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Abstract—Gene set analysis is widely used to gain insight
from gene expression data. Achieving reproducible results is
a fundamental part of any expression analysis. In this paper,
we propose a systematic approach to study the effect of sample
sizes on the reproducibility of the results of 10 gene set analysis
methods. To do so, we quantify the concept of reproducibility
and use real expression datasets of different sizes. Our findings
suggest that, as a general pattern, the results of gene set
analysis are more reproducible as sample size increases. However,
the smallest sample size for achieving reproducible results are
variable across gene set analysis methods. Moreover, for some
methods, increasing sample size leads to an increase in the
number of false positives.

Index Terms—gene expression, gene set analysis, enrichment
analysis, sample size

I. INTRODUCTION

The choice of sample size is an essential factor in exper-
iment design. Although determining sample size for achiev-
ing a predetermined power is possible for simple statistical
processes, for a sophisticated and complex experiment such
as gene set analysis, there is no methodological approach
to determine the optimal number of samples for reaching
a given statistical power. Consequently, researchers either
choose the largest possible sample size considering funding
and availability of samples and technicians for conducting the
experiments, or they use an arbitrary sample size—as small
as two or three samples per treatment. An unnecessarily large
sample size results in financial loss and a waste of resources.
In many cases, there are also ethical concerns. On the other
hand, a small sample size leads to results that are not reliable
and reproducible.
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The effect of sample size on differential gene expression has
been studied. Assuming equality of standardized effect size
and gene-gene correlation among the differentially expressed
genes, Tsi et al. [1] proposed an approach for estimating
sample size using the beta-binomial distribution for the two-
sample z-test. They reported that under a more general gene-
gene correlation structure the proposed method might under-
estimate sample size. Stretch et al. [2] reported that small
sample sizes result in unstable prediction of differentially
expressed genes. Schurch et al. [3]—using a case-control study
with 48 replicates per class—evaluated 11 tools for detecting
differentially expressed genes in RNA-Seq experiments. They
reported that, using 3 replicates, differentially expressed genes
found by 8 methods cover only 20% to 40% of those genes
predicted as being differentially expressed when using all 48
replicates. They also suggested that to predict over 85% of
the differentially expressed genes found when considering the
entire dataset, i.e. 48 replicates per group, at least 20 replicates
are required.

Analysis of data from a typical gene expression experiment
usually leads to the prediction of several hundred genes as
being differentially expressed. Gaining insight from such a
large list of genes is cumbersome and prone to investigator
bias(es) towards a hypothesis of interest. To deal with such
large lists of genes, gene set analysis—also known as enrich-
ment analysis—is commonly performed. There are various
gene set analysis methods available. These methods usually
follow relatively complex procedures; therefore, unlike simple
statistical tests, it is difficult to find an estimate for the
smallest sample size that leads to a desired statistical power
and reproducible results. Despite the existence of different
studies evaluating the sensitivity and specificity of gene set
analysis methods [4]–[6], to the best of our knowledge, there
is no systematic analysis of the effect of sample size on the
results of these methods. While it is the common belief that
reproducibility increases as sample size increases, the extent
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of the increase (if any) for different gene set analysis methods
is not known. In this research, we address this need with the
study of a comprehensive list of gene set analysis methods. We
compare these methods on the basis of the reproducibility of
their results when applied to expression datasets with sample
sizes commonly used in gene expression studies.

II. DATA AND METHODOLOGY

A. Data

The availability of public repositories of gene expression
datasets such as Gene Expression Omnibus (GEO) [7] makes it
possible to obtain original datasets with large samples sizes. To
achieve results that are unbiased to the choice of original gene
expression dataset, three large, diverse datasets were selected
and downloaded from GEO. In this study, non-related case-
control experiments in humans from the Affymetrix GeneChip
Human Genome U133 Plus 2.0 microarray platform were
used. The three datasets are from the study of 1) renal cell
carcinoma tissue (77 controls and 77 cases, GSE53757) [8]
2) skin tissue in psoriasis patients (64 controls and 58 cases,
GSE13355) [9] , and 3) gingival tissues (64 controls and 183
cases, GSE10334) [10]. The raw data were analyzed by first
reading the CEL files into R using the GEOquery v2.46.15 R
package, and generating the normalized expression table using
the affy v1.56.0 package and justRMA normalization.

Probe IDs were converted to their corresponding Entrez
gene identifiers using the hgu133plus2.db v3.2.3 R package.
To avoid over-emphasizing genes with a large number of
probes on the arrays, it is a common practice in gene set
analysis to collapse duplicate IDs. This was accomplished by
using the collapseRows function from WGCNA v1.61 with the
MaxMean method that selects the probe that has the maximum
average value across samples when multiple probes map to the
same gene. Collapsing the probes resulted in 20,514 genes in
each experiment from an initial 54,675 probes.

B. Methodology

To investigate the effect of sample size on the result of
gene set analysis, we need to conduct experiments with
different sample sizes while keeping all remaining factors—
such as phenotype under study, gene expression measurement
platforms, the protocol for experimenting, laboratory techni-
cian skill level, and environmental condition—constant. Since
finding multiple expression datasets for which these factors are
constant across experiments is almost impossible, we utilize
the following procedure to develop replicate datasets for which
these confounding factors are invariable as much as possible.

Given an original case-control dataset with nC control
samples and nT case samples and a given integer n, where
nC and nT are relatively large numbers (> 50), n < nC , and
n < nT , we develop a balanced case-control dataset from this
original dataset by random sampling (without replacement) of
n control samples (out of all nC controls) and n case samples
(out of the nT samples). Hereafter, we refer to this process
as the dataset generation procedure. Also, to avoid confusion,
we refer to a dataset downloaded from GEO as the original

dataset, and a balanced case-control dataset constructed by
assembling n case and n control samples simply as a replicate
dataset of size 2× n.

To achieve results that are independent of a specific com-
position of samples, the dataset generation procedure can
be repeated to create more replicate datasets each with n
controls and n cases. In this research, for each sample size, we
repeat the dataset generation process 10 times. The assembled
datasets differ due to the nature of random sampling.

Since all the generated datasets are assembled from an
original dataset, the confounding factors remain invariable as
much as possible. For example, all these datasets have the
same platform and protocol, and they have been generated by
the same technician(s). This lets us study the effect of sample
size on the result of different gene set analysis methods while
keeping the confounding factors constant as much as possible.

To investigate the effect of sample size on the result of
various gene set analysis methods, the above procedure is
used to generate balanced case-control datasets with 3 to 20
samples per group (3 ≤ n ≤ 20). In each generated dataset,
we have two groups, one for controls and one for cases, both
of equal sample size. Different gene set analysis methods are
then applied to these datasets to find the list of differentially
enriched gene sets. Next, the results of each method across
samples sizes are evaluated using statistical data analysis.

In this research, 10 commonly used gene set analy-
sis methods are tested—PAGE [11], GAGE [12], Cam-
era [13], ROAST [14], FRY (from limma R package) [15],
GSEA [16], ssGSEA [17], GSVA [18], PLAGE [19], and
over-representation analysis (ORA) [20]. For each method,
all replicate datasets of size 2 × n (n ∈ {3, . . . , 20}) are
used to conduct gene set analysis. The default parameters, as
suggested by each method’s authors, are used. The methods are
obtained through the following R packages: GSVA, PLAGE,
and ssGSEA are run from GSVA package version 1.18.0;
ORA is implemented using the phyper method from the stats
package version 3.4.4; GSEA is run using the GSEA.1.0.R
script downloaded from the Broad Institute software page for
GSEA (http://software.broadinstitute.org/gsea/downloads.jsp);
Camera, ROAST, and FRY are obtained from the limma
package version 3.34.9; PAGE and GAGE are used from the
gage package version 2.20.1. To be consistent across gene set
analysis methods, a Benjamini-Hochberg correction [21] for
multiple comparisons with a false discovery rate of 0.05 is
applied for all gene set analysis experiments. Also, a gene
set analysis method uses a gene set database as an input. In
this study, the GO gene sets—a subset of MSigDB version
6.1 [16]—is used. Hereafter, we refer to this database as G.

For a given original dataset D, first, the dataset gener-
ation procedure is used to assemble m replicate datasets
D

(2×n)
1 , ...., D

(2×n)
m , each of size 2×n. For all experiments, we

use 10 replicate datasets (m = 10). Next, a gene set analysis
method ψ is applied to each D

(2×n)
i (1 ≤ i ≤ m) and the

result Rψ
D

(2×n)
i

is stored. Rψ
D

(2×n)
i

is a vector of adjusted p-

values where the kth element of this vector represents the



adjusted p-value for testing differential enrichment of the kth

gene set of G. Rψ
D

(2×n)
i

is a vector with a length equal to the
number of gene sets in G.

After conducting gene set analysis and generating adjusted
p-values for all gene sets in G, a significance level α = 0.05
is used to determine the differential enrichment status of all
gene sets in G. This is achieved by comparing each element of
Rψ
D

(2×n)
i

against α: if the kth element of Rψ
D

(2×n)
i

is less than

α, the kth gene set of G is considered as being differentially
enriched, and non-differentially enriched otherwise. We define
Sψ
D

(2×n)
i

to be the set of all gene sets predicted as being
differentially enriched.

We use the Jaccard index [22] to quantify the reproducibility
of the results of a gene set analysis method ψ when applied
to two datasets D(2×n)

i and D(2×n)
j . The value is referred to

as an overlap score and defined as follows:

J(S
D

(2×n)
i

, S
D

(2×n)
j

) =
S
D

(2×n)
i

∩ S
D

(2×n)
j

S
D

(2×n)
i

∪ S
D

(2×n)
j

(1)

A Jaccard index of 0 means no overlap, i.e. no agreement,
between the results of gene set analysis and a value of 1 means
complete overlap between Sψ

D
(2×n)
i

and Sψ
D

(2×n)
j

. Hereafter, we

refer to the Jaccard index between two sets as the overlap of
those two sets.

To asses the reproducibility of a gene set analysis method
when using replicate datasets of size 2 × n, for each pair of
datasets D

(2×n)
i and D

(2×n)
j (1 ≤ i, j ≤ m and i 6= j),

we compute the overlap between Sψ
D

(2×n)
i

and Sψ
D

(2×n)
j

and

place the resulting score in position (i, j) of an upper trian-
gular matrix, called an overlap matrix, which is visualized
in Section III. Since the overlap is a symmetric function,
i.e. J(S

D
(2×n)
i

, S
D

(2×n)
j

) = J(S
D

(2×n)
j

, S
D

(2×n)
i

), for each

sample size 2 × n we have m×(m−1)
2 overlap values. The

distribution of these values tells us the extent to which an
expression study using a sample size of 2×n is reproducible.
If using a dataset with sample size 2×n leads to reproducible
results, there should be a high overlap between each pair
from Sψ

D
(2×n)
1

, . . . , Sψ
D

(2×n)
m

. For each method ψ, we construct a

multiset Pψ(2×n)—which is a set but with repetition allowed—
as follows:

Pψ(2×n) = {J(S
ψ

D
(2×n)
i

, Sψ
D

(2×n)
j

) | 1 ≤ i < j ≤ m} (2)

After that, for each method ψ, we use the Kruskal-Wallis test
to investigate if there is a statistically significant difference
between these multisets of overlap scores (Pψ(2×n)) across the
different sample sizes (3 ≤ n ≤ 20).

When conducting a gene set analysis on a replicate dataset
D

(2×n)
i , differentially enriched gene sets can be sorted based

on their adjusted p-value. Most researchers select the top
gene sets (those with smallest adjusted p-values) for further
study and interpretation. Therefore, not only is the consistency
between differentially enriched gene sets important but also the

order in which these gene sets are reported. We use Kendall’s
coefficient of concordance [22] to assess the agreement in the
order of differentially enriched gene sets among the results of
analyzing replicates of the same sample size. A gene set, in
order to be considered in this calculation, needs to be predicted
as differentially enriched for at least one replicate dataset. The
Kendall coefficient of concordance ranges between 0 and 1,
where 0 represents no agreement and 1 represents complete
agreement.

Furthermore, it is important to determine if—for a method
ψ—the results of gene set analysis of a replicate dataset D2×n
is consistent with the results when using a larger sample size,
for example the whole dataset D. To do so, we conduct gene
set analysis on the original dataset D using each method ψ
and calculate SψD. Then we construct a multiset Wψ

(2×n) of m
overlap scores, as follows:

Wψ
(2×n) = {J(S

ψ

D
(2×n)
i

, SψD) | 1 ≤ i ≤ m} (3)

High overlap scores between the results of gene set analysis
of replicates of size 2×n and the whole dataset indicates that
a sample size of 2 × n might be sufficient for achieving the
same result as a larger dataset.

III. EXPERIMENTAL RESULTS

To visualize the overlap between the results of the gene
set analysis of replicate datasets of the same size, we use a
collection of modified heat maps to construct a plot, hereafter
referred to as a pine plot. A pine plot is a stack of pyramids,
where each pyramid—hereafter referred to as a layer—is a
triangular heat map of values above the diagonal in a overlap
matrix (as described in Section II). This visualizes the overlap
between the results of the gene set analysis of replicate datasets
of a specific size. More specifically, the colour intensity of
cell (i, j) in each layer represents J(S

D
(2×n)
i

, S
D

(2×n)
j

), i.e.
the overlap between S

D
(2×n)
i

and S
D

(2×n)
j

. When i = j the
overlap score is 1. Although uninformative, we keep these
cells as a visual reference point always in red in the baseline
of each layer. The pine plot in Fig. 1 depicts the overlap score
for replicate datasets of size 2× 3, 2× 5, 2× 10, 2× 15, and
2× 20 analyzed by ORA.

A common pattern across all methods under study is that
the overlap score increases as sample size increases. This
pattern is also consistent across all three original datasets;
therefore, all visualizations and plots in this paper are for one
dataset (GSE53757). For instance in Fig. 1, moving from the
base layer (sample size of 2 × 3) to the top layer (sample
size of 2× 20) shows a transition from blue colour gradients
(low overlap scores) to red colour gradients (high overlap
scores). However, the increments in overlap score are not
the same across all methods. For example, as observed from
Fig. 4, 6, and 5, ROAST shows a small amount of overlap
between replicates at lower sample sizes while GAGE shows
high overlap scores. Also, the overlap scores of replicate
datasets for the same sample size are more variable when
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Fig. 1. A pine plot depicting the change in the reproducibility of the
results from over-representation analysis (ORA) as sample sizes increases.
The concept of reproducibility is quantified by overlap score (Equation 1).
Each layer of the pine plot illustrates the overlap score of the results of ORA
for pairs of 10 replicate datasets with the same sample size. The layers in the
plot, from bottom to top, represent replicates with sample size 2× 3, 2× 5,
2×10, 2×15, and 2×20. The overlap score ranging from 0 to 1 is represented
by gradients from blue to red, separated by white in the middle (overlap of
0.5). The pine plot suggests that the overlap between replicates is very small
(low overlap is shown in blue) for a sample size of 3. This gradually improves
with more overlap present in replicates with a higher number of samples.
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Fig. 2. A pine plot depicting the change in the reproducibility of the
results from ROAST as sample size increases (see Fig. 1 caption for more
information). The pine plot suggests that the overlap between replicates is very
small (low overlap is shown in blue) for a sample size of 3. This gradually
improves with much more overlap present in replicates with a higher number
of samples.
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Fig. 3. A pine plot depicting the change in the reproducibility of the
results from GAGE as sample size increases (see Fig. 1 caption for more
information). The pine plot suggests that the overlap between replicates is
larger in comparison to that of ORA and ROAST (see Fig. 1 and Fig. 2).
GAGE has much more agreement between replicates using lower sample sizes
such as 3, and the overlap scores continue to improve for higher numbers of
samples.
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Fig. 4. A box plot showing the distribution of overlap scores resulting from the
gene set analysis of replicate datasets with sample size 2×n (3 ≤ n ≤ 20)—
where n is the sample size per group, i.e. n control and n case samples—using
ORA. Each box shows the overlap scores resulting from gene set analysis of
all pairs from 10 replicate datasets (all of the same sample size). Overlap
score agreement is intermediate between ROAST and GAGE.
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Fig. 5. A box plot showing the distribution of overlap scores resulting from
the gene set analysis of replicate datasets with sample size 2×n (3 ≤ n ≤ 20)
using ROAST (see Fig. 4 caption for more information). ROAST produces
small overlap scores for small sample sizes. Also, the variation of overlap
scores for each sample size is higher than that of GAGE and ORA.

comparing pine plots from ORA or ROAST to the pine plot
for GAGE. To investigate if there is a statistically significant
difference between the overlap scores across sample sizes, i.e.
Pψ(2×3), . . . , P

ψ
(2×20), we conduct a Kruskal-Wallis test. Table I

shows the p-values resulting from the tests for all the gene set
analysis methods under study. The results suggest that there
is a significant difference between the overlap scores across
sample sizes.

As illustrated by the pine plots in Fig. 1, 2, and 3 and
also the box plots in Fig. 4, 5, and 6, there is a substantial
increase in the overlap scores as sample size increases. Also,
all methods lead to small overlap scores when using a small
sample size such as 2 × 3 . A similar pattern is observed
when comparing the overlap between replicates and the whole
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Fig. 6. A box plot showing the distribution of overlap scores resulting from
the gene set analysis of replicate datasets with sample size 2×n (3 ≤ n ≤ 20)
using GAGE (see Fig. 4 caption for more information). There is an increase
in the overlap as sample size increases. Also variation of overlap scores is
smaller than that of ORA and ROAST.

datasets (see Fig. 7, 8, and 9).
Fig. 10 illustrates Kendall’s concordance coefficients for

replicate datasets across sample sizes. As a common trend, the
concordance coefficient increases as sample size increases.

Fig. 11 depicts the average number of gene sets predicted
as being differentially enriched in replicate datasets of a
given sample size. The number of gene sets predicted as
being differentially enriched for GAGE, GSVA, ROAST, and
FRY increases as sample size increases, while the rest of
the methods show an almost constant number of gene sets
predicted as being differentially enriched.

IV. DISCUSSION

In this paper, we proposed a quantitative approach to
systematically assess the reproducibility of gene set anal-
ysis methods using real expression datasets. Furthermore,
we suggested an overlap score to quantify the concept of
reproducibility in the context of gene set analysis. Also, we
described and used pine plots to visualize the overlap between
the results of replicate datasets of the same size. However
and more generally, pine plots can be used for visualizing the
interaction of several variables while controlling for one or

TABLE I
THE RESULT OF KRUSKAL-WALLIS TESTS

Datasets from GEO
Method GSE53757 GSE13355 GSE10334
FRY 6.28e-13 2.99e-26 2.60e-13
ORA 5.03e-18 2.39e-19 1.67e-14
PAGE 1.81e-16 5.26e-20 1.50e-10
PLAGE 2.10e-05 4.88e-06 4.89e-03
ROAST 1.37e-14 1.80e-26 1.10e-13
GAGE 2.34e-28 3.37e-28 4.51e-27
GSEA 1.07e-11 1.45e-15 4.72e-05
ssGSEA 4.71e-25 8.70e-26 1.87e-26
Camera 1.81e-19 2.11e-20 9.74e-05
GSVA 5.30e-20 7.17e-27 4.21e-07
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Fig. 7. A box plot showing the distribution of overlap scores resulting from the
gene set analysis of each replicate dataset with that of the whole dataset using
ORA. A box with the x-coordinate of n shows the overlap scores resulting
from the gene set analysis of each of the 10 replicate datasets (all with sample
size 2 × n) and the result of gene set analysis of the whole dataset. ORA
achieves low overlap scores for small samples sizes. Also the variability of
overlap scores is higher in comparison to GAGE.
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Fig. 8. A box plot showing the distribution of overlap scores resulting from
the gene set analysis of each replicate dataset with that of the whole dataset
using ROAST (see Fig. 7 caption for more information). ROAST achieves
very low overlap scores for small samples sizes with high variability. Also
the variability across replicates is higher when compared to GAGE and ORA.

more confounding factors. The only limitation is that the inter-
action between variables must be definable using a symmetric
function. Although this might sound like a limitation on the
usability of pine plots as a general-purpose data visualization
tool, in practice most scores for measuring the interaction
of different variables are symmetric—for example, Pearson
correlation and Spearman’s rank correlation coefficients. Also,
any well-defined metric or distance function [23] can be used
with pine plots too. The pine plots in this paper clarify how
reproducibility increases when sample size increases. Unlike
the box plots, the pine plots clearly illustrate the extent of the
overlap between each pair of replicate datasets.

It should be mentioned that although the reproducibility
of gene set analysis across replicate datasets is a necessary



0.00

0.25

0.50

0.75

1.00

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample size per group

O
ve

rl
a
p

Fig. 9. A box plot showing the distribution of overlap scores resulting from
the gene set analysis of each replicate dataset with that of the whole dataset
using GAGE (see Fig. 7 caption for more information). GAGE achieves higher
overlap scores for small samples sizes compared to ORA and ROAST. Also
the variability of overlap scores is lower for GAGE.
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Fig. 10. Kendall’s coefficient of concordance for each method under study.
The x-axis shows the sample size. The y-axis shows concordance coefficients
of the results of gene set analysis of 10 replicate datasets of the same size.

condition for achieving biologically valid results, it is not
sufficient. As a hypothetical example, assume a method always
reports all gene sets as differentially enriched. Such a method
is of no value due to its large number of false positives, but
it achieves a maximum overlap score of 1. Therefore, we
suggest the study of the sensitivity and specificity together
with the study of overlap between gene set analysis methods
for future research. This would help alleviate the challenges
regarding the lack of gold standard datasets for evaluating gene
set analysis methods as it would provide a means to compare
methods regardless of the dataset(s) being used for evaluation.

In the rest of this section, we discuss the observations about
the number of differentially enriched gene sets reported by the
methods under study (Fig. 11), and the Kendall concordance
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Fig. 11. The number of gene sets predicted as differentially enriched for each
method under study. The x-axis shows the sample size. The y-axis shows the
average number of gene sets predicted as being differentially enriched across
10 replicate datasets of the same size. The red line parallel to the x-axis shows
the size of the gene set database being used, i.e. the maximum possible number
of gene sets that could be predicted as being differentially enriched.

coefficients for each method (Fig. 10).
PLAGE reports almost all of the gene sets as differentially

enriched regardless of the sample size used. This explains why
PLAGE achieves high overlap scores. Since it is unlikely that
such a large number of gene sets are all differentially enriched
in a living organism, we assume that this method leads to
a large number of false positives, i.e. gene sets incorrectly
predicted as being differentially enriched. Also, PLAGE’s low
Kendall concordance coefficients depicted in Fig. 10 shows
that the order in which it reports the differentially enriched
gene sets is not conserved across replicate datasets. This could
be explained by the fact that PLAGE, for each gene set,
defines “the activity level in terms of the first eigenvector,
‘metagene’, in the singular value decomposition” [19]. By
ignoring other eigenvectors of an expression profile for a gene
set, it cannot entirely capture the variability of expression of
genes within a gene set. This causes the gene sets predicted as
being differentially enriched by PLAGE to show variation in
statistical significance across replicate datasets, and therefore,
be ranked differently for each replicate dataset.

ssGSEA also reports almost all gene sets as being dif-
ferentially enriched for each replicate dataset, regardless of
the number of samples being used for gene set analysis.
This means that relying on gene sets predicted as being
differentially enriched by PLAGE or ssGSEA may lead to
interpretations that are incorrect or biased towards a hypothesis
of interest. However, the most statistically significant gene
sets, i.e. gene sets with the lowest adjusted p-value, suggested
by these methods may still be biologically relevant. Therefore,
we suggest further research be conducted to evaluate the most
statistically significant gene sets predicted by these methods.



Camera reported a small number of differentially enriched
gene sets (average of 108 in Fig. 11) regardless of the sample
size used for gene set analysis. Therefore, a small difference in
the set of gene sets predicted as being differentially enriched
strongly affects the overlap, leading to small values.

GSEA, using sample permutation, produces no enriched
gene sets using lower sample sizes. This behaviour was
expected since the permutation method for significance assess-
ment requires large sample sizes. For example, in a replicate
dataset with 3 controls and 3 cases, there are 20 distinct
permutations of controls and cases—the combination of 3 out
of 6. In this case, the smallest non-zero p-value is 0.05, which
is not considered significant. However, for a sample size of
2 × 10 or greater, the number of differentially enriched gene
sets (average of 15 in Fig. 11) remains steady while Kendall’s
concordance increases. This suggests that 10 samples per
group might be a reasonable lower bound for using GSEA.

For sample sizes larger than 6, ORA remains quite consis-
tent in the number of enriched gene sets reported, although the
method appears to be less conservative compared to GSEA.

Since all replicates of size 2×n are generated from the same
original dataset, for each method we expect the number of
gene sets predicted as being differentially enriched to remain
approximately the same across sample sizes. However, this
is not the case with GAGE, GSVA, FRY, and ROAST. For
these methods, the number of gene sets predicted as being
differentially enriched dramatically increases with the increase
in sample size. This increase may partially be responsible for
the increase in the overlap scores for these methods as the
number of samples increases. Also, FRY and ROAST closely
mirror each other in the number of gene sets predicted as
being differentially enriched. This is expected as FRY has been
proposed to be a fast approximation of ROAST. Also, since
it is unlikely to have such a large number of gene sets as
being differentially enriched, we assume that these methods
may lead to more false positives as sample size increases.

V. CONCLUSION

This research lays out a systematic methodology for eval-
uating the reproducibility of gene set analysis methods using
quantitative measures. The proposed methodology not only
allows for evaluation of the reproducibility of a gene set
analysis method across sample sizes but also can be extended
to compare the result of different gene set analysis methods
for a given dataset. We used this methodology to evaluate the
reproducibility of 10 gene set analysis methods across real
gene expression datasets. As a general pattern, we observed
that overlap score increases with increase in sample size.
However, the rate of increase in overlap score is not the same
across all methods. We also conjectured that for methods such
as GAGE, GSVA, ROAST, and FRY an increase in sample size
may lead to an increase in the number of false positives. Also,
our findings suggest that for all methods under study achieving
reproducible results using small sample sizes—such as 3, 4,
or 5 samples per group—is unlikely.
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