
Useful Templates and Iterated
Template-Guided DNA Recombination in

Ciliates. ∗†

Mark Daley1,2, Ian McQuillan2

1 Department of Computer Science
University of Saskatchewan

Saskatoon, Saskatchewan, S7N 5A9, Canada

2 Department of Computer Science
University of Western Ontario
London, ON N6A 5B7, Canada

daley@csd.uwo.ca, imcquill@csd.uwo.ca

Abstract

The family of stichotrichous ciliates contains several single-celled
organisms possessing a unique genetic mechanism: the ability to de-
scramble genes which exist in a scrambled state in their genomes. We
continue the theoretical investigation of the iterated template-guided
recombination operation. This operation is suggested by the recombi-
nation of DNA strands based on template guides proposed by Prescott,
Ehrenfeucht and Rozenberg. A variety of results is demonstrated in-
cluding a study of computational power, characterizations and other
abstract properties, such as a “pumping lemma”. The notion of a

∗This research was funded in part by institutional grants of the University of
Saskatchewan and the Natural Sciences and Engineering Research Council of Canada.
†Published in Theory of Computing Systems (2006) 39: 619–633. https://doi.org/

10.1007/s00224-005-1206-6

https://doi.org/10.1007/s00224-005-1206-6
https://doi.org/10.1007/s00224-005-1206-6

useful template is defined and forms a critical basis for much of the
results demonstrated in the paper. The main result shows that every
full AFL is closed under iterated template-guided recombination with
regular templates.

1 Introduction

The stichotrichous ciliates are a family of single-celled organisms that con-
tains some organisms which possess genomes with the curious property that
certain genes exist in a scrambled form.

Unlike mammalian cells, which contain a single nucleus, every stichotrich
has two separate nuclei: a functional macronucleus, which performs the “day-
to-day” genetic chores of the cell, and an inert micronucleus which contains
germline information. It is the micronucleus which contains scrambled genes.

Ciliates reproduce asexually, however they still do mate when nutrients
become scarce. Specifically, when two ciliate cells conjugate, they destroy
their macronuclei and exchange haploid micronuclear genomes. Each cell
then builds a new functional macronucleus from the genetic material stored
in the micronucleus. We have noted, however, that some of the genes stored
in the micronucleus are stored in a scrambled order. Specifically, the mi-
cronuclear gene consists of fragments of the macronuclear gene in some per-
muted order. These fragments are called macronuclear destined segments
or MDSs. Two MDSs which are consecutive in a macronuclear gene are
both flanked by an identical short repeat segment in the micronuclear ver-
sion of the gene. These repeat segments are called pointers. The cell must
descramble-scramble the MDSs in order to create a functional gene which
is capable of generating a protein. For more information on the biological
process of gene descrambling-scrambling, we refer to [3, 10, 11, 12].

Several hypotheses as to how this descrambling-scrambling process takes
place have been proposed in the literature. There are three primary theoret-
ical models which have been investigated: the Kari-Landweber model [8, 9]
which consists of binary inter- and intra-molecular recombination operations;
the Ehrenfeucht, Harju, Petre, Prescott and Rozenberg model [5, 4, 6, 3]
which consists of three unary operations inspired by intramolecular DNA re-
combination; and, most recently, a new model proposed by Prescott, Ehren-
feucht and Rozenberg [13, 2] based on the recombination of DNA strands
guided by templates. We will formalize this latter model in the context of

2

formal language theory and study it here.
The basic action of the template-guided recombination operation is to

take two DNA strands and splice them together using a third template strand.
That is, for two strands of the form uαβd and eβγv (where u, v, α, β, γ, d, e
are subsequences of a DNA strand) to be spliced together, we require a tem-
plate of the form ᾱβ̄1β̄2γ̄ where ᾱ denotes a DNA sequence which is comple-
mentary to α, and β = β1β2. Specifically, the ᾱβ̄1 in the template will bind to
the αβ1 in the first strand and β̄2γ̄ will bind to the β2γ in the second strand.
The molecules then recombine with d and e being cleaved and removed, a
new copy of the template ᾱβ̄γ̄ and the product of our recombination which
is uαβγv.

In this paper we study a formal language theoretic model of the iterated
version of this operation: iterated template-guided recombination. This is
likely more biochemically realistic than the notion of an operation which is
applied exactly once. In [2], we considered a comparison of that operation
with iterated splicing schemes. In particular, we examined the capabilities of
one to simulate the other. It was determined that iterated splicing could “al-
most always” simulate iterated template-guided recombination under weak
conditions, but the reverse simulation could only occur if iterated splicing did
not increase the capacity of the initial language family. In this way, iterated
splicing is “almost always” more powerful.

Here, we introduce the notion of useful templates. Informally, a tem-
plate word is useful on an initial language if it can be used as a template
to generate any word, not necessarily new, when iterating the operation of
template-guided recombination. A template language is useful on an initial
language if every word is useful on the initial language. We show that every
full AFL is closed under iterated template-guided recombination with useful
template languages from the same full AFL (Theorem 4.1). In addition, we
provide several characterizations of the iterated template-guided recombina-
tion operation when the template language is useful (Lemma 4.3, proof of
Theorem 4.1).

Perhaps most interesting is a pumping lemma that we demonstrate for
languages which are generated by iterated template-guided recombination
(Lemma 4.2). It exposes some surprising necessary periodicity that gener-
ated languages must possess. Also, in our formalization, the operation of
(iterated) template-guided recombination is parameterized by the minimum
length of an MDS and a pointer (recall the meanings of MDSs and point-
ers above). In fact, the pumping lemma shows that if n is the sum of the

3

minimum lengths of an MDS and a pointer, then a template can be inserted
between any two segments, one with the first n symbols of the template as
subsequence and the other with the last n symbols of the template as sub-
sequence. This shows that if the actual minimum length is too small, then
there would be a large number of incorrect products. This is consistent with
experimental evidence gathered to date, where the smallest MDS has been
nine nucleotides long. We will clarify this in Section 4.

Further, we show using a proof without an effective construction that the
subset of a regular template language which consists solely of useful words
on any initial language (not even necessarily recursively enumerable) is also
regular (Theorem 4.2). This can be combined with Theorem 4.1 to show that
every full AFL is closed under iterated template-guided recombination with
regular languages (Theorem 4.3).

Consequently, these results give us insight into the nature of this operation
as both a biological process and a potential mechanism for in vivo computing.

2 Preliminaries

We refer to [14] for language theory preliminaries. Let Σ be a finite alpha-
bet. We denote by Σ∗ and Σ+ the sets of all words and non-empty words,
respectively, over Σ and the empty word by λ. For k ∈ N, let Σ≥k be all
words of length at least k. A language L is any subset of Σ∗. Let L0 = {λ},
Li = Li−1L, for all i > 0 and L∗, L+ be catenation closure including and not
including, respectively, the empty word as per the usual definitions.

Let L,R ⊆ Σ∗. We denote by R−1L = {z ∈ Σ∗ | yz ∈ L for some y ∈ R}
and LR−1 = {z ∈ Σ∗ | zy ∈ L for some y ∈ R}. Let x, y ∈ Σ∗ and let n ∈ N.
We denote by |x| the length of x. Let x = a1 · · · am, ai ∈ Σ. We define
Γp
n(x) = a1 · · · an if m ≥ n and λ otherwise and also Γs

n(x) = am−n+1 · · · am
if m ≥ n and λ otherwise. We say x is a prefix of y, written x ≤p y, if there
exists a word w ∈ Σ∗ such that y = xw. We say that x is a suffix of y, written
x ≤s y, if there exists a word w ∈ Σ∗ such that y = wx. We say that x is an
infix (or subword) of y, written x ≤i y, if there exist words u,w ∈ Σ∗ such that
y = uxw. Furthermore, we let pref(L) = {x ∈ Σ∗ | x ≤p y, for some y ∈ L},
prefn(L) = pref(L) ∩ Σ≥n, suf(L) = {x ∈ Σ∗ | x ≤s y, for some y ∈ L},
sufn(L) = suf(L) ∩ Σ≥n, inf(L) = {x ∈ Σ∗ | x ≤i y, for some y ∈ L} and
infn(L) = inf(L) ∩ Σ≥n.

A full AFL is a language family (where a language family is defined as in

4

[1]) closed under homomorphism, inverse homomorphism, intersection with
regular languages, union, concatenation and ∗. It is known that every full
AFL is closed under nondeterministic gsm mappings, prefix, suffix, infix and
left and right quotient with regular languages. We refer to [1, 7] for the
theory of AFLs.

3 Template-guided recombination

We begin by defining the abstract formal version of the template-guided
recombination operation described in [2].

Definition 3.1 A template-guided recombination system (or TGR system)
is a four-tuple % = (T,Σ, n1, n2) where Σ is a finite alphabet, T ⊆ Σ∗ is the
template language, n1 ∈ N is the minimum MDS length and n2 ∈ N is the
minimum pointer length.

For a TGR system % = (T,Σ, n1, n2) and a language L ⊆ Σ∗, we define
%(L) = {w ∈ Σ∗ | (x, y) `%t w for some x, y ∈ L, t ∈ T} where (x, y) `%t w
if and only if x = uαβd, y = eβγv, t = αβγ and w = uαβγv for some
u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σ≥n2. When there is no confusion, we denote
`%t by `t. We say that L is the base or initial language.

For language families L1,L2, we write t(L1,L2, n1, n2) = {%(L) | L ∈
L1, % = (T,Σ, n1, n2) is a TGR system with T ∈ L2} and t(L1,L2) =
{t(L1,L2, n1, n2) | n1, n2 ∈ N}.

In [13], a constant C is defined such that |α|, |γ| > C in order to ensure
the formation of sufficiently strong chemical bonds. The minimum MDS
length above is general enough to cover any such constant. Likewise, [13]
also defines constants D and E such that D < |β| < E. The minimum
pointer length above is general enough to cover any such D. In addition, the
constant E is shown to be irrelevant in the next, obvious, proposition from
[2]. It states that we can always assume that the β subword of a template is
of length n2.

Proposition 3.1 Let % = (T,Σ, n1, n2) be a TGR system and let x, y ∈ Σ∗

and t ∈ T . Then (x, y) `t w if and only if x = uαβd, y = eβγv, t = αβγ and
w = uαβγv for some u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σn2.

In the sequel, we shall thus assume, without loss of generality, that β is
of length n2.

5

Next, we define iterated template-guided recombination:
Let % = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. Then we

generalize % to an iterated operation %∗(L) as follows:

%0(L) = L,

%i+1(L) = %i(L) ∪ %(%i(L)), i ≥ 0

%∗(L) =
∞⋃
i=0

%i(L).

Further, for language families L1,L2, define t∗(L1,L2, n1, n2) = {%∗(L) |
L ∈ L1, % = (T,Σ, n1, n2) is a TGR system with T ∈ L2} and also let
t∗(L1,L2) = {t∗(L1,L2, n1, n2) | n1, n2 ∈ N}.

It is also clear, and known from [2], that applying iterated template-
guided recombination to a language family yields a family which contains
the original language family.

Lemma 3.1 Let L1,L2 be language families and let n1, n2 ∈ N. Then L1 ⊆
t∗(L1,L2, n1, n2).

4 Useful templates

Next, we define the concepts of a useful template and a useful system which
we will use throughout the rest of this paper.

Definition 4.1 Let % = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. A
word t ∈ T is useful on (L, %) (or simply useful if the context is understood),
if there exist words x = uαβd, y = eβγv ∈ %∗(L) such that t = αβγ, α, γ ∈
Σ≥n1 , β ∈ Σn2 , u, d, e, v ∈ Σ∗. If every word in T is useful on (L, %), then %
is useful on L.

Intuitively, a template word is useful if it can be used as a template to produce
any word when applying the template-guided recombination operation to a
language.

The following lemma will be used many times in the sequel.

Lemma 4.1 Let % = (T,Σ, n1, n2) be a TGR system. A word t ∈ T is useful
on (L, %) if and only if |t| ≥ 2n1 +n2 and there exists a word w ∈ %∗(L) such
that t ≤i w.

6

Proof. Assume that t is useful on (L, %). Then, there exist words x =
uαβd, y = eβγv ∈ %∗(L), αβγ = t, α, γ ∈ Σ≥n1 , β ∈ Σn2 , u, v, d, e ∈ Σ∗.
Thus, w = uαβγv ∈ %∗(L), |αβγ| ≥ 2n1 + n2 and t ≤i w.

Assume that |t| ≥ 2n1 + n2 and that there exists a word w ∈ %∗(L) such
that t ≤i w. Thus, w = utv, t = αβγ, where α, γ ∈ Σ≥n1 , β ∈ Σn2 , u, v ∈ Σ∗.
If we let d = γv and e = uα, then w = x = uαβd, w = y = eβγv, and
x, y ∈ %∗(L). Hence, t is useful on (L, %).

Next, we describe a type of “pumping lemma” when the TGR system is
useful.

Let L ⊆ Σ∗ and let n ∈ N. Then, let

Pa1,...,an(L) = pref(L)(a1 · · · an)−1

and
Sa1,...,an(L) = (a1 · · · an)−1suf(L),

for each a1, . . . , an ∈ Σ. So, Pa1,...,an(L) consists of all prefixes of words of L
ending in a1 · · · an with the final a1 · · · an removed and Sa1,...,an(L) consists
of all suffixes of words of L starting with a1 · · · an with the starting a1 · · · an
removed where a1 through an are single letters of the alphabet. It is clear that
every full AFL L is closed under Pa1,...,an and Sa1,...,an , for every a1, . . . , an ∈ Σ
as one can construct a nondeterministic gsm simulating both.

Lemma 4.2 Let % = (T,Σ, n1, n2) be a TGR system and let n = n1 + n2.
Let L ⊆ Σ∗ with t ∈ T useful on (L, %) and let L′ = %∗(L). Then

Pa1,...,an(L′)tSb1,...bn(L′) ⊆ L′

where |t| ≥ 2n1 + n2,Γ
p
n(t) = a1 · · · an,Γs

n(t) = b1 · · · bn.

Proof. Let u ∈ Pa1,...,an(L′) and let v ∈ Sb1,...,bn(L′). So, ua1 · · · and ∈ L′ and
eb1 · · · bnv ∈ L′, for some d, e ∈ Σ∗. We know t ∈ T is useful on (L, %), so by
Lemma 4.1, there exists a word w ∈ L′, t ≤i w and |t| ≥ 2n1 + n2. We can
rewrite w = ya1 · · · anx1z = yx2b1 · · · bnz, for some x1, x2, y, z ∈ Σ∗ where
x2b1 · · · bn = a1 · · · anx1 = t. But,

(ua1 · · · and, ya1 · · · anx1z) `t ua1 · · · anx1z ∈ L′.

Furthermore,

((ua1 · · · anx1z = ux2b1 · · · bnz), eb1 · · · bnv) `t ux2b1 · · · bnv = utv ∈ L′.

Hence, utv ∈ L′ and the claim follows.

7

Essentially, what this means is that if t starts with a1 · · · an and ends with
b1 · · · bn, then t can be inserted at any spot between any prefix of a word in
L′ ending in a1 · · · an and any suffix of a word in L′ starting with b1 · · · bn.
Thus, in some sense, as long as we start with the knowledge that a template
word is useful, only n symbols of each side guide insertion. This will become
evident with the following example.

Example 4.1 Let Σ = {a, b, c1, c2, c3, c4, c5, c6} be an alphabet. Also, con-
sider L = {c1aac2c3, c4aac5c3, c3bbc6, abbc1} and T = {aac2c3bb} where % =
(T,Σ, 1, 1) is a TGR system. Then

(c1aac2c3, c3bbc6) `aac2c3bb c1aac2c3bbc6

and so aac2c3bb is useful and so is %. But then,

(c4aac5c3, c1aac2c3bbc6) `aac2c3bb c4aac2c3bbc6.

Indeed,

%∗(L) = L ∪ {c1aac2c3bbc6, c4aac2c3bbc6, c1aac2c3bbc1, c4aac2c3bbc1},

and observe that Pa,a(%
∗(L)) = {c1, c4}, Sb,b(%

∗(L)) = {c1, c6}.

The “pumping lemma” above shows that when we iterate the template-
guided recombination operation, only n symbols are necessary on either side
of the template to guide insertion of the template. Thus, assuming template-
guided recombination is the correct hypothesis, if the actual value of n is too
small, then there would be a large number of incorrect products of iterated
template-guided recombination. To date, the smallest MDS found experi-
mentally has been nine nucleotides long.

Not only can this be used as a type of “pumping lemma”, we can also
use it to characterize the languages %∗(L), L ⊆ Σ∗, where % = (T,Σ, n1, n2)
is a TGR system with n = n1 + n2, whenever % is useful on L.

Let

L(0)
% = L

L(i+1)
% = L(i)

% ∪ {utv | t ∈ T,Γp
n(t) = a1 · · · an,Γs

n(t) = b1 · · · bn,
u ∈ Pa1,...,an(L(i)

%), v ∈ Sb1,...,bn(L(i)
%)} for all i ≥ 0,

L(∗)
% =

∞⋃
i=0

L(i)
% .

8

Lemma 4.3 Let % = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗ with %
useful on L. Then

%∗(L) = L(∗)
% .

Proof. Let n = n1 + n2.
“⊆” To show %∗(L) ⊆ L

(∗)
% it suffices to prove, by induction on i, that

%i(L) ⊆ L
(i)
% for every i ≥ 0. This is obvious for i = 0 (since both sets

equal L). Now assume that it holds for m ≥ 0, i.e., %m(L) ⊆ L
(m)
% , and let

w ∈ %m+1(L)−%m(L). Thus, (x, y) `t w for some x, y ∈ %m(L) ⊆ L
(m)
% , t ∈ T ,

by the inductive hypothesis. Thus, w = uαβγv, x = uαβd, y = eβγv, α, γ ∈
Σ≥n1 , β ∈ Σn2 , u, v, d, e ∈ Σ∗, αβγ = t. So, if a1 · · · an are the first n letters
of αβ and b1 · · · bn are the last n letters of βγ, then u ∈ Pa1,...,an(L

(m)
%) and

v ∈ Sb1,...,bn(L
(m)
%). Hence, w = utv ∈ L(m+1)

% . This proves that %m+1(L) ⊆
L

(m+1)
% .

“⊇” To show L
(∗)
% ⊆ %∗(L), we prove by induction on i that L

(i)
% ⊆

%∗(L). This is, again, obvious for i = 0. Assuming that it holds for

m ≥ 0, let w ∈ L(m+1)
% − L(m)

% . Thus, w = utv, where t ∈ T with Γp
n(t) =

a1 · · · an,Γs
n(t) = b1 · · · bn and u ∈ Pa1,...,an(L

(m)
%) ⊆ Pa1,...,an(%∗(L)), v ∈

Sb1,...,bn(L
(m)
%) ⊆ Sb1,...,bn(%∗(L)). By the inductive hypothesis and by Lemma

4.2, we see that utv ∈ %∗(L). This proves that L
(m+1)
% ⊆ %∗(L).

We use this to prove one of the main results of the paper. Indeed, we show
that every full AFL is closed under iterated template-guided recombination
with useful templates from the same full AFL. The construction provides an
interesting characterization as well.

Theorem 4.1 Let L be a full AFL, % = (T,Σ, n1, n2) a TGR system and let
L, T ∈ L, L ⊆ Σ∗, and assume that % is useful on L. Then %∗(L) ∈ L.

Proof. Let n = n1 + n2 and V$ = {$L,p, $L,i, $L,s, $T , $T,s, $T,p, $T,i}, all
new symbols. Also, for each x ∈ Σ∗,we define x́ = {Σn}−1{x} and x̀ =
{x}{Σn}−1.

Let L1 = ($L,pprefn(L) ∪ $L,iinfn(L) ∪ $L,ssufn(L) ∪ $TT ∪ $T,ssufn(T) ∪
$T,pprefn(T) ∪ $T,iinfn(T))+.

It is clear that L1 ∈ L since every full AFL is closed under concatenation
with a new symbol, union, prefix, suffix, infix, + and intersection with regular
languages.

9

Next, we intersect L1 with a regular language, R, which enforces that the
symbol from V$ that appears

first must be $L,p,
directly after $L,p must be $T,p or $T ,
directly after $L,i must be $T,p or $T ,
directly after $T,p must be $T,p or $T ,
directly after $T,i must be $T,p or $T ,
directly after $T must be $L,s, $T,s, $L,i or $T,i,
directly after $T,s must be $L,s, $T,s, $L,i or $T,i,
last must be $L,s.

Let L2 = L1 ∩R be this new language. Again, L2 ∈ L. It is easy to see that,
equivalently, R enforces that the symbol from V$ that appears

first must be $L,p,
directly before $L,s must be $T,s or $T ,
directly before $L,i must be $T,s or $T ,
directly before $T must be $L,p, $T,p, $L,i or $T,i,
directly before $T,p must be $L,p, $T,p, $L,i or $T,i,
directly before $T,s must be $T,s or $T ,
directly before $T,i must be $T,s or $T ,
last must be $L,s.

Next, we obtain L3 by intersecting L2 with a regular language that en-
forces that the last n symbols from Σ before each marker are the same as the
first n after the marker. That is, L3 = {$1y1$2y2 · · · $mym ∈ L2 | $i ∈ V$, yi ∈
Σ+, and Γs

n(yi) = Γp
n(yi+1) for every i, 1 ≤ i < m}.

Finally, let M be a deterministic gsm-mapping which erases all symbols
from V$, and erases the first n letters from Σ after each symbol from V$,
except the first. That is, if α = $1y1$2y2 · · · $mym then M(α) = y1ý2 · · · ým.
Let L′ = M(L3)∪L. Clearly, L′ ∈ L as every full AFL is closed under union
and gsm mappings. Indeed, we will show that L′ = %∗(L).

Claim 4.1 L′ ⊆ %∗(L).

Proof. Let w ∈ L′. If w ∈ L, then w ∈ %∗(L) and we are done. Assume
then, that w ∈ L′ − L. Let α be a string in L3 such that M(α) = w. Let
α = $1y1$2y2 · · · $qyq with $i ∈ V$ and yi ∈ Σ+ for 1 ≤ i ≤ q. Observe that

10

q ≥ 3 since $1 = $L,p, $q = $L,s and $2 can be neither. Furthermore, for
each i, 1 ≤ i ≤ q, let wi = M($1y1 · · · $iyi). In particular, wq = w. Also,
for each i, let ai,1, . . . , ai,n, bi,1, . . . , bi,n ∈ Σ satisfy Γp

n(yi) = ai,1 · · · ai,n and
Γs
n(yi) = bi,1 · · · bi,n. Notice that, by the construction,

bi,1 · · · bi,n = ai+1,1 · · · ai+1,n, (1)

for every i, 1 ≤ i ≤ q − 1.
We will show by induction on i, 1 ≤ i ≤ q, that wi ≤p vi for some

vi ∈ %∗(L) and that wq = w ∈ %∗(L).
This is true for i = 1 as the first segment y1 is a prefix of some word in

L ⊆ %∗(L).
Let m be an integer such that 1 ≤ m < q. Assume, by way of induction,

that wm ≤p vm for some vm ∈ %∗(L). We let um ∈ Σ∗ be such that vm =
wmum. Also, we let a1 = am+1,1 = bm,1, . . . , an = am+1,n = bm,n.

case 1: Assume that either $m+1 = $T,p (and ym+1 ∈ pref(T)) or $m+1 = $T

(and ym+1 ∈ T). In either case, there exist x1 ∈ T such that ym+1 ≤p x1 and
another word x2 ∈ %∗(L), such that x1 ≤i x2, by Lemma 4.1. We rewrite
vm = wmum = ẁmbm,1 · · · bm,num = ẁma1 · · · anum and also x2 = ex1v =
ea1 · · · anx́1v, e, v ∈ Σ∗. Thus,

((vm = ẁma1 · · · anum), (x2 = ea1 · · · anx́1v)) `(x1=a1···anx́1) (wmx́1v = ẁmx1v)

and so there exists a word, wmx́1v ∈ %∗(L) such that wm+1 = wmým+1 ≤p

wmx́1v.

case 2: Assume that $m+1 is equal to $L,s, $L,i, $T,s or $T,i.

case 2a: Assume that $m+1 = $L,s and thus ym+1 ∈ suf(L). Let eym+1 ∈
L, e ∈ Σ∗. By the construction, either $m is equal to $T,s or $T . Furthermore,
since $1 = $L,p, there must exist an integer j, such that $j = $T , 2 ≤ j ≤ m
and for every k, j < k ≤ m, $k = $T,s. For each word yk, j ≤ k ≤ m, let
tk = rkyk ∈ T , for some rk ∈ Σ∗ and let rj = λ. For each tk, j ≤ k ≤ m, let
sk = µktkνk ∈ %∗(L), for some µk, νk ∈ Σ∗, which must exist by Lemma 4.1.
Then sk = µkrkykνk. Thus,

(µmrmymνm, (eym+1 = ea1 · · · aným+1)) `(rmym=rmỳma1···an) µmrmymým+1 (2)

(µm−1rm−1ym−1νm−1, µmrmymým+1) `rm−1ym−1 µm−1rm−1ym−1ýmým+1

...

(µjrjyjνj, µj+1rj+1yj+1ýj+2ýj+3 · · · ým+1) `rjyj µjrjyj ýj+1 · · · ým+1

11

since the last n letters of yk must always be equal to the first n of yk+1. Then
by Lemma 4.2, Paj,1,...,aj,n(%∗(L))yjSbj,1,...,bj,n(%∗(L)) ⊆ %∗(L). Notice that
wj−1 ≤p wm ≤p vm ∈ %∗(L), by the inductive hypothesis and consequently
ẁj−1 ∈ Paj,1,...,aj,n(%∗(L)). In addition, µjrjyj ýj+1 · · · ým+1 ∈ %∗(L) and so
ýj+1 · · · ým+1 ∈ Sbj,1,...,bj,n(%∗(L)). Hence,

ẁj−1yj ýj+1 · · · ým+1 = wj−1ýj ýj+1 · · · ým+1 = wm+1 ∈ %∗(L).

cases 2b,c,d: Case b ($m+1 = $L,i) is similar to case a except replace eym+1

in (2) by eym+1e
′ where e, e′ ∈ Σ∗. We now obtain the same recombination

results followed by e′, and wm+1e
′ ∈ %∗(L). Thus, wm+1 is a prefix of some

word in %∗(L). Cases c ($m+1 = $T,s) and d ($m+1 = $T,i) are also similar,
except we replace eym+1 in (2) with sm+1 = µm+1tm+1νm+1 ∈ %∗(L) where
tm+1 = rm+1ym+1fm+1 ∈ T, rm+1, fm+1 ∈ Σ∗ which must exist by Lemma 4.1.
We then obtain the same recombination results followed by fm+1vm+1, and
wm+1fm+1vm+1 ∈ %∗(L).

Thus, by way of induction, it follows that wq = w ∈ %∗(L).

Claim 4.2 %∗(L) ⊆ L′.

Proof. By Lemma 4.3 it suffices to show, by induction on i, that L
(i)
% ⊆ L′

for every i ≥ 0. For i = 0 this is obvious because L
(0)
% = L. Assume

now, for m ≥ 0, that L
(m)
% ⊆ L′ and let w ∈ L

(m+1)
% − L

(m)
% . Thus, we

can write w = x1tx2, t ∈ T,Γp
n(t) = a1 · · · an,Γs

n(t) = b1 · · · bn, for some

a1, . . . , an, b1, . . . , bn ∈ Σ, x1 ∈ Pa1,...,an(L
(m)
%) and x2 ∈ Sb1,...,bn(L

(m)
%). Then,

there exist r1 ∈ L(m)
% such that r1 = x1a1 · · · ans1, s1 ∈ Σ∗, and r2 ∈ L(m)

% such
that r2 = s2b1 · · · bnx2, s2 ∈ Σ∗. Next, let α1 = $L,px1a1 · · · an if r1 ∈ L and
α1 ∈ L3 such that M(α1) = r1 otherwise, which must exist by the inductive
hypothesis. Also, let α2 = $L,sb1 · · · bnx2 if r2 ∈ L and α2 ∈ L3 such that
M(α2) = r2 otherwise, which also must exist by the inductive hypothesis. We
rewrite α1 = $1,1y1,1$1,2y1,2 · · · $1,q1y1,q1 and α2 = $2,1y2,1$2,2y2,2 · · · $2,q2y2,q2 ,
where y1,j, y2,k ∈ Σ+, $1,j, $2,k ∈ V$, 1 ≤ j ≤ q1, 1 ≤ k ≤ q2. Let m1 be the
smallest integer such that x1a1 · · · an ≤p M($1,1y1,1 · · · $1,m1y1,m1). Let m2 be
the largest integer such that b1 · · · bnx2 ≤s M($2,m2y2,m2 · · · $2,q2y2,q2).

Consider the string

γ1 = $1,1y1,1 · · · $1,m1−1y1,m1−1$1,m1e1,

12

where M(γ1) = x1a1 · · · an, e1 ∈ Σ∗, e1 ≤p y1,m1 . Furthermore, consider

γ2 = $2,m2e2$2,m2+1y2,m2+1 · · · $2,q2y2,q2 ,

where M(γ2) = b1 · · · bnx2, e2 ∈ Σ∗, e2 ≤s y2,m2 . Notice that |e1| ≥ n and
|e2| ≥ n since m1 is the smallest such integer and m2 is the largest. Finally,
consider γ1$T tγ2. It is clear that M(γ1$T tγ2) = w, however we must ensure
that γ1$T tγ2 ∈ L3.

If $1,m1 is equal to either $L,p, $T,p, $L,i or $T,i and also $2,m2 is equal to
either $L,s, $T,s, $L,i or $T,i, then γ1$T tγ2 ∈ L3 for the following reasons: $T

can appear directly after any of the first set of symbols (see the definition
of R) and before any of the second set (see the equivalent definition of R),
if y1,m1 is a prefix (or infix, respectively) of some word in L, then so is e1,
if y1,m1 is a prefix (or infix, respectively) of some word in T , then so is e1,
if y2,m2 is a suffix (respectively infix) of some word in L, then so is e2 and
if y2,m2 is a suffix (respectively, infix) of some word in T , then so is e2. We
will consider the remaining cases by making the following changes to the
string γ1$T tγ2. If $1,m1 = $T , then we change the symbol $1,m1 to $T,p as the
symbols from V$ that can appear directly before $T,p are the same as those
of $T and also e1 is a prefix of y1,m1 . For similar reasons, if $1,m1 is $T,s or
$L,s, then we change it into $T,i or $L,i, respectively. And similarly if $2,m2 is
$T , $T,p or $L,p, then we change it into $T,s, $T,i or $L,i, respectively.

After these changes to γ1$T tγ2, we denote the resulting string by x. We
see that x ∈ L3 for the reasons mentioned above. Moreover, M(γ1$T tγ2) =
M(x) = w ∈ L′. Hence, by way of induction, it follows that w ∈ L′ and so

L
(m+1)
% ⊆ L′.

Hence, by Claims 4.1 and 4.2, it is immediate that %∗(L) ∈ L.

Let % = (T,Σ, n1, n2) be a TGR system with L ⊆ Σ∗. Even though %
is not necessarily useful on L, it is obvious that there exists a subset Tu of
T and a TGR system %u = (Tu,Σ, n1, n2) which is useful on L. In fact,
Tu = {t ∈ T | t is useful on (L, %)}. We call this subset the useful subset of %
on L (or just the useful subset if the context is understood) and we call %u
the useful subsystem of % on L. Thus, attention should now turn to finding
the useful subset of the template language whenever possible.

We have been unable, as yet, to effectively determine the useful subset of
a template language when it is a regular language. However, the next result
shows that indeed, if L is any language at all (not even necessarily recursively

13

enumerable), and T is a regular language, then the useful subset of T on L
is also regular.

Theorem 4.2 Let % = (T,Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. Let
Tu be the useful subset of % on L. If T is a regular language, then Tu is also
regular1.

Proof. Let n = 2n1 + n2 − 1 and R = {t ∈ T | |t| ≥ 2n1 + n2}. Since t ∈ Tu
implies that |t| ≥ 2n1 + n2, it follows that Tu ⊆ R. Let M = (Q,Σ, q0, F, δ)
be a deterministic finite automaton accepting R where δ : Q × Σ → Q is a
partial function, extended to a partial function δ : Q× Σ∗ → Q in the usual
way. Let

f(q, a1, . . . , an) = {v | v ∈ inf(Tu), v ∈ a1 · · · anΣ∗, δ(q, v) ∈ F},

for each q ∈ Q, a1, . . . , an ∈ Σ (these sets are not effectively constructed).
This set consists of all infixes of some useful template which starts with
a1 · · · an and enters a final state starting in q using δ. We will create a
new deterministic finite automaton M ′ = (Q′,Σ, q′0, F

′, δ′) by making the
following modifications to M . In the finite control of M ′, it simulates M and
also remembers the previous n − 1 states entered and the last n − 1 input
symbols that were read. For any set A, we write [A]n to denote A× ...×A (n
times): the set of all sequences of elements of A of length n. Formally, Q′ =
([Q∪{λ}]n× [Σ∪{λ}]n−1), F ′ = [Q]n−1×F × [Σ]n−1, q′0 = ([λ]n−1, q0, [λ]n−1)
and δ′ is defined as follows:

For every transition δ(q, a) = p, with p, q ∈ Q, a ∈ Σ, we define both
δ′((λ, p1, . . . , pn−1, λ, b1, . . . , bn−2), a) = (p1, . . . , pn−1, p, b1, . . . , bn−2, a) where
pn−1 = q, p1, . . . , pn−2 ∈ Q ∪ {λ}, b1, . . . , bn−2 ∈ Σ ∪ {λ} and also we de-
fine δ′((q1, . . . , qn−1, q, a1, . . . , an−1), a) = (q2, . . . , qn−1, q, p, a2, . . . , an−1, a),
for each q1, . . . , qn−1 ∈ Q, a1, . . . , an−1 ∈ Σ iff f(q1, a1, . . . , an−1, a) 6= ∅ (we
have not given an effective procedure to decide this property). Let T ′ be the
language accepted by M ′. We claim that Tu = T ′.

“⊆” Let t = a1a2 · · · am ∈ Tu ⊆ R with ai ∈ Σ and let qi, 0 ≤ i ≤
m, satisfy δ(qj, aj+1) = qj+1, for all j, 0 ≤ j < m with qm ∈ F . We
will show by induction that for every l, 1 ≤ l ≤ m, δ′(q′0, a1a2 · · · al) =
(ql−n+1, . . . , ql−1, ql, al−n+2, . . . , al) where qi = aj = λ for all i < 0, j < 1 (of
which there are at most n of each). By the construction of M ′, δ′(q′0, a1) =

1This is not an effective construction.

14

([λ]n−2, q0, q1, [λ]n−2, a1). Let k be an integer such that 1 ≤ k < m. Assume,
by induction, that δ′(q′0, a1a2 · · · ak) = (qk−n+1, . . . , qk−1, qk, ak−n+2, . . . , ak).
If k+1 < n, then δ′(q′0, a1a2 · · · akak+1) = (qk−n+2, . . . , qk+1, ak−n+3, . . . , ak+1)
by the construction. Assume that k + 1 ≥ n. Since a1a2 · · · am ∈ Tu,
we can conclude that f(qk−n+1, ak−n+2, . . . , ak+1) 6= ∅ as ak−n+2 · · · am ∈
f(qk−n+1, ak−n+2, . . . , ak+1). Thus we obtain,

δ′(q′0, a1a2 · · · ak+1) = (qk−n+2, . . . , qk+1, ak−n+3, . . . , ak+1).

Hence, by induction, δ′(q′0, a1a2 · · · am) = (qm−n+1, . . . , qm, am−n+2, . . . , am),
qm ∈ F, (qm−n+1, . . . , qm, am−n+2, . . . , am) ∈ F ′ and t ∈ T ′.

“⊇” Let t = a1a2 · · · am ∈ T ′, with ai ∈ Σ. It follows that t ∈ T and
m ≥ n by the definition of R. By the definition of M ′, there must exist
q0, q1, . . . , qm ∈ Q with qm ∈ F and q−n+2 = · · · = q−1 = a−n+3 = · · · = a0 =
λ such that δ(qj, aj+1) = qj+1 for all j, 0 ≤ j < m, and

δ′(q′0, a1) = (q−n+2, . . . , q1, a−n+3, . . . , a1),

δ′((q−n+2, . . . , q1, a−n+3, . . . , a1), a2) = (q−n+3, . . . , q2, a−n+4, . . . , a2),
...

δ′((qm−n, . . . , qm−1, am−n+1, . . . , am−1), am) =

(qm−n+1, . . . , qm, am−n+2, . . . , am).

We will show by induction that for every prefix v of t of size at least n, there
must exist some word w ∈ %∗(L) with v as infix. It is true for a1 · · · an because
f(q0, a1, . . . , an) 6= ∅ since δ′((q0, . . . , qn−1, a1, . . . , an−1), an) is defined, which
implies that inf(Tu) ∩ a1 · · · anΣ∗ 6= ∅ and hence a1 · · · an ∈ inf(Tu) which
is included in inf(%∗(L)), by Lemma 4.1. Let k be an integer such that
n ≤ k < m. Assume, by way of induction, that a1a2 · · · ak ≤i w ∈ %∗(L), for
some w. Since

δ′((qk−n+1, . . . , qk, ak−n+2, . . . , ak), ak+1) =

(qk−n+2, . . . , qk+1, ak−n+3, . . . , ak+1),

it follows that f(qk−n+1, ak−n+2, . . . , ak+1) 6= ∅. Thus, there exists some
v ∈ inf(Tu) with v ∈ ak−n+2 · · · ak+1Σ∗ and δ(qk−n+1, v) ∈ F . It follows
that a1a2 · · · ak−n+1v = a1a2 · · · ak−n+1ak−n+2 · · · ak+1v́ ∈ R since2 we know

2As in Theorem 4.1, we let v́ = {Σn}−1{v}, for v ∈ Σ∗.

15

that both δ(q0, a1a2 · · · ak−n+1) = qk−n+1 and δ(qk−n+1, v) ∈ F . Also, since
v ∈ inf(Tu), there must exist r1, r2, s1, s2 ∈ Σ∗ such that r1vr2 ∈ Tu and
s1r1vr2s2 ∈ %∗(L) by Lemma 4.1. Also, there must exist d1, d2 ∈ Σ∗ such
that w = d1a1a2 · · · akd2 ∈ %∗(L) by the inductive hypothesis. Furthermore,

(d1a1a2 · · · akd2, s1r1ak−n+2 · · · ak+1v́r2s2) `a1a2···ak+1v́ d1a1a2 · · · akak+1v́r2s2

since k + 1 ≥ 2n1 + n2, a1 · · · ak+1v́ = αβγ with γ =

n1︷ ︸︸ ︷
ak−n1+2 · · · ak+1 v́, β =

n2︷ ︸︸ ︷
ak−n1−n2+2 · · · ak−n1+1, α =

≥n1︷ ︸︸ ︷
a1 · · · ak−n1−n2+1 and thus

a1a2 · · · akak+1 ≤i d1a1a2 · · · akak+1v́r2s2 ∈ %∗(L).

Hence, by induction, for every l, n ≤ l ≤ m, a1a2 · · · al ≤i wl ∈ %∗(L), for
some wl. Thus, a1a2 · · · am ≤i wm ∈ %∗(L), a1a2 · · · am ∈ T and a1a2 · · · am is
useful by Lemma 4.1. Thus, t ∈ Tu.

Hence, Tu = T ′ and the useful subset of T on L is a regular language.

We denote the family of regular languages by REG. We can combine
Theorem 4.2, Theorem 4.1, Lemma 3.1 and the facts that REG is the small-
est full AFL and %∗(L) = %∗u(L) for every TGR system % and language L, to
obtain the following result:

Theorem 4.3 Let L be a full AFL. Then3

t∗(L,REG) = L.

Despite the fact that this proof does not provide an effective construc-
tion, it still exposes some necessary patterns that must occur after applying
iterated template-guided recombination and sheds light on its (lack of) com-
putational power.

5 Conclusions

We have continued the work of [2] and presented further formal studies of
iterated template-guided recombination of DNA in stichotrichous ciliates,

3This theorem is also not effective.

16

recently proposed in [13]. Specifically, we introduced the notion of a template
word and language being useful. We used this notion to show a type of
“pumping lemma”. This is used to demonstrate that n1 + n2 symbols at
the left end, a1 · · · an1+n2 say, and right end, b1 · · · bn1+n2 say, of each useful
template are enough to guide insertion of the segment between any strand
containing a1 · · · an1+n2 as subsequence and any strand containing b1 · · · bn1+n2

as subsequence. This shows that if n1 and n2 are too small, then useful
template words can be inserted, at random, quite frequently.

We also used this pumping lemma as a type of generative device, providing
a characterization of iterated template-guided recombination. We then used
this characterization to show that every full AFL L is closed under iterated
template-guided recombination using useful templates also from L.

We then presented a proof (which doesn’t provide an effective construc-
tion) that the useful subset of a regular template language on an arbitrary ini-
tial language (without any restrictions) must also be regular. Consequently,
this shows that every full AFL is closed under iterated template-guided re-
combination with regular template languages.

There are still many important open questions to be solved. First, from
a bioinformatical point of view, is the pumping lemma above consistent with
experimental evidence? In addition, from a computational standpoint, can
one effectively find the useful subset of a regular template language (depend-
ing on the initial language family), or other template languages beyond the
family of regular languages? This would also lend itself to deciding whether
a given string w, a template language T and an initial language L satisfy
w ∈ %∗(L). Other questions of interest would be whether it is possible to
make this model capable of universal computation with finite or regular lan-
guages and small modifications based on biologically realistic assumptions.

The ultimate goal of this research is to both obtain a better, more formal
understanding of ciliate genetics and to provide an elegant model of natural
computing with the potential to be harnessed to perform difficult computa-
tions.

6 Acknowledgments

We thank Joost Engelfriet for helpful suggestions improving the presentation
of this paper.

17

References

[1] J. Berstel. Transductions and Context-Free Languages. B.B. Teubner,
Stuttgart, 1979.

[2] M. Daley and I. McQuillan. Template-guided DNA recombination. The-
oretical Computer Science, 330(2):237–250, 2005.

[3] A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, and G. Rozenberg.
Computation in Living Cells, Gene Assembly in Ciliates. Springer-
Verlag, Berlin, 2004.

[4] A. Ehrenfeucht, T. Harju, I. Petre, and G. Rozenberg. Patterns of
micronuclear genes in ciliates. In N. Jonoska and N. Seeman, editors,
DNA7, Lecture Notes in Computer Science, volume 2340, pages 279–
289. Springer-Verlag, 2002.

[5] A. Ehrenfeucht, D.M. Prescott, and G. Rozenberg. Computational as-
pects of gene (un)scrambling in ciliates. In L.F. Landweber and E. Win-
free, editors, Evolution as Computation, pages 45–86. Springer-Verlag,
Berlin, Heidelberg, 2001.

[6] A. Ehrenfeucht, D.M. Prescott, and G. Rozenberg. Molecular opera-
tions for DNA processing in hypotrichous ciliates. European Journal of
Protistology, 37(3):241–260, 2001.

[7] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland Publishing Company, Amsterdam, 1975.

[8] L. Kari and L.F. Landweber. Computational power of gene rearrange-
ment. In E. Winfree and D. Gifford, editors, DNA5, DIMACS series
in Discrete Mathematics and Theoretical Computer Science, volume 54,
pages 207–216. American Mathematical Society, 2000.

[9] L.F. Landweber and L. Kari. The evolution of cellular computing: Na-
ture’s solution to a computational problem. In L. Kari, H. Rubin, and
D.H. Wood, editors, DNA4, BioSystems, volume 52, pages 3–13. Else-
vier, 1999.

[10] D.M. Prescott. Cutting, splicing, reordering, and elimination of DNA
sequences in hypotrichous ciliates. BioEssays, 14(5):317–324, 1992.

18

[11] D.M. Prescott. The unusual organization and processing of genomic
DNA in hypotrichous ciliates. Trends in Genet., 8:439–445, 1992.

[12] D.M. Prescott. Genome gymnastics: Unique modes of DNA evolution
and processing in ciliates. Nature Reviews Genetics, 1:191–198, 2000.

[13] D.M. Prescott, A. Ehrenfeucht, and G. Rozenberg. Template-guided re-
combination for IES elimination and unscrambling of genes in stichotri-
chous ciliates. Journal of Theoretical Biology, 222(3):323–330, 2003.

[14] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

19

	Introduction
	Preliminaries
	Template-guided recombination
	Useful templates
	Conclusions
	Acknowledgments

