
The Effect of End-Markers on Counter Machines and CommutativityI

Oscar H. Ibarraa,1, Ian McQuillanb,2

aDepartment of Computer Science
University of California, Santa Barbara, CA 93106, USA

bDepartment of Computer Science, University of Saskatchewan
Saskatoon, SK S7N 5A9, Canada

Abstract

Restrictions of reversal-bounded multicounter machines are studied; in particular, those that cannot subtract
from any counter until it has reached the end of the input. It is proven that this does not alter the
languages accepted when the machines are nondeterministic. When the machines are deterministic, the
languages (denoted by eDCM) are shown to coincide with those accepted by deterministic Parikh automata,
but are strictly contained in the class of languages accepted by machines without this condition. It then
follows that all commutative semilinear languages are in this restricted class. A number of decidability and
complexity properties are shown, such as the ability to test, given a deterministic pushdown automaton
(even if augmented by a fixed number of reversal-bounded counters), whether it is commutative. Lastly,
this deterministic family, eDCM, is shown to be the smallest family of languages closed under commutative
closure, right quotient with regular languages and inverse deterministic finite transductions.

Keywords: Counter Machines, Commutativity, Reversal-Bounds, Determinism, Finite Automata

1. Introduction

The commutative closure of a language L, comm(L), is the language of all words obtained by permuting
the positions of the letters of all words in L. A language L is then commutative if comm(L) = L. The Parikh
map of a word (and a language respectively), is the vector representing the number of copies of each letter
in the word (the set of Parikh vectors of all words). These provide an equivalent criteria for commutative
closure; comm(L) is the set of all words with the same Parikh vector as a word of L. Thus, studying the
set of Parikh vectors is closely related to commutativity. It was found by Parikh [1] that every context-free
language has a so-called semilinear (defined formally below in Section 2) Parikh map. The semilinear criteria
can be equivalently expressed as, every language with a semilinear Parikh map has the same commutative
closure as a regular language [2]. However, it is quite easy to create commutative languages that are not
regular (nor context-free), such as {w | w has the same number of a’s, b’s and c’s}.

There is a model of automata that can accept every commutative semilinear language; namely the family
of one-way nondeterministic reversal-bounded multicounter languages (NCM) [3, 4]. In [5], it was shown that
NCM is in fact the smallest trio (closed under λ-free homomorphism, inverse homomorphism and intersection
with regular languages) that is also closed under taking commutative closures. NCM is equal to the family of
languages accepted by another model, Parikh automata [6]. It has also been shown that languages accepted
by deterministic Parikh automata are closed under commutative closure.

IDOI: https://doi.org/10.1016/j.tcs.2016.02.034 c©2016. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

URL: ibarra@cs.ucsb.edu (Oscar H. Ibarra), mcquillan@cs.usask.ca (Ian McQuillan)
1Supported, in part, by NSF Grant CCF-1117708 (Oscar H. Ibarra).
2Supported, in part, by a grant from Natural Sciences and Engineering Research Council of Canada (Ian McQuillan).

Preprint submitted to Theoretical Computer Science March 8, 2019

https://doi.org/10.1016/j.tcs.2016.02.034
http://creativecommons.org/licenses/by-nc-nd/4.0/

Commutative semilinear languages (referred to as COM-SLIP in [7]) have also been studied. Since every
semilinear language has the same commutative closure as a regular language, and the fact that all regular
languages can be accepted by deterministic Parikh automata, it follows that COM-SLIP is contained inside
the deterministic Parikh languages. The family of commutative semilinear languages has been extended to
their closure under union and concatenation (referred to as COM-SLIP·,∪ [7]), and these languages are also
strictly contained in NCM, since NCM is closed under union and concatenation.

In this paper, one-way deterministic reversal-bounded multicounter languages (DCM) are studied, and a
new restriction is introduced, eDCM, that are DCM machines that cannot subtract from any counter until
hitting the end of the input. It is shown that this new family coincides with deterministic Parikh automata,
and it therefore follows that both families are strictly contained inside DCM, and all commutative semilinear
languages are contained in both. We then use the eDCM model to demonstrate a new language that can be
accepted in DCM with only one counter that makes one counter reversal that is not in eDCM.

As these families are contained in the family of DCM languages, we explore a number of decidability
and complexity properties that NCM does not have, such as decidable containment and equivalence prob-
lems. Several properties of commutative semilinear languages become easily decidable. For example, it is
possible to test for either containment or equivalence between the commutative closures of any effectively
semilinear languages (or between the commutative closure of any effectively semilinear language and an
arbitrary DCM language). It is also shown that it is possible to decide whether an arbitrary DPCM language
(a language accepted by a deterministic machine that has an unrestricted pushdown plus a fixed number of
reversal-bounded counters) is commutative, and similarly for other deterministic automata models accepting
semilinear languages. Also, testing membership in DCM is computable in logarithmic space on a determin-
istic Turing machine, and thus complexity theoretic results are presented for Turing Machines accepting
semilinear languages. It is then shown that the concatenation closure of commutative semilinear languages
is not always a DCM language, and therefore, the COM-SLIP·,∪ languages are not contained in DCM; they
are incomparable.

Finally, it is shown that eDCM (and hence deterministic Parikh automata) is the smallest family of
languages closed under commutative closure, right quotient with regular languages, and inverse deterministic
finite transductions. Such a characterization of a family of languages involving deterministic automata (that
do not coincide with nondeterministic automata) using closure properties is somewhat unusual and is of
interest.

2. Preliminaries

We assume familiarity with formal language and automata theory [8], and computational complexity
theory [9]. We will fix the notation used in the paper. Let Σ be a finite alphabet. Then Σ∗ (respectively
Σ+) is the set of all words (non-empty words) over Σ. A word is an element w ∈ Σ∗, λ is the empty word,
and a language is any L ⊆ Σ∗. The complement of L ⊆ Σ∗ is L = Σ∗ − L. A language L ⊆ Σ∗ is bounded if
there exists (not necessarily distinct) words w1, . . . , wk such that L ⊆ w∗1 · · ·w∗k. Further, L is letter-bounded
if there exists (not necessarily distinct) letters a1, . . . , ak such that L ⊆ a∗1 · · · a∗k. For L,R ⊆ Σ∗, the right
quotient of L by R is LR−1 = {x | xy ∈ L, y ∈ R}.

Let N be the set of positive integers and N0 be the set of non-negative integers. Let m ∈ N0. Then π(m)
is 1 if m > 0 and 0 otherwise. Let m ∈ N. Then N(m) = {1, . . . ,m}. A subset Q of Nm0 is a linear set if
there exist vectors ~v0, ~v1, . . . , ~vn ∈ Nm0 such that Q = {~v0 + i1~v1 + · · · in~vn | i1, . . . , in ∈ N0}. The vectors ~v0
(referred to as the constant) and ~v1, . . . , ~vn (referred to as periods) are called the generators of the linear set
Q. A finite union of linear sets is called a semilinear set. Every finite subset of Nm0 (including the empty set
∅) is semilinear — it is just a finite union of linear sets with no periods. For semilinear sets Q1, Q2 ⊆ Nm,
Q1 +Q2 = {v | v = v1 + v2, v1 ∈ Q1, v2 ∈ Q2}.

Let Σ = {a1, . . . , am}. For a word w over Σ and a letter a ∈ Σ, we denote by |w|a the number of
occurrences of a’s in w, and by |w| the length of w. The Parikh map of w is the m-dimensional vector
ψ(w) = (|w|a1 , . . . , |w|am). The Parikh map of a language L ⊆ Σ∗ is defined as ψ(L) = {ψ(w) | w ∈ L}. For
~v ∈ Nm0 , the inverse, ψ−1(~v) = {w ∈ Σ∗ | ψ(w) = ~v}, extended to subsets of Nm0 . A language is semilinear

2

if its Parikh map is a semilinear set. The commutative closure of L ⊆ Σ∗ is the set

comm(L) = ψ−1(ψ(L)),

and a language L is said to be commutative if L = comm(L).
Of interest are languages that are both commutative and semilinear. For example, L1 = {w | w ∈

{a, b}∗, |w|a = 2|w|b} and L2 = {w | w ∈ {a, b, c}∗, 2|w|a − 5|w|b > 4|w|c} are commutative semilinear
languages.

A one-way k-counter machine is denoted by M = (k,Q,Σ,C, δ, q0, F), where Q,Σ,C, q0, F are the set of
states, input alphabet, right input end-marker not in Σ, initial state in Q, and accepting states that are a
subset of Q. The transition function δ is a relation from Q×(Σ∪{C})×{0, 1}k into Q×{S,R}×{−1, 0,+1}k,
such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk) and ci = 0 for some i, then di ≥ 0 to enforce that the
counters cannot store negative numbers. The symbols S and R indicate the direction that the input tape
head moves, either stay or right. Further, M is deterministic if δ is a partial function. A configuration of
M is a k + 2-tuple (q, wC, c1, . . . , ck) representing that M is in state q, with w ∈ Σ∗ still to read as input,
and c1, . . . , ck ∈ N0 being the contents of the k counters. The derivation relation `M is defined between
configurations, where (q, aw, c1, . . . , ck) `M (p, w′, c1 + d1, . . . , ck + dk) (we will sometimes also write `tM
where t is a label associated with the transition t applied), if (p, d, d1, . . . , dk) ∈ δ(q, a, π(c1), . . . , π(ck))
where d ∈ {S,R} and w′ = aw if d = S, and w′ = w if d = R. Let `∗M be the reflexive, transitive closure of
`M (we will also write it as `xM where x is a word over labels associated with the transitions of M). A word
w ∈ Σ∗ is accepted by M if (q0, wC, 0, . . . , 0) `∗M (q,C, c1, . . . , ck), for some q ∈ F , and c1, . . . , ck ∈ N0.
The language accepted by M , denoted by L(M), is the set of all words accepted by M . Furthermore, M
is l-reversal-bounded if it operates in such a way that in every accepting computation, the count on each
counter alternates between non-decreasing and non-increasing at most l times.

The families of NCM(k, l), for k, l ≥ 0 is the family of one-way l-reversal-bounded k-counter languages,
with NCM =

⋃
k,l≥0 NCM(k, l). The family of context-free languages is denoted by NPDA. The family

NPCM is the languages accepted by machines with one unrestricted pushdown, plus a fixed number of
reversal-bounded counters. Nondeterministic Turing machines are denoted by NTM.

For each of the above, replacing N with D represents the deterministic variant. Machines with reversal-
bounded counters have been extensively studied in the literature, see, e.g., [3, 4, 10].

The family of all commutative semilinear languages is denoted by COM-SLIP, and the smallest family
containing COM-SLIP closed under union and concatenation is COM-SLIP·,∪.

Next, Parikh automata will be defined [6, 11] and will be used for comparison with reversal-bounded
counter machines. First, let Σ be an alphabet, k ∈ N, and C ⊆ Nk0 . The projection on Σ is the homomorphism
θ from (Σ × C)∗ to Σ∗ that maps (a, d) to a, for all a ∈ Σ, d ∈ C. The extended Parikh image, ψ, of
(a1, d1) · · · (an, dn) ∈ (Σ× C)∗ is d1 + · · ·+ dn.

Definition 1. Let Σ be an alphabet, k ∈ N, and D a finite subset of Nk0 . A Parikh automaton (PA) of
dimension k is a pair (M,C), where M = (Q,Σ ×D, δ, q0, F) is an NFA, and C ⊆ Nk0 is a semilinear set.
The PA language,

L(M,C) = {θ(w) | w ∈ L(M), ψ(w) ∈ C}.

The PA is deterministic, if for every state q ∈ Q, and every a ∈ Σ, there exists at most one pair (p, d) ∈ Q×D
such that p ∈ δ(q, (a, d)). The family of languages accepted by Parikh automata is NPA, and the family of
languages accepted by deterministic Parikh automata is DPA.

3. eDCM and eNCM

The right input end-marker in the definition of DCM (and in other automata models) is of particular
interest as it is often left off of one-way acceptor definitions. A different mode of acceptance, by final state
without end-marker, was defined [12] that was unable to use its end-marker to detect the end of input.
Languages accepted by DCM machines by final state without end-marker were called DCMNE. With only
one reversal-bounded counter, this did not change the languages accepted (so DCM(1, l) = DCMNE(1, l),

3

for all l). But with two reversal-bounded counters that was not the case. There are indeed languages in
DCM(2, 1) that are not in DCMNE (with any number of counters). Therefore, the end-marker is necessary
in general.

This is not the case with deterministic pushdown automata. If one defines language acceptance with
these automata without an end-marker, then they are closed under right quotient with regular languages
[13]. Thus, taking a language L$, it is possible to remove the marker $ with right quotient. In this case, the
end-marker does not change the resulting language family.

With DCM however, the situation is different. DCM is indeed closed under right quotient with regular
languages (also with NPCM languages) [14]. But the end-marker is required in order to prove closure under
right quotient. If one takes an arbitrary DCM language L, it is true that L$ is a DCMNE language. If (by
contradiction), DCMNE were closed under right quotient with a single symbol, this would imply that L is in
DCMNE as well, which would imply that DCM = DCMNE as well, which is not the case. Therefore, we can
conclude:

Proposition 2. DCMNE is not closed under right quotient with single letters. Moreover, DCM is the smallest
family of languages containing DCMNE that is closed under right quotient with single letters (or regular
languages).

The latter statement can be seen since it is possible to get every L ∈ DCM by taking L$ ∈ DCMNE and
taking the right quotient with $, combined with the fact that DCM is closed under right quotient with
regular languages.

This illustrates the importance of the end-marker, and its subtle influence on the languages that can be
accepted for deterministic classes. In particular:

• Deterministic pushdown automata defined with or without an end-marker are identical. Both are
closed under right quotient with regular languages [13].

• DCM (with end-marker) is strictly more powerful that DCMNE (without an end-marker) [12].

• DCM is closed under right quotient with regular languages (also for NPCM languages) [14].

• DCMNE is not closed under right quotient with a single symbol (Proposition 2).

• DCM is not closed under right concatenation with regular languages [12].

• DCMNE is closed under right concatenation with regular languages [12].

With the necessity of the end-marker established, an interesting question arises as to the families of
languages that can be obtained by restricting the types of operations counter machines can apply when
not scanning the end-marker. In this paper, we will restrict different classes of counter machines so that
any instruction that reduces the size of the storage can only occur when the input tape is scanning the
end-marker C.

We define a simple restriction on NCM and DCM languages, called eNCM and eDCM. A 1-reversal-
bounded k-counter NCM machine M is a k-counter eNCM machine if all decreasing transitions in M are de-
fined on the right end-markerC. Similarly with eDCM. Then let eNCM(k) be those languages (and machines)
that are k-counter eNCM machines, and let eNCM =

⋃
k≥0 eNCM(k), and similarly with eDCM(k) and eDCM.

It is clear that for all k, eDCM(k) ⊆ DCM(k, 1), eNCM(k) ⊆ NCM(k, 1), and eDCM ⊆ DCM, eNCM ⊆ NCM.
It is known that each NCM and DCM language can be converted to a 1-reversal-bounded machine.

We will next compare NCM and eNCM.

Proposition 3. NCM = eNCM = NPA.

Proof. It is already known that NCM = NPA [6].
Hence, we need only show that an NCM can be converted to an equivalent eNCM. So, let M ∈ NCM(k, 1)

with k counters, c1, . . . , ck. We may assume that M only accepts when it reaches the right end-marker and
eventually enters an accepting state if and only if all its counters are zero.

4

We construct an eNCMM ′ with 2k counters, c1, d1, . . . , ck, dk. On a given input w (with end-marker), M ′

simulates M faithfully using counters c1, . . . , ck, as long as they are non-decreasing. If a counter ci attempts
to decrease, counter di is used to record the decrements (by adding 1 instead for every subtraction). At
some point, M ′ guesses that the contents of di and ci are equal (i.e., ci would be zero if ci was doing the
decrementing). The simulation continues without using ci and di using transitions defined on counter i
being zero. If the simulated M accepts (by assumption, when this happens the input head of M is on the
end-marker and all its counters are zero), M ′ then decrements all the counters and accepts if the contents
of ci and di become zero at the same time. �

Next, we will continue the study of eDCM and compare it to deterministic Parikh automata. To do this,
we first need the following lemmas:

Lemma 4. The following are known:

1. C ⊆ Nm0 is semilinear if and only if there is an NCM MC accepting the language

LC = {ak11 · · · akmm | (k1, . . . , km) ∈ C}.

Moreover, the conversion from the semilinear set to the NCM and vice-versa is effective [4].

2. Any NCM accepting a bounded language, L ⊆ w∗1 · · ·w∗m, can effectively be converted to an equivalent
DCM [15].

In fact, by using Proposition 3, the proof of item (2) above in [15] can be modified to show the following
stronger result:

Proposition 5. Any NCM accepting a bounded language, L ⊆ w∗1 · · ·w∗m, where w1, . . . , wm ∈ Σ∗, can
effectively be converted to an equivalent eDCM.

Thus, for any semilinear set C ⊆ Nm, the language LC in Lemma 4, Part (1) is an eDCM language, by
Proposition 5.

Next, we compare eDCM to deterministic Parikh automata.

Lemma 6. eDCM ⊆ DPA.

Proof. Let M = (k,Q,Σ,C, δ, q0, F) be an eDCM machine. Thus, M does not decrease any counter until
hitting the end-marker C. In M , we can assume without loss of generality that, for every q ∈ Q, a ∈ Σ (not
C) and x1, . . . , xk, y1, . . . , yk ∈ {0, 1}, δ(q, a, x1, . . . , xk) = δ(q, a, y1, . . . , yk), because M can keep track in
the finite control of which counters are empty and which are non-empty since there is no subtraction until
the end-marker. So, until the end-marker, the state and input letter completely determine the transition.
Then, let n = |Q|. We can also assume without loss of generality that there are at most n consecutive stay
transitions applied on Σ (this is not necessarily true on the end-marker) before a right transition as M can
keep a counter in the state, and if there are at least n+ 1 stay transitions in a row, M is in an infinite loop,
and can equivalently switch to a dead state.

For each q ∈ Q, consider the language Yq = {ai11 · · · a
ik
k | (q,C, i1, . . . , ik) `∗M (qf ,C, j1, . . . , jk), qf ∈

F, j1, . . . , jk ∈ N0}, where a1, . . . , ak are new symbols. This is a DCM language, by adding the input
(i1, . . . , ik) to the counters, and then simulating M , and is therefore semilinear. Let Cq be the semilinear set
such that Cq = ψ(Yq). Then it is immediate that Yq = LCq

, where LCq
is from Lemma 4, Part (1). Thus,

it is an eDCM language.
We are going to define a deterministic Parikh automaton (Mq, Cq), for an NFA Mq, that we will prove

accepts the language

Xq = {w | (q0, wC, 0, . . . , 0) `∗M (q,C, i1, . . . , ik) `∗M (qf ,C, j1, . . . , jk), qf ∈ F
(q,C, i1, . . . , ik) is the first configuration in derivation to hit C}.

5

It is immediate that

Xq = {w | (q0, wC, 0, . . . , 0) `∗M (q,C, i1, . . . , ik), ai11 · · · a
ik
k ∈ Yq

(q,C, i1, . . . , ik) is the first configuration in derivation to hit C}.
(1)

Indeed, it is clear that L(M) =
⋃
q∈QXq. Further, since DPA is closed under union [6], it is sufficient to

show that L(Mq, Cq) = Xq.
We now create the NFA Mq. For every a ∈ Σ, for every sequence of transitions of M , α : t1 · · · tm, where

tj is a label associated with transition (pj , Tj , l
j
1, . . . , l

j
k) ∈ δ(pj−1, a, xj−11 , . . . , xj−1k), Tj = S for 1 ≤ j < m,

Tm = R (thus implying 1 ≤ m ≤ n and therefore there are a finite number of these sequences, and they
can be effectively determined), let f(α) = (l11, . . . , l

1
k) + · · ·+ (lm1 , . . . , l

m
k). Then create the transition of Mq,

from state p0 to pm on (a, f(α)). The only final state of Mq is q. It is clear that (Mq, Cq) is deterministic.
We will prove that Xq = L(Mq, Cq).

“⊆” Let w ∈ Xq. Then

(q0, w0C, l
0
1, . . . , l

0
k) `M · · · `M (qx, wxC, l

x
1 , . . . , l

x
k),

w0 = w, l01 = · · · , l0k = 0, qx = q, wx = λ,wy 6= λ for all y < x, and a
lx1
1 · · · a

lxk
k ∈ Yq. Let t1, . . . , tx be the

labels associated with each transition in the derivation above. Let j1, . . . , jp be exactly those numbers such
that 1 ≤ j1 < · · · < jp = x and tj1 , . . . , tjp are transitions that read an input letter, and let j0 = 0. Then
αr = tjr−1+1 · · · tjr , 1 ≤ r ≤ p. Let br ∈ Σ be such that all transitions in αr are defined on br, 1 ≤ r ≤ p.
Then, there is a transition of Mq from q0 to qj1 on (b1, f(α1)), . . . , from qjp−1+1 to qjp on (bp, f(αp)). Further,
f(α1) + · · ·+ f(αp) = (lx1 , . . . , l

x
k) ∈ Cq. Thus, w ∈ L(Mq, Cq).

“⊇” Let q0, qi, bi, (l
i
1, . . . , l

i
k), 1 ≤ i ≤ p be such that there is a transition from qi−1 to qi on (bi, (l

i
1, . . . , l

i
k)),

for all i, 1 ≤ i ≤ p, w = b1 · · · bp ∈ L(Mq), qp = q,
∑

1≤i≤p(l
i
1, . . . , l

i
k) ∈ Cq. Then, by construction, for each

i, there is a sequence of transitions αi in M , all on bi, where all but the last are stay transitions, and the
last is a right transition, starting at qi−1 and ending in qi and adding (li1, . . . , l

i
k). Thus,

(q0, b1 · · · bpC, 0, . . . , 0) `∗M (q1, b2 · · · bpC, l11, . . . l1k) `∗M · · · `∗M (qp = q,C,
∑

1≤i≤p

li1, . . . ,
∑

1≤i≤p

lik),

and (
∑

1≤i≤p l
i
1, . . . ,

∑
1≤i≤p l

i
k) =

∑
1≤i≤p(l

i
1, . . . , l

i
k) ∈ Cq. Hence, from the last configuration of this

derivation, then M can reach final state, by the construction of Cq. �

Proposition 7. eDCM = DPA.

Proof. By Lemma 6, it is sufficient to show that DPA ⊆ eDCM.
Let k ∈ N, and let (M,C) be a deterministic Parikh automaton of dimension k, where M = (Q,Σ ×

D, δ, q0, F). Then, for every transition t : p ∈ δ(q, (a, d)), let maxt = max1≤j≤k{ij | d = (i1, . . . , ik)}.
For every semilinear set C, consider the language LC from Lemma 4, Part (1). This is in eDCM. Then

we construct an eDCM M ′ from DPA (A,C) as follows. M ′ simulates each transition t : p ∈ δ(q, (a, d)) as
follows: M ′ makes maxt transitions on a, all but the last being stay transitions, and the last being a right
transition which switches from state q to p, and adds d to the counters (all using additions by 1 or 0 only in
each counter which is clearly possible). And, on C, M ′ verifies that it is in a final state of M and that the
counter contents are in C by simulating MC on the counter contents by subtracting one for every non-empty
counter, from 1 to k, for every letter read in the simulation (simulating MC can require additional counters).
Indeed, this can be done deterministically since LC ∈ eDCM. Hence, L(M ′) = L(M,C). �

From this, many known results regarding DPA apply to eDCM as well. For example, it is known that
DPA (DCM, and so eDCM (DCM follows as well. However, the example used to separate DCM and DPA
in [6] needs two counters (as it is not context-free). So, we will separate them in a stronger result with a
language that only needs one counter that makes one reversal and is therefore context-free.

Let v ∈ Σ∗. Then define suffi(v) to be the suffix of v of length i, if it exists, and undefined otherwise.

6

Proposition 8. eDCM = DPA (DCM. Moreover, there exists L ∈ DCM(1, 1) such that L /∈ eDCM = DPA.

Proof. Consider the language L = {civ | v ∈ {a, b}∗, suff |v|−i(v) ∈ a∗} ⊆ {a, b, c}∗. Then L ∈ DCM(1, 1)
by counting the number of c’s, and for every character of v until the counter is empty, reduce the counter by
1. Then when the counter reaches 0, there are |v| − i characters left in the input. Verify that all remaining
characters are a.

Assume that L ∈ eDCM. Then then exists M = (k,Q,Σ,C, δ, q0, F) be an eDCM machine accepting L.
Assume without loss of generality that all k counters increase immediately at the start of the computation
and that δ(q, a, x1, . . . , xk) = δ(q, a, y1, . . . , yk), for every q ∈ Q, a ∈ Σ, x1, . . . , xk, y1, . . . , yk ∈ {0, 1} (as in
the proof of Lemma 6). When reading the section of c’s, the machine M must operate similarly to a unary
DFA whose structure is relatively simple. Unary DFAs have a “tail”, a sequence of less then |Q| states,
whereby there is a transition from each state to the next in the sequence without repeats, followed by a
“loop”, a sequence of at most |Q| states whereby there is a transition from each state to the next state in the
sequence, and the last back to the first (and no other transitions) [16]. This is true for eDCM over one letter
alphabets as well (although DCM has ‘stay’ transitions that do not exist for DFAs). Let t be the number of
states in the tail, and let p be the number of states in the loop. Let j be the jth state of the loop, for j,
from 0 to p− 1 (where state 0 is the state where the tail connects to the loop).

Let γj(y), 0 ≤ j < p, y ∈ {a, b}∗ be the vector (q′, c1, . . . , ck), where from state j, reading y takes M
to state q′ and increases counter i by ci. Thus, (j, y, 0, . . . , 0) `∗M (q′, λ, c1, . . . , ck), and therefore the final
transition of this derivation must not be a stay transition. Note that 0, . . . , 0 can be replaced by any other
counter values where this derivation increases the counter contents by (c1, . . . , ck).

Let j be such that 0 ≤ j < p. Let m = |Q| + 1. Let u = bmam. Then there exists l, r such that
x = ul(u)r(u)r, and M traverses the same sequence of states and transitions in the last two sections of
(u)r (eventually, M must hit the same state when beginning two sections of bmam since there are only |Q|
states, and thus repeating the characters between those two states will repeat the sequence of states and
transitions traversed). Then within the section of a’s in the last two sections of (bmam)r, there must exist
q ∈ Q such that M hits state q after reading aα, and again after aβ , α < β by the pigeonhole principle, and
since m = |Q|+ 1. Then consider y = ul(bmam)r−1bmam−(β−α)(bmam)r−1bmam+(β−α). Then γj(x) = γj(y)
because the final state is the same by moving over the section between states q and itself from one to the
other, and the number of applications of each transition is the same. However, if i = |y| − (m+β−α), then
ciy ∈ L since the last m + β − α characters are a’s. Thus, cix ∈ L, since γj(x) = γj(y), a contradiction,
since the last m+ β − α characters of x are not a. �

The following known result on deterministic Parikh automata [6] now follows for eDCM:

Proposition 9. DPA = eDCM is closed under commutative closure, but not under concatenation.

This implies that every commutative semilinear language is in eDCM, since the commutative closure of
every semilinear language is equal to the commutative closure of a regular language. Clearly, not all eDCM
languages are commutative and so the inclusion is strict.

Proposition 10. COM-SLIP (DPA = eDCM.

This also demonstrates the following:

Proposition 11. The following statements are equivalent for every commutative language L:

1. L is the commutative closure of a regular language.

2. L is the commutative closure of a context-free language.

3. L is the commutative closure of an NPCM language.

4. L is the commutative closure of a semilinear language.

5. L is in eDCM = DPA.

7

6. L is in DCM.

Note, this applies for arbitrary Turing machines also accepting L that are commutative (not necessarily
constructively, but it is constructive for the families of regular, context-free, and NPCM languages).

This also shows that for an NPCM language L, comm(L) is in a smaller language family (eDCM) than L
itself, and is even deterministic.

Lemma 12. The concatenation closure of COM-SLIP languages is not always in DCM.

Proof. Assume otherwise. In Theorem 13 of [12], the language L = {w | w ∈ {a, b,#}∗, |w|a 6= |w|b}
is considered over the alphabet Σ = {a, b,#}. It is proven that #L#Σ∗ /∈ DCM. But {#}, L,Σ∗ are
all commutative and in DCM, and hence semilinear, and therefore #L#Σ∗ ∈ DCM by the assumption, a
contradiction. �

Proposition 13. COM-SLIP·,∪ and DCM (eDCM, DPA respectively) are incomparable.

Proof. The fact that COM-SLIP·,∪ 6⊆ DCM follows from Lemma 12. The other direction follows from the
fact that all COM-SLIP languages on a two letter alphabet are context-free [7], therefore their union and
concatenation are also context-free. But an eDCM can accept the non-context-free language {anbnan | n >
0}. �

Hence, COM-SLIP (eDCM, and COM-SLIP·,∪ 6⊆ DCM, but COM-SLIP·,∪ (NCM ([7], where the equiva-
lent BLIND counter formulation is used instead of NCM).

Since all commutative semilinear languages are in DCM, this provides some benefits due to improved de-
cidability and complexity results. It is known that DCM has a decidable membership, emptiness, infiniteness,
disjointness, containment and equivalence problems [4].

Proposition 14. Let L be a language family that is effectively semilinear (such as NPCM). Then mem-
bership, emptiness, infiniteness, disjointness, containment and equivalence are decidable for commutative
closures of languages in L.

For this, the languages need only be converted to languages in DCM, and then decision problems are obtained
using DCM machines. Even stronger, containment, disjointness, equivalence, etc. can be decided when one
language is the commutative closure of a language from L and the other language is a DCM language.

Proposition 15. The following problems are decidable:

1. Given an NPCM M1 and a DPCM M2, is comm(L(M1)) ⊆ L(M2)?

2. Given NPCMs M1 and M2, is L(M1) ⊆ comm(L(M2))?

3. Given DPCM M1 and NPCM M2, is L(M1) = comm(L(M2))?

Proof. For Part 1, from Proposition 11, we can construct a DCM M ′1 accepting comm(L(M1)). Then, we
can construct a DPCMM accepting L(M ′1)∩L(M2) (DPCM is closed under complement and DPCM is closed
under intersection with DCM [4]). The result follows since commL(M1) ⊆ L(M2) if and only if L(M) = ∅,
and emptiness for NPCMs is decidable.

For Part 2, we construct a DCM M ′2 accepting comm(L(M2)). Then we construct a NPCM M accepting
L(M1) ∩ L(M ′2). Clearly, L(M1) ⊆ comm(L(M2)) if and only if L(M) = ∅, which is decidable.

Clearly, Part 3 follows from Parts 1 and 2. �

Proposition 15 can be generalized to other families of semilinear languages listed in [17], where NPCM
can be replaced with nondeterministic versions of the machines, and DPCM can be replaced with the deter-
ministic versions closed under complement. Examples of such machines include the nondeterministic and
deterministic versions of arbitrary Turing machines, with a one-way read-only input, and two-way read-
/write worktape that is finite crossing, i.e. the number of times the head crosses the boundary between two
adjacent cells is bounded by a constant across all computations.

By Part 3, and by letting M1 = M2 = M :

8

Corollary 16. It is decidable, given a DPCM M , whether the language L(M) is commutative.

However, for nondeterministic families:

Proposition 17. It is undecidable, given an NCM(1, 1) M , whether L(M) is commutative.

Proof. We reduce the problem to the undecidability of the halting problem for DTMs on an initially blank
tape. Let Z be a DTM. We may assume that if Z halts, its halting sequence of computation is unique.
Construct an NCM(1, 1) M that accepts all words that are not a sequence of IDs (configurations) — a
regular language — together with those that are a sequence of configurations but not a halting sequence of
IDs of Z. This is a method used for example in [3] to show that the language of all invalid computations
of a DTM can be accepted by an NCM(1, 1) machine. Intuitively, all sequences of IDs that are not a
halting sequence of Z can be accepted by nondeterministically guessing two consecutive configurations in
the sequence, and verifying that the second does not follow from the first. Indeed, by scanning the state
and read/write head position of both configurations, then M can either determine that their lengths imply
that the second does not follow from the first, or otherwise, there is some position (nondeterministically
guessed) of the first configuration that together with this position of the second configuration imply that
the second configuration does not follow. Let Σ be the alphabet used in representing the sequences of IDs.
Clearly, L(M) = Σ∗ which is commutative if Z does not halt, and L(M) = Σ∗−{x} (where x is unique and
represents the halting sequence of IDs of Z) is not commutative if Z halts. Hence, L(M) is commutative if
and only if L(M) = Σ∗ if and only if Z does not halt, which is undecidable. �

Next, we discuss some results on commutative closure with respect to Turing machines. We note the
following regarding semilinear languages L, and recognizing comm(L) with a deterministic Turing machine
in log n space.

Proposition 18. Let L be any language whose Parikh map is semilinear. Then comm(L) can be accepted by
a DCM; hence, also by a one-way log n space-bounded DTM. Further, if comm(L) is not a regular language,
then it cannot be accepted in less than log n space.

Proof. The first part follows from Proposition 9 and Proposition 11. For the second part, it is known that
any DCM operates in linear time [3]; hence the numbers stored in its reversal-bounded counters are linear in
the length of the input. It follows that comm(L) can be accepted by a log n space-bounded DTM. The last
statement follows since it is known that any one-way S(n) space-bounded NTM where S(n) grows slower
than log n accepts only regular languages [18]. Thus, if comm(L) is not regular, it requires at least log n
space. �

For arbitrary Turing machines (not necessarily accepting semilinear languages), the following is true:

Proposition 19. If L is a language accepted by a one-way (read-only) input NTM that is S(n) space-
bounded where S(n) ≥ log n, then comm(L) can also be accepted by a one-way S(n) space-bounded NTM. If
S(n) < log n, then L is a regular language, and in this case, if comm(L) is not a regular language, then it
cannot be accepted in less than log n space.

Proof. Given a language L accepted by a one-way S(n) space-bounded NTM M over input alphabet
Σ = {a1, . . . , ak}, construct a one-way S(n) space-bounded NTM M ′, which operates as follows, when given
input w:

1. M ′ scans the input and stores the values |w|a1 , . . . , |w|ak in k counters c1, . . . , ck, using log space.

2. M ′ then guesses some string x (symbol-by-symbol) and simulates M on x, decrementing counter ci
if it guesses that the next symbol is ai. M

′ accepts if and only if the counters are all zero when M
accepts. Clearly, M is S(n) space-bounded and accepts comm(L).

For the second part, it is known that any one-way S(n) space-bounded NTM where S(n) grows slower
than log n accepts only regular languages [18]. Therefore, if S(n) < log n, then L must be regular, hence
semilinear. Thus, Proposition 18 must apply and the statement follows. �

9

For bounded languages, we have the following result for deterministic Turing machines:

Proposition 20. Let S(n) ≥ log n. If L ⊆ w∗1 · · ·w∗k (where w1, . . . , wk are not-necessarily distinct, fixed,
non-null words) is accepted by a one-way or two-way S(n) space-bounded DTM M , then comm(L) can also
be accepted by a one-way S(n) space-bounded DTM M ′.

Proof. Let Σ = {b1, . . . , bl} be the the input alphabet of M , and let w ∈ Σ∗, |w| = n. Then w ∈ comm(L)
if and only if there exists v ∈ comm(w) such that v ∈ w∗1 · · ·w∗k ∩ L. Further, w ∈ comm(L) if and only
if there exists v ∈ comm(w) such that v ∈ {wx1

1 · · ·w
xk

k } ∩ L for some x1, . . . , xk, where each xi ≤ n (and
therefore each xi requires at most dlog2 n + 1e bits). Then we construct M ′ as follows: M ′ uses a counter
(in binary) for each of w1, . . . , wk. Call these counters c1, . . . , ck. M ′ also uses l counters d1, . . . , dl and an
additional l counters e1, . . . , el, and a single counter f .

To start, let w = a1a2 · · · an, n ≥ 0 be the input, ai ∈ Σ, for 1 ≤ i ≤ n. M ′ records |w|bj in tape ej ,
for all j, 1 ≤ j ≤ l, and the number n in counter f in binary. Then, on tapes c1, . . . , ck, M ′ writes the
numbers i1, . . . , ik, for all possible values of ij between 0 and n, one combination at a time. Each counter
combination can be calculated deterministically within the space bounds by first placing n (the contents of
f) within each tape c1, . . . , ck then subtracting one from the last non-empty counter ci and setting each of
ci+1, . . . , ck to n, until all counters are zero. For each of these counter combinations, M ′ then stores the
number (in binary) of bj ’s in wi11 · · ·w

ik
k in counter dj , by adding the contents of tape ci to tape dj , |wi|bj

times, for all i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ l.
Next, M ′ checks if all values in each dj , 1 ≤ j ≤ l, is equal to the value in the counter ej , for all j,

1 ≤ j ≤ l. If all are true, then wi11 · · ·w
ik
k is a permutation of the input. In this case, M ′ then checks if

wi11 · · ·w
ik
k is in L(M). If this is true for at least one permutation, M ′ accepts. �

It is still an open problem as to whether there exists an S(n) ≥ log n space-bounded DTM M , whereby
comm(L(M)) cannot be accepted by an S(n) space-bounded DTM. But from Propositions 20 and 18, if such
an M exists, then S(n) must be less than n, L(M) must be non-bounded, and it must not be semilinear.
We conjecture that there does exist such a DTM. However, we remark that there are non-semilinear, non-
bounded languages, such as L = {#a1#a2# · · ·#an|n > 0}, whereby L and comm(L) can be accepted by
one-way log n space-bounded DTMs. Indeed, L is not bounded and its Parikh map is {(n(n+1)/2, n) | n > 0}
is not semilinear. For cases where S(n) < log n, L(M) must be a regular language and therefore requires
no space, but if comm(L) is not regular, then it requires at least log n space. And since there are regular
languages L such that comm(L) is not regular, comm(L) does require more space than L.

4. Characterization of eDCM

In [5], it was shown that NCM is the smallest family of languages that is a trio closed under commutative
closure. We know from Proposition 11 that eDCM is closed under commutative closure also. Further, eDCM
is closed under intersection with regular languages, inverse homomorphism, but not homomorphism [14]. In
this section, it is shown that eDCM is the smallest family of languages (containing {λ}) that is closed under
commutative closure, inverse deterministic finite transductions, and right quotient with regular languages.

The transducers are defined slightly differently than usual, to have a right input end-marker (note that
a DCM has also a right end-marker), and to move right or stay on the input (like DCM, corresponding to
transitions on a letter or the empty word). We will then start by showing that DCM and eDCM are closed
under inverse deterministic versions of these transductions. In fact, these transducers can also be defined
to also have a fixed number of reversal-bounded counters, and it is shown in [19] that DCM is closed under
inverse deterministic transducers augmented by counters. However, this result does not hold for eDCM, and
so we will provide a proof in this paper for only inverse transducers without counters.

A finite transducer is a tuple A = (Q,Σ,Γ,C, δ, q0, F) where Q,Σ,Γ,C, q0, F are respectively the sets of
states, input alphabet, output alphabet, right end-marker (not in Σ∪Γ), initial state q0 ∈ Q, and set of final
states F ⊆ Q. The transition function is a finite relation from Q × (Σ ∪ {C}) into Q × {R,S} × Γ∗. M is
deterministic if δ is a partial function and if δ(F ×{C}) = ∅ to prevent multiple outputs from the same input

10

on deterministic transducers. A configuration of A is of the form (q, wC, z), where q ∈ Q is the current state,
w ∈ Σ∗ is the remaining input, and z ∈ Γ∗ is the accumulated output. Then, (q, aw, z) `A (p, w′, z′), a ∈
Σ ∪ {C}, aw,w′ ∈ Σ∗C, where (p, d, x) ∈ δ(q, a), z′ = zx, (d = S⇒ aw = w′), and (d = R⇒ w = w′). Then
`∗A is the reflexive-transitive closure of `A.

Let A = (Q,Σ,Γ,C, δ, q0, F) be a finite transducer. For L ⊆ Σ∗, then A(L) = {x | (q0, wC, λ) `∗A
(qf ,C, x), w ∈ L, qf ∈ F}. For L ⊆ Γ∗, then A−1(L) = {w | (q0, wC, λ) `∗A (qf ,C, x), x ∈ L, qf ∈ F}.

Lemma 21. DCM and eDCM are closed under inverse deterministic finite transductions.

Proof. Let M = (k,Q,Γ,C, δ, q0, F) be a k-counter 1-reversal-bounded DCM (without loss of generality).
Let A = (QA,Σ,Γ,C, δA, qA, FA) be a deterministic finite transducer.

Then we construct a DCM machine M ′ = (k,Q′,Σ,C, δ′, q′0, F
′) accepting A−1(L(M)) as follows: M ′

takes as input a word a1 · · · an ∈ Σ∗, ai ∈ Σ, 1 ≤ i ≤ n followed by the end-marker C. In the states of
Q′, M ′ keeps a buffer of at most length α = max{|x| | (p, d, x) ∈ δA(q, a)} + 1. Then on each letter, ai,
M ′ simulates one transition of A on ai, and stores the (deterministically calculated) output in the buffer.
If the buffer becomes non-empty, M ′ simulates M on the buffer and the k counters. Once the buffer
becomes empty again, M ′ continues the simulation of A (on ai if the transition of A applied last was a
stay transition, and on ai+1 if it was a right transition). If M ′ reaches the end-marker of A, and A is
in a final state, then M ′ puts the end-marker C at the end of the output buffer. If this occurs, then M ′

continues simulating M on the buffer, accepting if it reaches a state of F with only C in the buffer. Hence,
L(M ′) = {w | (qA, wC, λ) `∗A (qf ,C, x), x ∈ L(M), qf ∈ FA}} = A−1(L(M)). Also, M ′ is deterministic
since the output buffer was deterministically calculated, and M was deterministic. Lastly, it is clear that if
M is an eDCM machine, then so is the resulting machine. �

Then, let L ∈ eDCM. Let M = (k,Q,Σ,C, δ, q0, F) ∈ eDCM(k), k ≥ 1. Assume without loss of generality,
that every counter of M is increased in every computation, and they do so immediately (from q0) in every
counter. Also, assume that every counter empties before switching to a final state. Let T = {t1, . . . , tm}
be labels in bijective correspondence with transitions of δ. Then, consider the following language LM over
alphabet Σ ∪ T :

LM = {wx | (q0, wC, 0, . . . , 0) `r1M · · · `
rn
M (qn,C, 0, . . . , 0), qn ∈ F,

w ∈ Σ∗, x ∈ T ∗, x is the sequence of transitions on C}.

Then it is clear that LM ⊆ LT ∗, and that LM (T ∗)−1 ∩ Σ∗ = L.
Then given M ∈ eDCM, LM can be constructed using only inverse deterministic finite transducers, and

commutative closure, as demonstrated next.

Proposition 22. Given M ∈ eDCM, the language LM is in eDCM and LM can be obtained from {λ} by a
combination of commutative closure and inverse deterministic finite transductions.

Proof. It follows from Proposition 9 and Lemma 21 that eDCM is closed under taking commutative closure
and inverse deterministic finite transductions. It will be shown that LM can be obtained via a combination
of commutative closure and inverse deterministic finite transductions. From this, it will follow that LM is
in eDCM. It can also be easily seen that every language family closed under inverse deterministic finite
transductions is also closed under intersection with regular languages (the transducer simply outputs the
input, and transitions according to a DFA accepting the regular language). Therefore, we will use intersection
with regular languages as well.

From the language {λ}, with an inverse deterministic finite transduction, one can get any language Γ∗

over an alphabet Γ.
Let M be defined as in the text preceding this proposition (with T , the transition labels). Then consider

the language R ⊆ T ∗ equal to

{x | x ∈ T ∗, (q0, wC, 0, . . . , 0) `xM (qf ,C, 0, . . . , 0), qf ∈ F,w ∈ Σ∗}.

11

Next, we will describe how to generate R from T ∗ using only commutative closure and intersection with
regular languages. First, let R0 = T ∗. Then, for each i, 1 ≤ i ≤ k, let Ti+ (respectively, Ti−, Ti=) be the
subsets of T that increase counter i by 1 (respectively decrease by 1, do not change counter i). Then, for
each i, 1 ≤ i ≤ k, define Ri inductively as:

Ri = comm(Ri−1) ∩ T ∗i=(Ti−Ti+T
∗
i=)+.

Then, let R′ = comm(Rk). It will be shown within the next claim that R′ = {x | x ∈ T+, where for all i, 1 ≤
i ≤ k, |x|Ti+

= |x|Ti− > 0}. In other words, the number of additions to each counter is the same as the
number of deletions.

Let R′′ be obtained from R′ by intersecting with a regular language enforcing that:

• a single letter representing a transition from the initial state on all counters being 0 is read,

• followed by, for every i, 1 ≤ i ≤ k, transitions on counter i being positive that do not decrease, followed
by those on counter i being positive that do not increase, followed by those transitions on counter i
being zero,

• the states transition as in M (ie. transitions switch states as in M , with a stay transition on a implying
the next transition is on a as well),

• the last transition ends in a final state.

Note that this implies that in R′′, the end-marker is reached before any decrease (since M is in eDCM), and
once a transition label on the end-marker is reached, all further transition labels read are stay transitions
on the end-marker.

Claim 1. R = R′′.

Proof. Let w ∈ R. Then, w = r1r2 · · · rn, where (q0, vC, 0, . . . , 0) `r1M · · · `
rn
M (qf ,C, 0, . . . , 0), qf ∈ F, v ∈

Σ∗. Then, within r1, . . . , rn, for each i, 1 ≤ i ≤ k, there are as many transitions that increase counter i (a
positive number) as those that decrease it. Hence, w ∈ R′. Then, the states corresponding to transitions
applied in w change according to M , ending in a final state, the initial transition on q0 and all counters
being zero must occur immediately, followed by, for each i, 1 ≤ i ≤ k, a sequence of transitions on counter
i being positive that do not decrease, followed by a sequence that does not increase, followed by a sequence
with counter i being 0. Hence, w ∈ R′′.

Let w = r1r2 · · · rn, where rj ∈ T, 1 ≤ j ≤ n be in R′′. Then R′′ ⊆ R′, and thus w has the same positive
number of increasing transitions on counter i as decreasing transitions. Then, from the definition of R′′, the
states of w must change according to M , with an initial transition on all counters being zero, followed by, for
each i, 1 ≤ i ≤ k, transitions on i positive that are non-decreasing, followed by those on a positive counter
that are not increasing, followed by transitions on counter i being 0, and finishing in a final state, with the
end-marker appearing before any decrease. Thus, (q0, vC, 0, . . . , 0) `r1M · · · `

rn
M (qf ,C, 0, . . . , 0), qf ∈ F, v ∈

Σ∗, and w ∈ R. �

Hence, it is possible to obtain R from T ∗ by only commutative closure and intersection with regular
languages. Next, we will derive LM from R via an inverse deterministic finite transduction. Let A =
(P,Σ ∪ T, T,C, δA, p0, FA) be a deterministic finite transducer, such that A operates as follows on an input
of a1 · · · anr1 · · · rm, n,m ≥ 0, ai ∈ Σ, rj ∈ T, 1 ≤ i ≤ n, 1 ≤ j ≤ m: On the first part of the input a1 · · · an,
A simulates transitions of M with the first transition on 0 on every counter, followed by all positive counter
transitions deterministically, while keeping track of the current state of M . So, if M switches from state q
to p while moving right on an a ∈ Σ (call this transition t), then A switches from state q to p while moving
right on a, and outputting t. If t stays, then A does as well while outputting t. When reading r1 · · · rm, A
verifies that they are all transitions on C, and A outputs r1 · · · rm deterministically.

Claim 2. A−1(R) = LM .

12

Proof. Let wx ∈ A−1(R), where w = a1 · · · an, n ≥ 0, ai ∈ Σ, 1 ≤ i ≤ n, x = r1 · · · rm,m ≥ 0, rj ∈ T, 1 ≤
j ≤ m. Then (p0, wxC, λ) `∗A (qf ,C, y), y ∈ R, qf ∈ FA. Because y ∈ R, and as transition sequence y reads
input w in M , by the construction of A, then (q0, wC, 0, . . . , 0) `yM (q′f ,C, 0, . . . , 0), q′f ∈ F . Let y = y1x,
which must be the case since A outputs every symbol from T verbatim. Also r1, . . . , rm must all be on C
by the construction of A. And all of y1 must not be on C, since a1 · · · an was read to output each symbol
of y1, and a1 · · · an ∈ Σ∗. Hence, wx ∈ LM .

Let wx ∈ LM , where (q0, wC, 0, . . . , 0) `r1M · · · `
rn
M (qn,C, 0, . . . , 0), qn ∈ F,w ∈ Σ∗, x ∈ T ∗, x is the

sequence of transitions on C. Let y be such that yx = r1 · · · rn. Then no transition of y is on C, but each
of x must be on C. So yx ∈ R. Then, on input wx, A outputs y as it simulates M before C, then on x, it
outputs x. Hence, wx ∈ A−1(R). �

Hence, LM ∈ eDCM, and it can be obtained from {λ} via a combination of commutative closure and inverse
deterministic finite transducers. �

In [14], there is a construction that shows that DCM is closed under right quotient with NPCM. From
M1 ∈ DCM, the construction creates a new DCM machine M ′ by simulating the original DCM machine
M1, while storing the Parikh vector of the input in a set of additional counters, and then performing some
additional processing after reading the input. Thus, if the original machine is an eDCM machine, the
resulting one is as well. Hence eDCM is also closed under right quotient with NPCM languages.

From LM , taking right quotient with the regular language T ∗ and intersecting with Σ∗ (every family
closed under inverse deterministic finite transductions is also closed under intersection with regular lan-
guages) gives L. Hence, we obtain the following:

Proposition 23. eDCM is the smallest family of languages (containing {λ}) that is closed under taking
commutative closure, inverse deterministic finite transductions, and right quotient with regular languages.

Thus, the characterization of eDCM in terms of commutative closure, right quotient, and inverse deter-
ministic finite transducers is not enough to generate all DCM languages. There is a known, relatively simple
characterization of DCM in terms of closure properties whereby DCM is the smallest family of languages
closed under inverse deterministic finite transductions augmented by reversal-bounded counters [19]. How-
ever, it is still an open problem as to whether it is possible to characterize DCM using a more complicated
set of closure properties.

Acknowledgements

We thank an anonymous reviewer of an earlier version of this paper for suggesting the comparison
between eDCM and deterministic Parikh automata.

[1] R. Parikh, On context-free languages, J. ACM 13 (4) (1966) 570–581.
[2] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Ma, 1978.
[3] B. S. Baker, R. V. Book, Reversal-bounded multipushdown machines, Journal of Computer and System Sciences 8 (3)

(1974) 315–332.
[4] O. H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1) (1978) 116–133.
[5] M. Latteux, Cônes rationnels commutatifs, Journal of Computer and System Sciences 18 (3) (1979) 307–333.
[6] M. Cadilhac, A. Finkel, P. McKenzie, Affine Parikh automata, RAIRO - Theoretical Informatics and Applications 46

(2012) 511–545.
[7] S. Crespi-Reghizzi, P. S. Pietro, Commutative languages and their composition by consensual methods, in: Proceedings

14th International Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014., 2014,
pp. 216–230.

[8] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading,
MA, 1979.

[9] C. Papadimitriou, Computational complexity, Addison-Wesley, Reading, Massachusetts, 1994.
[10] O. Ibarra, Automata with reversal-bounded counters: A survey, in: H. Jürgensen, J. Karhumäki, A. Okhotin (Eds.),

Descriptional Complexity of Formal Systems, Vol. 8614 of Lecture Notes in Computer Science, Springer International
Publishing, 2014, pp. 5–22.

[11] M. Cadilhac, A. Finkel, P. McKenzie, Bounded Parikh automata, International Journal of Foundations of Computer
Science 23 (08) (2012) 1691–1709.

13

[12] J. Eremondi, O. Ibarra, I. McQuillan, Insertion operations on deterministic reversal-bounded counter machines, in:
A. Dediu, E. Formenti, C. Mart́ın-Vide, B. Truthe (Eds.), Lecture Notes in Computer Science, Vol. 8977 of 9th Interna-
tional Conference on Language and Automata Theory and Applications, LATA 2015, Nice, France, 2015, pp. 200–211.

[13] S. Ginsburg, S. Greibach, Deterministic context free languages, Information and Control 9 (6) (1966) 620–648.
[14] J. Eremondi, O. Ibarra, I. McQuillan, Deletion operations on deterministic families of automata, in: R. Jain, S. Jain,

F. Stephan (Eds.), Lecture Notes in Computer Science, Vol. 9076 of 12th Annual Conference on Theory and Applications
of Models of Computation, TAMC 2015, Singapore, 2015, pp. 388–399.

[15] O. Ibarra, S. Seki, Characterizations of bounded semilinear languages by one-way and two-way deterministic machines,
International Journal of Foundations of Computer Science 23 (6) (2012) 1291–1306.

[16] C. Nicaud, Average state complexity of operations on unary automata, in: M. Kuty lowski, L. Pacholski, T. Wierzbicki
(Eds.), Mathematical Foundations of Computer Science 1999, Vol. 1672 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 1999, pp. 231–240.

[17] T. Harju, O. Ibarra, J. Karhumäki, A. Salomaa, Some decision problems concerning semilinearity and commutation,
Journal of Computer and System Sciences 65 (2002) 278–294.

[18] R. E. Stearns, J. Hartmanis, P. M. Lewis, Hierarchies of memory limited computations, in: Proceedings of the 6th
Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1965), FOCS ’65, IEEE Computer Society,
Washington, DC, USA, 1965, pp. 179–190.

[19] J. Eremondi, O. Ibarra, I. McQuillan, Insertion operations on deterministic reversal-bounded counter machines, journal
version of [12] submitted (2015).

14

	Introduction
	Preliminaries
	eDCM and eNCM
	Characterization of eDCM

