.

Notice that continuous TE fragments are not necessarily
beside each other in the genomic sequence, as there can be a
distance of E between them. Some continuous TE fragments
appear to have an overlap of duplication of a portion of the
transposon. This is because RepeatMasker often extends the
homology match of both fragments to the TE consensus
sequence by several base pairs.

Definition 8 Given a genomic sequence s, a set of TEs with
a fixed ordering on its elements χs = {X1,X2, . . . , Xm}, and a
distance ε ∈ N in TE consensus sequence, a distance E ∈ N
in genomic sequence as in Definition 7, as well as a pruned
sequence s̄ = β0z1β1z2 . . .zkβk, as in Equation (2). We define
sequential interruptions of X j by Xi as

Ξ
ε,E
s (Xi,X j) ={k | zk ∈ X̄i,zk−η1 ,zk+η2 ∈ X̄ j,

zk−η1

ε,E∼ zk+η2 , and η1,η2 ∈ N}.
(4)

Thus Xi is called interrupter, and X j is called interruptee.

The frequencies with which the interruptions between
different TEs occur in the sequence can also infer the activi-
ties of these TEs. Therefore, we also define the abundance
of interruptions to capture the frequencies of interruptions in
Definition 9 to represent interruptions in a general way.

Definition 9 Given a genomic sequence s, a set of TEs with
a fixed ordering on its elements χs = {X1,X2, . . . , Xm}, the
abundance that Xi interrupts X j in s, 1≤ i≤ m, 1≤ j ≤ m,
is defined as the total number of times that Xi interrupts X j.
The abundance is equal to

|Ξ ε,E
s (Xi,X j)|.

For the genome S that has chromosomes s1,s2, . . . ,sN ,
we then add up the abundance that Xi interrupts X j for all
chromosomes, which is

|Ξ ε,E
S (Xi,X j)|=

N

∑
n=1
|Ξ ε,E

sn (Xi,X j)|.

2 We calculate the amount that separate them or the amount they
overlap using the abs() function to get the absolute value.

The interruption array of Xi on S, for 1 ≤ i ≤ m, is the
array

M(i) = [|Ξ ε,E
S (Xi,X j)|] j=1,...,m.

The interruption matrix on S is an m×m matrix defined
by

M = [|Ξ ε,E
S (Xi,X j)|] i=1,...,m

j=1,...,m
.

The interruption array and matrix are different ways to
structure the abundance by using the ordering on the elements
in χs. This interruption matrix was calculated in much the
same way as the adjacency matrix of [10].

In Example 3, we illustrate how to apply the model of
sequential interruptions in a real situation to find sequential
interruptions, and calculate the interruptional matrix.

Example 3 Table 4 is a list of five TE fragments from chro-
mosome 1 position 448062 to 449273 taken from the Repeat-
Masker TE fragments set, χ̄(s RM←→ χs), in Example 1. The
five fragments belong to three TEs: X1, X2 and X3, where the
TE names of X1,X2,X3 are L1MD3, AluY c, AluSq.

As in Definition 6, the genomic sequence s is

s = w0z1w1z2w2z3w3z4w4z5w5,

as visualized in Fig. 5.

Fig. 5 The conceptual visualization of a genomic sequence (the Human
Genome chromosome 1 from position 448062 to 449273), with the
RepeatMasker detected TE fragments in Table 4. Note that the lengths
of the visualized sequences in the figure are not proportional to their
actual lengths.

The pruned sequence of s is

s̄ = β0z1β1z2β2z3β3z4β4z5β5,

where z1,z3,z5 ∈ X̄1, z2 ∈ X̄2, z4 ∈ X̄3, X̄1, X̄2, X̄3 ∈ χ̄(s RM←→
χs), β0, . . . ,β5 ∈N, and z1

ε,E∼ z3, z3
ε,E∼ z5, as shown in Fig. 5.

It is possible to see that there are two potential inter-
ruptions in s: an instance of X1 is present in the sequence,
then an instance of X2 and an instance of X3 potentially in-
serted themselves into the instance of X1 to break it into
three segments z1, z3 and z5; that is, |Ξ ε,E

s (X2,X1)|= 1 and
|Ξ ε,E

s (X3,X1)|= 1.
Given a fixed order of the set of TEs as

χs = {. . . ,X1, . . . ,X2, . . . ,X3, . . .},
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Table 4 An example of sequential interruptions in chromosome 1.

Fragment genoName genoStart genoEnd genoLe f t strand T EName T EClass T EStart T EEnd T ELe f t
z1 chr1 448062 448139 -248802482 + L1MD3 LINE 6988 7068 -814
z2 chr1 448150 448328 -248802293 + AluYc SINE 122 299 0
z3 chr1 448332 448403 -248802218 + L1MD3 LINE 7068 7148 -847
z4 chr1 448403 448710 -248801911 + AluSq SINE 1 313 0
z5 chr1 448710 449273 -248801348 + L1MD3 LINE 7149 7753 -242

the interruption matrix showing only the rows and columns
of these TEs is

M =



...
...

...
. . . 0 . . . 0 . . . 0 . . .

...
...

...
. . . 1 . . . 0 . . . 0 . . .

...
...

...
. . . 1 . . . 0 . . . 0 . . .

...
...

...


.

From the analysis on these sequential interruptions, we
can predict that the age of L1MD3 might be older than both
AluY c and AluSq, but this provides no clue as to which one
of AluY c and AluSq is older, because we do not know which
of the two independent interruptions occurred first.

Using the operations of matrix rearrangement in Sec-
tion 4, we can also predict a potential chronology of these
TEs, by reducing the problem employed in [10] to an existing
matrix optimization problem.

Our notions in this section transformed the interruptional
matrix construction described in prose in [10] into a formal
model, which is more clear, and can also be used for other
purposes, such as the study of recursive patterns, as we will
do in Section 5.

4 Linear Ordering Problem for Sequential
Interruptions Analysis

The interruptional analysis done in [10] was performed by
using the interruptions between TEs, then rearranged the
TEs in such a way that they hypothesized would order them
from oldest to youngest. They calculated an adjacency matrix
comparable to an interruption matrix in Definition 9, whose
rows/columns correspond to a TE ordering, which counts
the number of interruptions between each pair of TEs. They
then used algorithms of a complexity of O(n!), where n is
the number of TEs, to predict the relative age order of TEs by
rearranging the rows and columns of the matrix to achieve a
lowest penalty score (the summation of nonzero entries in the
upper triangle of the matrix), corresponding to reordering the
TEs, from those that get interrupted most while interrupting
least, to those that interrupt most while getting interrupted

least. So that in a hypothetical matrix, the TEs are arranged
in a predictive chronological order of decreasing in age (from
oldest to youngest).

Our formal model of sequential interruptions from Sec-
tion 3 calculated an interruption matrix. Next, we will map
this matrix to the linear ordering problem, which rearranges
a matrix similar as the approach in [10]. First of all, we will
examine a set of matrix rearrangement operations in linear
algebra, in order to describe and compute the linear ordering
problem.

When working with rearranging some objects or values,
the act of rearrangement is a permutation as defined in Defi-
nition 10.

Definition 10 A permutation π is a bijective function from
an ordering of n elements

(
1 2 3 · · · n

)
to itself. It will be

denoted by an n-tuple where the number at position i is π(i).
The π(i) gives the position of element i in the new ordering.

A permutation matrix is a square n×n binary matrix that
has exactly one entry 1 in each row and each column and
0s elsewhere. Specifically, the permutation matrix of π is a
matrix Pπ whose entries are all 0 except that in row i, the
entry π(i) equals 1.

Each such matrix represents a specific permutation of
n elements and, when multiplying another n× n matrix A
with P from the left, it permutes the rows of A. Further,
multiplying A with the transpose of P, PT , from the right,
permutes the columns of A.

Example 4 illustrates a permutation of an ordering, and
its permutation matrix, as well as how to permute a square
matrix using this permutation.

Example 4 For an ordering of
(
1 2 3 4 5

)
, a permutation

could be π =
(
1 4 2 5 3

)
, where π(1) = 1,π(2) = 4,π(3) =

2,π(4) = 5,π(5) = 3.
The permutation matrix Pπ of π is

Pπ =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 .
As in Definition 10, any square matrix with n rows and

columns can be rearranged by a permutation of n elements,
using its permutation matrix.
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Given another square matrix

A =


11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

 ,
multiplying A with Pπ from the left permutes the rows of A:

Pπ ×A =


11 12 13 14 15
41 42 43 44 45
21 22 23 24 25
51 52 53 54 55
31 32 33 34 35

 .

While multiplying A with PT
π from the right permutes the

columns of A:

A×PT
π =


11 14 12 15 13
21 24 22 25 23
31 34 32 35 33
41 44 42 45 43
51 54 52 55 53

 .

So that Pπ ×A×PT
π permutes A with the permutation

π =
(
1 4 2 3 5

)
:

Pπ ×A×PT
π =


11 14 12 15 13
41 44 42 45 43
21 24 22 25 23
51 54 52 55 53
31 34 32 35 33

 .
Permuting a square matrix is the operation used in the

linear ordering problem in the next subsection.

4.1 Linear Ordering Problem

The linear ordering problem is one of the classical combina-
torial optimization problems which was already classified as
N P-hard in 1979 by Garey and Johnson [9]. This problem
is described in [29] as:

Given an m×m matrix C, the linear ordering problem is
the problem of finding a permutation π of the column and
row indices {1, · · · ,m}, such that the value

f (π) =
m

∑
i=1

m

∑
j=i+1

cπ(i),π( j) (5)

is maximized. In other words, the goal is to find a permuta-
tion of the columns and rows of C such that the sum of the
elements in the upper triangle is maximized.

Analogically, the goal of the TE sequential interruptional
analysis is to find a permutation of TE ordering that maxi-
mizes the sum of upper triangle of the interruption matrix

in Definition 9. The sequential interruption analysis can be
described in terms of the linear ordering problem as follows.

Given a set of genomic sequences, S, a set of TEs with a
fixed ordering on its elements,

χs = {X1,X2, . . . ,Xm},

and an interruption matrix of χs on S,

IM = [|Ξ ε,E
S (Xi,X j)|] i=1,...,m

j=1,...,m
,

the problem is to find a permutation π of χs, corresponding
to the column and row indices {1, · · · ,m}, such that the value

f (π) =
m

∑
i=1

m

∑
j=i+1

IMπ(i),π( j) (6)

is maximized.
The resultant permutation of χs corresponds to a hypo-

thetical chronological order of TEs in χs of increasing in
age, as it is optimizing essentially the same function used to
estimate the ages (in [10], they attempt to find a permutation,
corresponding to TEs of decreasing in age, that minimizes
the summation of nonzero entries in the upper triangle of
the matrix). The resulting matrix whose rows and columns
are rearranged, will have the following features (as shown in
Fig. 6):

Fig. 6 A conceptual diagram of the permuted interruptional matrix with
a maximum sum of upper triangle. The row and column of the matrix
correspond to the resultant permutation of the TE ordering, which is a
hypothetical chronological order of TEs of increasing in age.

1. Each item in the matrix records the number of interrup-
tions that an interrupter (on the vertical axis) has inserted
itself into an interruptee (on the horizontal axis);
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2. The order of TEs on the vertical axis (from top to bottom)
is the same as the order of TEs on the horizontal axis
(from left to right), which is arranged in chronological
order of increasing in age (from youngest to oldest).

3. The matrix can be divided to four portions:
– the top-left portion of the matrix represents young

TEs interrupting young TEs;
– the top-right portion of the matrix represents young

TEs interrupting old TEs;
– the bottom-left portion of the matrix represents old

TEs interrupting young TEs;
– the bottom-right portion of the matrix represents old

TEs interrupting old TEs.
4. In theory, the lower triangle region of the matrix (light

grey in Fig. 6), corresponds to older TEs interrupting
younger TEs, and should be mainly populated by zeros,
meaning that there are no interruptions. Non-zeros in this
region might occur because of defragmentation errors,
or other mutation events that give the appearance of TE
insertion.

5. Most non-zero values should appear in the upper triangle
region of the matrix (dark grey in Fig. 6), which corre-
sponds to young TEs interrupting old TEs.

6. Interruptions of the same type of TEs into themselves
(which would be recorded directly on the matrix diago-
nal) are not scored due to the fact that they are difficult
to confidently identify and do not affect the ordering
analysis.

The linear ordering problem is N P-hard, that is, we
cannot expect to find a polynomial time algorithm for its
solution. After computing an interruption matrix of n TEs us-
ing our model in Section 3, a straightforward method to find
the permutation of the problem, would be exhaustive search:
apply all n! possible permutations to the interruption matrix
and the resultant permutation will be the one with which the
permuted interruption matrix achieves the maximum score
over all n! sum of upper triangle scores. The algorithm has a
complexity of O(n!), which is considerably inefficient.

In our experiment, there are around 900 (n = 900) human
TEs taken from Repbase that are compared with the Human
Genome. As such, it is not feasible to use the exhaustive
search to find a permutation exactly. However, since the
linear ordering problem arises in a variety of applications,
algorithms for its efficient solution are required. There are
some exact methods that use Branch-and-Bound algorithms
to solve the problem to (proven) optimality discussed in [26].

For example, the branch-and-bound with partial order-
ings in [5], the lexicographic search algorithm in [20,21],
and the branch-and-bound approach, where Lagrangian re-
laxation techniques are used for bound computations in [4].
The branch-and-bound can also be realized in a special way
leading to the so-called Branch-and-Cut method, which is
essentially a branch-and-bound algorithm, where the upper

bounds are computed using linear programming relaxations
as discussed in [26].

As opposed to exact methods, which guarantee to give
an optimum solution of the problem, heuristic methods only
attempt to yield a good, but not necessarily optimal solution.
Nevertheless, the time taken by an exact method to find an
optimum solution to a difficult problem, if indeed such a
method exists, is in a much greater order of magnitude than
the heuristic one. Thus we often resort to heuristic methods
to solve real optimization problems. There are some heuristic
algorithms summarized in [26] as well, such as GRASP [7],
tabu search [11], the simulated annealing method [18], vari-
able neighbourhood search [13], scatter search [23], iterated
local search [3], etc. A computational comparison of some
heuristic algorithms (including the above mentioned ones and
some others) on a benchmark library done in [27], concluded
that the iterated local search method achieved the best result
among them. We leave an exhaustive comparison of these
method on the interruption matrix as future work.

5 The Recursive Interruption Model

When many insertions occurred throughout the evolution of
a genomic sequence, the interruptions nest in a recursive
pattern [22], which cannot be represented entirely with the
interruptional matrix that only counts the abundance without
storing the hierarchical relationships of interruptions. Indeed,
Example 5 shows some nested TEs in real data.

Example 5 Table 5 is a list of TE fragments taken from the
RepeatMasker TE fragments set, χ̄(s RM←→ χs), where s is the
X chromosome of the Human Genome, and χs is the library
of human transposable elements in Repbase Update. These
seven TE fragments start from the X chromosome position
53437061 to 53438226 that belong to four TEs: X1, X2, X3
and X4, where the TE names of X1,X2,X3,X4 are MIR, AluJb,
AluSx, AluSq2.

As in Definition 6, the genomic sequence s is

s = w0z1w1z2w2z3w3 . . .z7w7,

as visualized in Fig. 7.

Fig. 7 The conceptual visualization of a genomic sequence (the Human
Genome X chromosome from position 53437061 to 53438226), with the
RepeatMasker detected TE fragments in Table 5. Note that the lengths
of the visualized sequences in the figure are not proportional to their
actual lengths.

The pruned sequence of s is

s̄ = β0z1β1z2β2z3β3z4β4z5β5z6β6z7β7,



Computational Modelling of Interruptional Activities between TEs using Grammars and the LOP 11

Table 5 An example of recursive interruptions in the X chromosome.

Fragment genoName genoStart genoEnd genoLe f t strand T EName T EClass T EStart T EEnd T ELe f t
z1 chrX 53437061 53437143 -101833417 + MIR SINE 3 88 -174
z2 chrX 53437143 53437277 -101833283 + AluJb SINE 1 132 -170
z3 chrX 53437277 53437448 -101833112 + AluSx SINE 39 192 -120
z4 chrX 53437448 53437761 -101832799 + AluSq2 SINE 1 312 0
z5 chrX 53437761 53437887 -101832673 + AluSx SINE 193 312 0
z6 chrX 53437887 53438055 -101832505 + AluJb SINE 133 293 -9
z7 chrX 53438055 53438226 -101832334 + MIR SINE 89 261 -1

where β0, . . . ,β7 ∈N, z1,z7 ∈ X̄1, z2,z6 ∈ X̄2, z3,z5 ∈ X̄3, z4 ∈
X̄4, X̄1, X̄2, X̄3, X̄4 ∈ χ̄(s RM←→ χs), and z1

ε,E∼ z7, z2
ε,E∼ z6, z3

ε,E∼
z5.

It is possible to see a potential process of nested interrup-
tions described as:

– at first, an instance of AluJb inserted itself into an in-
stance of MIR to break it into z1 and z7;

– then an instance of AluSx inserted itself into the instance
of AluJb that has already presented in the sequence, to
break it into z2 and z6;

– more recently, an instance of AluSq2 (z4) inserted itself
into the presented AluSx instance to break it into z3 and
z5.

From the interruption analysis above, we can predict from
the recursive interruptions that the age order of these three
TEs from oldest to youngest might be: MIR, AluJb, AluSx,
AluSq2.

The nested nature of the interruptions in Example 5 is
not captured by the interruptional matrix as done in Sec-
tion 3, or in [10], because the recursive nesting can “push”
fragments so that they are no longer continuous. However,
these nested interruptions are very informative in predicting
the chronological order of when these interruptions occurred
in the genomic sequence. Therefore, we will create a new
model built on top of the TE Fragment Model in this section
to capture this hierarchical nesting feature. We will first de-
fine a recursive interruption context-free grammar to model
the generation of recursive interruptions, then discuss algo-
rithms that calculate a parse tree of the grammar generating
a given order pruned sequence, which shows a prediction of
the hierarchical structure of TE insertions. Afterwards, we
will further discuss some modifications to the the parse tree
representation in order to simplify and improve these trees to
better discuss evolutionary trees.

5.1 Context-free Grammar to Generate Recursive
Interruptions

We provide a theoretical model in this subsection to describe
the nature of recursive interruptions using a context-free
grammar.

Definition 11 Given a set of TEs with a fixed order on its
elements, χ = {X1,X2, . . . ,Xm}, the recursive interruption
context-free grammar is a grammar G = (V,T,δ ,S), where
V = {S,X1,X2, . . . ,Xm}, T = {1,2, . . . ,m}, and δ contains
the following productions:

S → XiS, 1≤ i≤ m, (1)

S → Xi, 1≤ i≤ m, (2)

Xi → XiX jXi, 1≤ i≤ m, 1≤ j ≤ m, (3)

Xi → i, 1≤ i≤ m. (4)

This grammar is used to generate strings over {1, . . . ,m}∗
corresponding to TE orders. Intuitively, productions of type
(3) correspond to an instance of X j inserting itself throughout
evolution into an instance of Xi, as shown in Fig. 8, leaving a
fragment from i, then j, then i.

Fig. 8 A diagram showing an instance of X j inserting itself throughout
evolution into an instance of Xi, corresponding to an application of a
production of type (3).

In a sentential form, XiX jXi can either derive i ji (using
productions of type (4)) corresponding to that order of TEs, or
any of them can be further interrupted (using productions of
type (3)). Productions of type (1) correspond to independent
positions of the sequence where a TE can insert itself (not a
nested insertion, and can only be produced continuously from
the root along the rightmost path of a parse tree). Productions
of type (2) correspond to the final independent position of a
TE insertion.

This context-free grammar is ambiguous (meaning that
multiple parse trees can give the same string). Indeed, it
is clear that any string over T+ can be generated by G by
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using only productions of types (1), (2) and (4). This would
require the application of 2k productions to generate a string
of length k. However, for every application of a production of
type (3), the total number of productions needed to generate
a string of length k decreases. If there are l productions of
type (3) applied, the total number of productions needed to
generate a string of length k decreases to 2(k− l).

Since each production of type (1), (2), or (3) corresponds
to one biological transposition, we are interested in parse
trees which maximize the application of productions of type
(3), or minimize the total number of productions applied. This
would correspond to minimizing the number of transpositions
that occurred throughout evolution.

Example 6 shows how nested interruptions in a sequence
are generated by the grammar as the yield of its one possible
parse tree that maximized the application of productions of
type (3).

Example 6 Given a genomic sequence s and a set of TEs
with a fixed order on its elements χs = {X1,X2, . . . ,X10}, and
assume

s = w0z1w1 . . .z13w13,

as in Equation (2), with z1,z4,z6 ∈ X̄2, z2,z8,z10,z12 ∈ X̄3,
z5 ∈ X̄4, z11,z13 ∈ X̄5, z3,z7 ∈ X̄6, z9 ∈ ¯X10. Then an order
pruned sequence

s̄o = 2 3 6 2 4 2 6 3 10 3 5 3 5

is the yield of the parse tree shown in Fig. 9.

Fig. 9 A parse tree of G from Definition 11 that yields s̄o.

The recursive interruption context-free grammar in Def-
inition 11 is a very simple and general way of capturing
the recursive nature of TE interruptions. However, the order
pruned sequence generated by the grammar only contains the
TEs (names/order of TEs) to which the detected TE fragments
belong. It does not take into account where each fragment
lies within a TE with the current grammar. It is not clear
how one could take the positional information into account

to determine whether two TE fragments are continuous frag-
ments (Definition 7), then further determine the existence of
an interruption in an order pruned sequence.

5.2 Algorithms for Finding a Parse Tree

As discussed, given an order pruned sequence, we are inter-
ested in finding a parse tree of the grammar that maximizes
the applications of productions of type (3), or minimizes the
overall productions applied to generate this sequence. In this
subsection, we will discuss some methods to find such parse
trees by converting the recursive interruption context-free
grammar into a stochastic context-free grammar.

A stochastic context-free grammar is indeed a context-
free grammar, where every production in the grammar has
an associated probability value between 0 and 1, such that
the probability for all productions on a nonterminal adds to
1. The probability associated with a parse tree is the product
of the probabilities of the production instances applied to
produce it.

Considering the context-free grammar in Definition 11,
since all probabilities are between 0 and 1, trees that use
fewer productions will tend to have a higher probability. A
most likely parse tree, defined as a parse tree with the high-
est probability, corresponds to the parse tree that has the
most productions of type (3) applied in the recursive inter-
ruption context-free grammar. For this grammar, if we give
all productions for each nonterminal equal weight (for each
production of Xi, the probability is 1/(m+1), and for each
production of S, the probability is 1/(2m)), the CYK algo-
rithm [6] can find a most likely parse tree that has a given
sequence as yield. In our case, starting with the order pruned
sequence, it can predict a most likely parse tree with it as the
yield.

The complexity of the CYK algorithm is O(L3N3) [6],
where L is the length of the order pruned sequence (corre-
sponding to the number of TE fragments detected in a ge-
nomic sequence), and N is the number of nonterminals in the
grammar (corresponding to the total number of transposons
of that organism in Repbase Update plus one), which will be
very lengthy in practice.

We leave as future work an investigation of algorithms
that can be efficient while taking additional positional in-
formation into account in generating the most likely parse
tree.

5.3 Adjustments to the Parse Tree

In the grammar in Definition 11, the productions of type (1)
and (3) determine the generation of interruptions from the
left to the right side of the sequence. This places indepen-
dent interruptions at differing heights of the parse tree - as
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Table 6 An example of three atomic patterns of interruptions. Group (a) is a single interruption; group (b) shows two sequential interruptions;
group (c) shows two recursive interruptions. Their corresponding trees are in Fig. 10.

group genoName genoStart genoEnd genoLe f t strand T EName T EClass T EStart T EEnd T ELe f t

(a)
chr1 23803 24038 -249226583 + L2b LINE 2940 3212 -175
chr1 24087 24250 -249226371 + MIR SINE 49 260 -2
chr1 24254 24448 -249226173 + L2b LINE 3213 3425 -1

(b)

chr1 140784 141290 -249109331 + MER21C LTR 26 527 -411
chr1 141290 141597 -249109024 - AluJb SINE -18 294 2
chr1 141597 141667 -249108954 + MER21C LTR 528 605 -333
chr1 141667 141970 -249108651 + AluJr SINE 1 302 -10
chr1 141970 142271 -249108350 + MER21C LTR 606 919 -19

(c)

chr1 389450 389591 -248861030 + L1ME3D LINE 3222 3368 -2778
chr1 389589 391571 -248859050 + L1MA8 LINE 4080 6108 -183
chr1 391571 392307 -248858314 - L1MA2 LINE -1 6303 5556
chr1 392307 392431 -248858190 + L1MA8 LINE 6109 6238 -53
chr1 392465 393206 -248857415 + L1ME3D LINE 3352 4119 -2027

interruptions occur from left to right sequentially, they move
lower and lower down in the parse tree. Therefore, the parse
trees are not an accurate reflection of the independent nature
of the interruptions, even though that information is encoded
in the tree. In this subsection, we will address this situation,
by giving real examples and proposing a modification to turn
the parse trees into evolutionary trees of interruptions, in
order to capture the TE evolution more accurately.

Example 7 illustrates three atomic patterns of interrup-
tions: a single interruption, sequential interruptions and re-
cursive interruptions. These three patterns can exist by them-
selves, nest with themselves, or mix with other pattern(s) to
form more complex interruptions in a genomic sequence. In-
stead of representing interruptions using a parse tree strictly
following the grammar in Definition 11, as in Example 6,
a simplified form of trees are used in Example 7, showing
these interruptions essentially in the same way of Example 6.

Example 7 Table 6 is a list of TE fragments from chromo-
some 1 taken from the RepeatMasker TE fragments set,
χ̄(s RM←→ χs). The fragments are grouped into three interrup-
tions sets marked as (a), (b) and (c), corresponding to the
trees in Fig. 10 (a), (b) and (c), where instead of orders of
TEs, the nodes of the trees are labelled with TE names of
these fragments.

– Group (a) is a single interruption, where an instance of
MIR inserted itself into an instance of L2b;

– Group (b) shows two sequential interruptions (similar
to Example 3), where an instance of AluJb and an in-
stance of AluJr inserted themselves into an instance of
MER21C and broke MER21C into three fragments;

– Group (c) shows two recursive interruptions (similar to
Example 5), where an instance of L1MA8 inserted itself
into an instance of L1ME3D, then at a later time, an
instance of L1MA2 inserted itself into an instance of
L1MA8.

Fig. 10 The corresponding trees in Table 6. (a) is tree of a single
interruption; (b) is a tree of two sequential interruptions following the
productions of type (3) of the grammar in Definition 11; (c) is a tree of
two recursive interruptions following the productions of type (3) of the
grammar in Definition 11.

For a simple interruption, the root node of the ordered
tree represents the interruptee and the children of that node
correspond to the fragments of the interruption and their
order in the genomic sequence, which are the left fragment
of the interruptee, the interrupter and the right fragment of
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the interruptee. The interruption shown in Table 6 group (a)
corresponds to the TE fragments tree in Fig. 10 (a), where
the root node is the interruptee, labelled as the name of the
TE fragment to which it belongs, L2b, and the three children
of the root are (from left to right) the left fragment of the
interruptee, labelled as L2b, the interrupter, labelled as MIR,
and the right fragment of the interruptee, labelled as L2b.

Nested interruptions correspond to higher level TE frag-
ments trees following the same rule, as in Fig. 10 (b) and
(c).

Notice that, the trees in Figure 10 capture not only the
nested TEs by the levels of the tree, but also the orders
of the TE fragments within a genomic sequence. An order
pruned sequence of the genomic sequence can be gener-
ated by traversing the leaves of the tree (and mapping TE
names with their orders in the TE set), from the left to right
of the tree. They contain all the fragments of interruptions
as branches. Nevertheless, from the perspective of the rela-
tionship between interrupters and interruptees, some of the
branches are redundant, such as the left and right fragments
of the interruptees, because the interruptee already appears
as the parent node. Moreover, the two sequential interrup-
tions in group (2) are split into two levels in Figure 10 (b),
however, this is simply a side-effect of the structure of the
parse trees, and the rules of the grammar. They are actually
independent. In addition, since we are only interested in the
phylogeny of TEs, the positional order does not matter in
this case, thus, an ordered tree is not necessary. Therefore,
we can simplify the tree, by turning it into an unordered tree,
removing the redundant branches, and correcting the level
split of the sequential interruptions.

Example 8 shows how to turn the trees in Example 7
into another simplified form of trees, where the redundant
branches are removed and the sequential interruptions are
moved up into the same level.

Example 8 Given a tree of interruptions as in Example 7, we
first turn it into an unordered tree, then there are two steps to
simplify the tree:
Step 1: “bring up” the sequential interruptions of the

same interruptee to the same level of the tree.
This includes the interrupters and the left and
right fragments of the interruptee, ;

Step 2: remove all leaves that represent the left and
right fragments of interruptees.

Fig. 11 shows an example of simplifying a tree of sequen-
tial interruptions in Example 7 in two steps. We use the TE
orders, instead of TE names, to label the nodes in this exam-
ple, as it is more clear. The nodes representing interrupters of
the sequential interruptions are coded in pink in the diagram.

Fig. 12 shows two more examples of simplifying the
trees using the steps described above. These two trees are
mixed patterns of the three atomic patterns in Example 7. As

with Fig. 11, we use the TE orders, instead of TE names, to
label the nodes, and the nodes representing interrupters of
the sequential interruptions are coded in pink in the diagram.

Fig. 11 An example of converting the context-free grammar parse
tree to a more standard evolutionary tree for the atomic sequential
interruptions pattern.
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