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Abstract. Certain genera of ciliates undergo a large genomic transfor-
mation, where many segments get rearranged and removed. A topic of
interest is to predict a (partial) order on the rearrangement of segments
to descramble. Similar to phylogenetic analysis, this prediction can be
based on the principle of parsimony, whereby the smallest sequence of
operations is likely close to the actual number. The Oxytricha trifallax
genome is analyzed, providing evidence that multiple parallel recombina-
tion operations occur during descrambling, with alignment of interleaving
segments in a manner that can be captured with the shuffle operation.
Two similar systems involving shuffle are created, an optimal algorithm
for each is created, and executed on the genomic data. One system can
descramble 96.63% of the scrambled micronuclear chromosome fragments
by 1 or 2 applications of shuffle, and every sequence can be descrambled
with at most seven operations.

Keywords: ciliates, macronucleus, micronucleus, scrambled genes, shuf-
fle, parsimony.

1 Introduction

Ciliated protozoa are a group of unicellular organisms, where each cell has two
types of nuclei; the micronucleus (MIC) and the macronucleus (MAC). When
two cells mate, they exchange haploid micronuclei, destroy their own macronu-
clei, and then develop a new MAC from the genetic material in the new MIC. In
the MIC of stichotrichs (a group of ciliates), less than 5% of the DNA actually
encodes genes, with a large amount of non-coding DNA both between genes,
and also within genes. In contrast, the MAC largely consists of single gene chro-
mosomes, and the intragenic spacer is not present. Indeed, certain segments
get removed when converting to MAC chromosomes, called internal eliminated
segments (IESs), while certain segments remain, called macronuclear destined
segments (MDSs); see Figure 1. Even stranger, many genes have the MDSs in a
different order between the MIC and MAC version of a gene, and these MDSs
become rearranged, or descrambled, during the conversion of the MIC to the
MAC in a process known as the gene assembly process [17].
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Fig. 1: Simplified conversion of a MAC chromosome fragment from a MIC chro-
mosome fragment.

The process of gene assembly is a fascinating example of computing taking
place in nature [17]. An extensive amount of parallel computation occurs during
the gene assembly process. In fact, descrambling MDSs is a computationally hard
problem, as even the problem of aligning a micronuclear gene to a macronuclear
gene to partition it into segments is an NP-complete problem [8], meaning that
very likely no optimal polynomial time algorithm exists to solve it. Knowledge
about how nature is solving these computationally complex problems may assist
computer scientists to construct new algorithms and techniques, and conversely,
computational results could be used to infer biological conclusions.

There are a variety of biological and computational models and hypotheses
that have been created to explain the gene assembly process in ciliates. Orig-
inally, a model known as the intermolecular model viewed this gene descram-
bling as a computational process, consisting of one intramolecular and two inter-
molecular operations of DNA recombination on pointers [10]. Another theoretical
model for gene assembly, known as the intramolecular model was introduced by
Prescott et al. [16] and Ehrenfeucht et al. [5]. It consists of three unary molec-
ular operations based on pointers: loop excision, hairpin excision, and double
loop deletion, that explains IES excision and MDS rearrangements during gene
assembly. In 2009, the notion of assembly graphs was introduced to model the
DNA structure during the recombination process [1]. They introduced another
model in 2012 that describes rearrangement pathways of DNA recombination
events with three rewriting rules: insertion, deletion, and inversion [2].

In 1980, Meyer et al. studied Stylonychia mytilus by means of electron mi-
croscopy and observed that at the very beginning of the gene assembly process,
IESs are eliminated in the form of chromatin rings (loops) [12]. Then, micronu-
clear chromatin becomes organised into coiled, lampbrush patterns, or loop-like
structures (Figure 2) that might be a necessary prerequisite for later IES elimina-
tion and MDS rearrangement [13,14]. Chromatin consists of DNA that is tightly
coiled around proteins called histones that condenses to form chromosomes. In
2008, Matthias et al. concluded that multiple descrambling pathways may pro-
duce functional macronuclear molecules [15], and that there are occurrences of
multiple parallel inversion and transposition events through each pathway during
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assembly [15]. Inversion takes a particular segment of MDSs in a MIC gene and
puts it back in the opposite direction, whereas transposition excises a segment
of DNA and puts it back in a different position.

Fig. 2: Coiled structure (a) lampbrush pattern (b) loop, or ring shape (c).

The Oxytricha trifallax MIC genome has been recently sequenced, allowing
for deeper analysis that what was previously possible. Very recently, Burns et al.
investigated the scrambled gene architectures in the Oxytricha trifallax genome
[3]. For scrambled genes, they identified the precursor scrambled patterns with
so-called sequence rearrangement maps, and assembly graph representations.
From their analysis of the MIC and MAC genes, they deduced that 87.2% of
the MIC loci is non-scrambled, and among the scrambled MIC contigs, 81.7%
follow a pattern involving either a sequence of consecutive odd numbered MDSs,
followed by a sequence of consecutive even numbered MDSs, or vice versa [3].
These statistics are very similar to those we independently calculated [9].

The order of MDSs in the MIC genome provides evidence that multiple par-
allel transpositions occur, where the structure allows for interleaving between
two sections that can be captured with a string operation called shuffle. The
shuffle operation on two strings results in new strings by weaving together the
first two, preserving the order within each string. For example, if x = 2 4 5 6 7
and y = 1 3 8 9 are two strings of numbers, then the shuffle of x and y is any
permutation r of 1 2 3 · · · 9 where the order of the members of x and y is followed
in r as well (for example r = 2 4 1 3 5 6 7 8 9). The sequences in Figure 3a can be
rearranged computationally by shuffle between two segments, 1 3 5 7 10 12 and
2 4 6 8 9 11 13 14 15 16 17, as 1 2 3 · · · 17 is one of the results of the shuffle of the
two segments. Figure 3b is even more complex, but the result can be obtained
by splitting the whole sequence into two segments and applying shuffle once.

Shuffle is nondeterministic, and therefore multiple strings can be in the shuf-
fle of two strings, however it is thought that structural components allow the
developing MAC to align in a shuffle-like fashion, similar to the coiled and lamp-
brush patterns in Figure 2. Furthermore, the sheer number of genes that can be
rearranged with very few applications — as seen in Sections 3 and 4 — yields
evidence that this type of behaviour is occurring.

Predicting the order to descramble a gene or chromosomal segment, can be
based on the principle of parsimony, whereby the smallest sequence of oper-
ations is likely close to the actual number of operations that occurred [15,7].
The genome rearrangement problem similarly uses the principle of parsimony
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Fig. 3: (a) MDS organization found in the scrambled alpha-telomere-binding
protein genes of Oxytricha trifallax [15]. (b) A schematic alignment of the mi-
cronuclear genes encoding the large catalytic subunit of DNA-polymerase α in
Oxytricha nova [11] (inverted MDSs indicated by green MDSs).

for predicting genomic rearrangement operations [7]. This is now a well-studied
problem, and indeed is quite similar to gene assembly [6]. Similarly, maximum
parsimony is also an established method for phylogeny reconstruction.

This study aims to determine the order of parallel rearrangements by exam-
ining the number of applications of shuffle needed to assemble MIC genes.

2 Preliminaries

First, some notation that is used will be described.
An alphabet is a finite, non-empty set of symbols. Given an alphabet A,

A∗ is the set of all words over A, and A+ is the set of all non-empty words
over A. Let N be the natural numbers. Let n ∈ N. Then Z+(n) = {1, 2, . . . , n}
and Z−(n) = {−n, . . . ,−1}, and Z+−(n) = Z+(n) ∪ Z−(n) (0 is not in this
set). For i ∈ Z+−(n), let sgn(i) be +1 if i > 0 and −1 otherwise. It is also
common to examine sequences of numbers represented in the form of words
with numbers for the alphabet. Therefore, Z+−(n)+ is the set of all non-empty
strings over the alphabet Z+−(n). A string π = π1 · · ·πn, π1, . . . , πn ∈ Z+−(n)
is positive if π ∈ Z+(n)+, and negative if π ∈ Z−(n)+. Also, π is increasing if
π1 < π2 < · · · < πn, and is decreasing if π1 > π2 > · · · > πn (here, < and > are
the usual orderings of the integers). A subword of π is any word πiπi+1 · · ·πj ,
1 ≤ i ≤ j ≤ n. The inversion of π, πI , is the string obtained by reversing π
and switching the sign of each number (this is the reverse complement). For
i ∈ Z+−(n), let Ψ(π, i) be the number of i’s in π. If π ∈ Z+(n)+ ∪Z−(n)+, then
let π be equal to π if π is positive, and the inversion of π if π is negative (by
reversing the numbers and making them all positive). Then π is always positive
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for every such π. For n ∈ N, let idn = 1 2 · · ·n, which we call the identity
permutation.

A sequence π ∈ Z+−(n)+ is called a permutation if, for each i ∈ Z+(n),
Ψ(π, i)+Ψ(π,−i) = 1. π is a partial permutation if, for each i ∈ Z+(n), Ψ(π, i)+
Ψ(π,−i) ≤ 1.

Let u, v ∈ Z+−(n)+ be two sequences of integers. Then the shuffle of u and
v, u� v, is the set

{x1y1x2y2 · · ·xryr | u = x1x2 · · ·xr, v = y1y2 · · · yr, xi, yi ∈ Z+−(n)∗, 1 ≤ i ≤ r}.

Given two words u, v ∈ Z+−(n)∗, u is a subsequence of v if v = v0u1v1u2v2 · · ·unvn,
and u = u1u2 · · ·un, where ui, vi, v0 ∈ Z+−(n)∗, 1 ≤ i ≤ n. Notice that in the
definitions of shuffle and subsequence, the variables xi, yi, ui refer to words of
any length.

3 Data Preprocessing

The main purpose of this section is to preprocess the Oxytricha trifallax genome
in order to obtain a sufficiently large data set for the analysis of parsimony.
Although this does involve calculating some basic statistical properties of the
genome, we refer to [3] for a more thorough investigation.

The data used was raw genome data from Oxytricha trifallax retrieved from
NCBI on May 20, 2015 in the form of 22,363 MAC contigs and 25,720 MIC
contigs (a contiguous sequence of DNA created by repeatedly assembling over-
lapping sequenced fragments of a chromosome). The procedure for determining
the order of MDSs on the micronuclear chromosomes was chosen to be the same
as Chen et al. [4] for the same purpose. The MAC contigs were aligned against the
MIC contigs by using Nucleotide BLAST (parameters of [-ungapped -word size
20 -outfmt 10]). For each MAC contig (almost all containing a single gene [4]),
the MIC contig that matched with the lowest E-value (Expect value) was cho-
sen and defined to be a MAC/MIC sequence pair (a MIC contig could then be
matched with many MAC contigs). Of the 22,363 MAC contigs, only 9 of these
sequences did not match with a MIC contig. Other MIC contigs that matched
with lower scoring values were ignored as only the best matches were needed for
the parsimony analysis.

Then, for each MAC contig, if n subwords matched a MIC contig, then a
permutation of 1 2 · · ·n was determined giving the order of the matching seg-
ments on the matching MIC segment. The MIC MDS sequence of a MAC contig
is the order of MDSs in the contig as determined by this procedure. Among the
22,354 matching sequences, the MIC MDS sequence of 18, 315 MAC contigs were
unscrambled of the form 1 2 · · ·n for some n, or equivalently, −n −(n−1) · · ·−1
(here the ‘−’ sign represents that the MDS is oriented in the opposite direction).
These are called the unscrambled sequences. There are 4039 other MAC contigs
called the scrambled sequences.

Every scrambled sequence was divided into two categories: one with MDSs
only in one direction, called the unidirectional sequences (2443 total) and those
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with MDSs in both direction, the bidirectional sequences (1596 total). Of the bidi-
rectional sequences, each is divided into its two subsequences, one containing the
non-inverted MDSs, and one containing the inverted subsequences. These were
treated separately for the next part of the analysis and will be managed later.
The set of unidirectional sequences produced is called the extracted unidirec-
tional sequences. Then, the total number of scrambled sub-sequences for further
analysis is 5635 (2443 scrambled unidirectional sequences, and 3192 scrambled
extracted unidirectional sequences).

Next, the 5635 scrambled sequences were processed by collapsing all consecu-
tive numbers, to one number (removing unused numbers). Henceforth, only these
sequences will be used. This was done to investigate more about the scrambled
patterns of the data. There is also some evidence that IESs between consecu-
tive MDSs are removed first [15]. Of the 2443 unidirectional sequences after re-
moving consecutive numbers from the unidirectional sequences, these are called
renumbered unidirectional sequences, and of the 3192 extracted unidirectional
sequences, after removing consecutive numbers, these are called renumbered ex-
tracted unidirectional sequences. Consecutive even-odd and odd-even patterns
were common. Of the 2443 renumbered unidirectional sequences, there were 986
consecutive odd-even sequences, and, 985 consecutive even-odd sequences, and
472 others, called complex scrambled sequences. This is consistent with the analy-
sis from [3]. From the 3192 renumbered extracted unidirectional sequences, there
were 2443 unscrambled sequences, 280 consecutive odd-even sequences, 302 con-
secutive even-odd sequences, and 167 other complex scrambled sequences.

4 Parallel Descrambling Order Analysis

As discussed in Section 1, the patterns of the order of MDSs in micronuclear
genes (Figure 3) shows evidence of some parallel operations that can be com-
putationally described with shuffle. The order of MDSs of a MIC chromosome
corresponding to a MAC chromosome is represented by a permutation π =
π1π2π3 · · ·πn (as defined in Section 2). Informally, the descrambling order anal-
ysis problem is to determine the minimum number of “parallel steps” required to
transform an input permutation π into the identity permutation. This attempts
to predict the descrambling order at a higher level of abstraction suggested by
the patterns occurring in ciliate MIC data, instead of changes at the molecular
level. Thus, the operations do not represent any single molecular level biolog-
ical operation (inversions, or loop deletion operations); instead, it represents a
parallel operation. Because we do not know the exact mechanism by which de-
scrambling takes place, we will study two similar systems involving shuffle to
see how the minimum number of operations differs. If one system of moves gives
significantly lower numbers of required moves, then there are advantages to this
system in terms of parsimony.

As seen in Section 3, there are a number of sequences with consecutive odd-
even (even-odd) patterns. When the odd and even numbers are in consecutive
order, it only requires a single application of shuffle to transform the permutation



Descrambling Order Analysis in Ciliates 7

into the identity permutation. For example, the permutation of alpha-telomere-
binding protein genes of Sterkiella histriomuscorum is 1 3 5 7 2 4 6 (Figure 3),
which can be descrambled in one step by taking the shuffle of two subwords 2 4 6
with 1 3 5 7. In that case, there is a possibility that recombinations take place
in parallel (or without significantly changing the structure between individual
recombination) to descramble the MIC chromosome, and therefore a structural
component is partially enforcing an alignment of appropriate MDSs so that the
operation is applied correctly. Note that the this operation applies shuffle to
segments of the same input string rather than on two separate strings. The two
systems will be described next.

– Contiguous Increasing System (CIS): Given an input permutation π =
π1 · · ·πn, πi ∈ Z+−(n), 1 ≤ i ≤ n, a CIS partition of π is a set of subwords
{u1, . . . , um} of π, with each ui ∈ Z+(n)+ ∪ Z−(n)+, with ui increasing for
each i, 1 ≤ i ≤ m, such that π = u1u2 · · ·um.

– Non-Contiguous Increasing System (NIS): For a given input permu-
tation π = π1 · · ·πn, πi ∈ Z+−(n), 1 ≤ i ≤ n, a NIS partition of π is a set
of subsequences {u1, . . . , um}, with each ui ∈ Z+(n)+ ∪ Z−(n)+, and ui is
increasing for each i, 1 ≤ i ≤ m, such that π ∈ u1 � u2 � · · ·� um.

Notice that for every CIS partition {u1, . . . , um}, the identity permutation
is in u1� · · ·� um. This system allows the shuffle on increasing subwords (each
either positive or negative). The smallest number of increasing subwords of the
input permutation such that the input permutation is the concatenation of the
subwords is desired. In such a case, the identity is in the shuffle of the subwords
after taking the inversion of any negative subwords. For example, the permuta-
tion 5 6 2 − 8 − 7 − 4 − 3 − 1 can be split into three increasing subwords,
u = 5 6, v = 2, w = −8 − 7 − 4 − 3 − 1, the input is indeed uvw, and the
identity is in u�v�w. For every NIS partition, the input permutation is in the
shuffle of the segments, and the identity permutation is in u1� · · ·�um. In this
case, both the input permutation, and the identity permutation are strings of
numbers derived from shuffle. For example, the permutation 5 6 2 1 3 4 7 8 can
be split into three increasing subsequences, u = 5 6 7 8, v = 2, and w = 1 3 4,
with the input permutation in u�v�w, and the identity in u�v�w. For both
of the systems, we are interested in calculating the number of segments, which
corresponds to the number of shuffle applications plus one. A CIS partition of
π can be thought of as a parallel recombination of different subwords, where
the inversion of a subword can occur before a parallel recombination. The NIS
system is intended as an investigation as to whether the number of operations
can be reduced by adding an addition layer of the shuffle operation.

Proposition 1. Given an input permutation π of n elements. Let m be the
smallest such that there exists u1, . . . , um with π = u1 · · ·um and idn ∈ u1 �
· · ·� um. Then m− 1 is the size of a smallest CIS partition.

Proof. Given any two positive increasing words u, v which use disjoint numbers,
then there is a positive increasing word in u� v. Similarly, if both are negative



8 Descrambling Order Analysis in Ciliates

and increasing then there is a positive increasing word in u� v. If u is positive
and v is negative, then there is a positive increasing sequence in u shuffled with
v. And in general, given π = π1 · · ·πn and a CIS partition u1, . . . , um, then the
identity must be in u1� · · ·� um. That is, if there is a partition of size m, then
the identity can be obtained with m− 1 shuffle operations.

Conversely, if π = u1 · · ·um, and the identity is in u1� · · ·�um, the each ui,
1 ≤ i ≤ m is either positive increasing or negative increasing. Hence, counting
the number of segments in a CIS partition is always exactly one more than
counting the number of applications of shuffle. ut

4.1 Contiguous Increasing System

Next, an algorithm to determine the minimum sized CIS partition will be given.
In an input permutation π = π1π2 · · ·πn, a pair of adjacent elements πi and
πi+1, 1 ≤ i ≤ n − 1, are called neighbours if πi < πi+1 and either π, πi+1

are both positive or both negative; otherwise the pair is called a cut-off point.
Then c(π) is the number of cut-off points in π. If π has an increasing positive
or negative subword πi · · ·πj , ie. πi < · · · < πj all the same sign, then each
adjacent pair in πi, πi+1, . . . , πj are neighbours. Thus, in an increasing positive
or negative permutation π = π1 < π2 < π3 < · · · < πn, c(π) = 0. In contrast, if
π is a positive or negative decreasing permutation, then c(π) = n − 1, because
π = π1 > π2 > π3 > · · · > πn. The size of the smallest CIS partition depends on
the number of cut-off points.

Proposition 2. Let π be an input permutation. The size of the smallest CIS
partition is c(π) + 1.

Proof. Let π = π1π2π3 · · ·πn have c(π) cut-off points after positions (in order)
c1, . . . , cm of π. Then, it is impossible to have an increasing segment that includes
a number from both before and after a cut-off point, as the identity must be in
the shuffle of the potentially inverted segments. Therefore, any CIS partition
has at most m + 1 elements in it. Furthermore, there exists a CIS partition
with m + 1 elements in it, because there is one increasing positive or negative
subword that has the elements in between π1 and the element at position c1,
and an increasing positive or negative subword between positions ci+1 and ci+1

for each i, 1 ≤ i < m, and one last increasing positive or negative subword that
has the elements starting from cm + 1 to πn. As m = c(π), the smallest number
of increasing subwords in π will always be c(π)− 1 + 2 = c(π) + 1. ut

Therefore, we constructed an optimal algorithm called IncreasingSubwords
(Algorithm 1) that determines the minimum size of a CIS partition of an input
permutation π by simply counting the number of cut-off points c(π) for each
input permutation π which can be done in linear time (the algorithm is optimal
in the sense that it finds the smallest segments). For example, 1 3 5 7 9 2 4 6 8 10
has one cut-off point between 9 and 2, and two increasing subwords: 1 3 5 7 9,
and 2 4 6 8 10. The sequences having consecutive odd-even patterns (or even-odd
patterns) will always have two increasing subwords — one with the consecutive
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odd numbers, and the other with the even numbers, as these sequences will
always have a single cut-off point.

Algorithm 1 Minimum number of segments in CIS.

1: procedure IncreasingSubwords(π = π1 · · ·πn)
2: segments← 0;
3: cut off points← 0;
4: for i← 1 to n− 1 do
5: if πi > πi+1 or sgn(πi) 6= sgn(πi+1) then
6: cut off points← cut off points + 1;
7: end if
8: end for
9: segments← cut off points + 1;

10: return segments;
11: end procedure

The graph in Figure 4 shows the number of segments versus the number of
sequences achieving that minimal number of segments from the preprocessed
Oxytricha data. The sequences that have only 1 increasing subword are already
unscrambled, and only the sequences having the consecutive odds and evens will
have 2 increasing subwords. In the graph, the rest of the sequences have at least 3
increasing subwords. The following sequence 1 4 6 8 10 12 2 5 7 11 13 3 9 requires
at least 3 increasing subwords, as the identity is in 1 4 6 8 10 12�2 5 7 11 13�3 9.

Table 1 shows the average number of increasing subwords determined by Al-
gorithm 1, along with the maximum number of increasing subwords, the number
of sequences in each sequence pattern, the average length of increasing subwords,
and the maximum length of increasing subwords.

4.2 Non-Contiguous Increasing System

This system allows shuffle on increasing subsequences (i.e. non-contiguous) in-
stead of increasing subwords only. As discussed above, if π = π1 · · ·πn is a given
input permutation, then a NIS partition of π is a set of increasing subsequences
{s1, . . . , sm}, such that π ∈ s1�s2�· · ·�sm, and the identity is in s1�· · ·�sm.
For example, consider π = 6 1 7 2 8 3 4 9 10 11 5. Then both the input per-
mutation and the identity permutation is in 6 8 9 10 11 � 1 2 3 4 5. Next, an
optimal algorithm is described for determining the segments within this system.
At first, it adds the first element of π to an increasing subsequence s. Then it
finds the next larger element to the right, adds it to increasing subsequence s,
and continues doing this until reaching the end of π. Then s becomes the first
increasing subsequence. Next, the algorithm deletes the elements of s from π,
and repeats until π becomes empty. The final number of increasing subsequences
is the size of the smallest NIS partition.

We will prove that Algorithm 2 calculates an optimal NIS partition, but first,
an intermediate lemma is needed.
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Fig. 4: Relationship between the number of segments (increasing subwords) and
the number of sequences in the dataset achieving that for renumbered unidirec-
tional sequences and renumbered extracted unidirectional sequences.

Lemma 1. Let π be a positive or negative input permutation. If π has a de-
creasing subsequence of length m, then every NIS partition of π has at least m
elements.

Proof. Let π = π1 · · ·πn be an input permutation, and assume that there exists
i1, . . . , im such that 1 ≤ i1 < · · · < im ≤ n, but πi1 > πi2 > · · · > πim . Assume,
by contradiction that there exists some NIS partition X with k < m elements.
Then there has to be two of πiα and πiβ , α < β such that πiα and πiβ are in the
same sequence s of X. But, then the identity cannot be in the shuffle of s with
other elements. ut

Proposition 3. Let π be a positive or negative input permutation. Then Algo-
rithm 2 calculates the minimum size of an NIS partition.

Proof. Let π = π1 · · ·πn be an input permutation, and assume first that π is
positive (similarly if π is negative). Let X = {s1, . . . , sm} be the output from
Algorithm 2, such that s1, . . . , sm is the order as determined by the algorithm.

Let k be the size of the smallest NIS partition. It is clear then that k ≤ m. Let
i satisfy 1 ≤ i ≤ n. Let f(i) be the number at position i of π, and also for 1 ≤ j ≤
m, let gi(j) be the largest position x of π such that x < i and π(x) is in sj . By
the algorithm, s2(1), at position i2 say of π, must be smaller than the number at
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Table 1: Increasing subword statistics with Contiguous Increasing System for
renumbered unidirectional sequences (and renumbered extracted unidirectional
sequences in parentheses).
Sequence
patterns

No. of Se-
quences

Avg. num-
ber of
increasing
subwords

Max. num-
ber of
increasing
subwords

Avg. length
of increas-
ing sub-
words

Max. length
of increas-
ing sub-
words

Consecutive
odd-even
patterns

986 (280) 2 (2) 2 (2) 2.300 (2.323) 36 (20)

Consecutive
even-odd
patterns

985 (302) 2 (2) 2 (2) 2.305 (2.488) 37 (25)

Complex
scrambled
patterns

472 (167) 3.619 (4.126) 20 (25) 2.741 (3.452) 43 (86)

position gi1(1) of π (a letter of s1). More generally, let im be the position of sm(1)
in π. Then notice that f(gim(1)) > f(gim(2)) > · · · > f(gim(m − 1)) > sm(1),
otherwise, the smallest α such that f(gim(α)) < f(gim(α+1)) would have caused
Algorithm 2 to include f(gim(α+1)) in sα. Thus, π has a decreasing subsequence
of length m, and therefore by the lemma above, m is the smallest size of an NIS
partition, and k = m. Hence, Algorithm 2 is optimal. ut

Also notice that even though Algorithm 2 is not linear time, there is a linear
time variation whereby, whenever it is determined that the current sequence s1
should not contain the next element, in line 7, it starts a new sequence s2, and
then preferably adds new elements to s1, and if not s2, and if not start s3, etc.
Therefore, an optimal linear time algorithm exists to solve this problem.

Table 2 shows the average number of increasing subsequences determined
by Algorithm 2, along with other properties. The graph in Figure 5 shows the
number of segments (minimum size of NIS partitioning) versus the number of
sequences achieving that number of segments. Most of the complex scrambled
sequences were partitioned into only 3 increasing subsequences by this algorithm,
and the maximum number of increasing subsequences is only 7.

5 Result Analysis and Discussion

NIS often gives a much smaller number of applications of shuffle versus CIS. The
largest of the minimum CIS partition sizes for CIS is 20 and 35, for renumbered
unidirectional and extracted unidirectional sequences respectively, whereas for
NIS, this number is 6 and 7, respectively (Tables 1 and 2).

There are 986 consecutive odd-even and 985 consecutive even-odd sequences
in the renumbered unidirectional dataset, and 280 consecutive odd-even and
302 consecutive even-odd sequences in the renumbered extracted unidirectional
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Algorithm 2

1: procedure NextIncreasingElement(π = π1 · · ·πn)
2: segments← 0;
3: while π is not empty do
4: element← π1;
5: append element in subsequence s;
6: for i← 2 to n do
7: if element < πi then
8: element← πi;
9: append element in subsequence s;

10: end if
11: end for
12: if s is not empty then
13: segments← segments + 1;
14: delete the elements of s from π;
15: end if
16: Clear s;
17: end while
18: return segments;
19: end procedure

dataset. Thus, there are a total of 1266 consecutive odd-even, and 1287 consecu-
tive even-odd sequences among the 3192 scrambled input sequences. Algorithm 2
partitioned all of these 2553 consecutive odd/even sequences into 2 increasing
segments, which is optimal. There are 472 categorized as complex scrambled
sequences in the renumbered unidirectional dataset, and 167 complex scrambled
sequences in the renumbered extracted unidirectional dataset. Thus, there are
a total of 639 complex scrambled sequences among the 3192 scrambled input
sequences. Algorithm 2 partitioned 136 sequences of these, into size 2, and 405
sequences into 3 segments. There are 98 sequences that have an NIS partition
size between 4 and 7, and there is none higher than 7.

Each parallel step, represented by an application of shuffle, can descramble a
section of MDSs that might or might not reside beside each other. As the chro-
mosomes fold mostly in a coiled and lampbrush structures, such an alignment
of the non-contiguous MDSs subsequently via structural component, might be
practical. Hence, the NIS has potential advantages in terms of parsimony. How-
ever, the feasibility of any such hypothesis needs experimental validation.

Recall that bidirectional sequences were separated into two sub-subsequences:
one holding non-inverted MDSs, and one holding inverted MDSs. The NIS system
determines the minimum number of applications of shuffle to descramble its
two subsequences, separately. To combine the two, it requires exactly one extra
application of shuffle, as the identity permutation of the bidirectional sequences
is in the shuffle of its two descrambled subsequences. However, it could be more
for CIS. For example, 1 −6 2 −5 3 −4 has 5 cut-off points, because an individual
segment cannot contain both positive and negative numbers, and the minimum
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Table 2: Increasing subsequence statistics with Non-Contiguous Increasing Sys-
tem for renumbered unidirectional sequences (and renumbered extracted unidi-
rectional sequences in parentheses).
Sequence
patterns

No. of Se-
quences

Avg. num-
ber of
increas-
ing subse-
quences

Max. num-
ber of
increas-
ing subse-
quences

Avg. length
of increas-
ing subse-
quences

Max. length
of increas-
ing subse-
quences

Consecutive
odd-even
patterns

986 (280) 2 (2) 2 (2) 2.301 (2.323) 36 (20)

Consecutive
even-odd
patterns

985 (302) 2 (2) 2 (2) 2.306 (2.488) 38 (26)

Complex
scrambled
patterns

472 (167) 2.915 (3.221) 6 (7) 3.403 (4.421) 43 (87)

CIS partition is 6. But if positive and negative parts are separated, then it is 1
2 3 and −6 − 5 − 4, each having no cut-off points.

The analysis shows that 96.63% of the scrambled MIC chromosome fragments
of Oxytricha trifallax can be partitioned into 2 to 3 segments, and therefore can
be descrambled by only 1 or 2 applications of shuffle, where each application of
shuffle corresponds to a parallel recombination. This small number lends the-
oretical evidence that some structural component is enforcing the shuffle-like
behaviour, by properly aligning segments in an interleaving fashion, and then
parallel recombination is taking place for MDS rearrangement. The sheer number
of MIC chromosome fragments that can be rearranged with very few applications
of shuffle yields evidence that this type of behaviour could be occurring, using
parsimony. Indeed, the number of applications of shuffle is far lower than the
number of MDSs, and therefore the principle of parsimony dictates that there
is significant computational advantages to such a system, as the arrangement
of the large number of MDSs do not need a large number of parallel steps to
descramble.
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