
Input-Position-Restricted Models of Language Acceptors∗

Oscar H. Ibarra and Ian McQuillan

Abstract Machines of various types are studied with some restriction on the moves that can be made
either on or before the end of the input. For example, for machine models such as deterministic
reversal-bounded multicounter machines, one restriction is the class of all machines that do not
subtract from any counters before the end the input. Similar restrictions are defined on different
combinations of stores with many machine models (nondeterministic and deterministic), and their
families studied.

1 Introduction

In this paper, various one-way machine models are studied where there is a restriction on the instruc-
tions that are permitted on or before hitting the end of the one-way input (on a right input end-marker
�). For example, one such model is a pushdown automaton that cannot pop until hitting the end of
the input, or a pushdown automaton that cannot pop until hitting the end of the input and also cannot
push after hitting the end of the input. A preliminary investigation started regarding such concepts
on reversal-bounded multicounter machines (NCM) in [13]. This model consists of an NFA aug-
mented by some number of reversal-bounded counters (each counter stores a non-negative integer
that can be increased or decreased by one, or zero, and tested for being zero or non-zero, and there
is a bound on the number of changes between non-decreasing and non-increasing), and DCM is the
same type of machine that is deterministic. For example, in [13], it was shown that every NCM can
be converted to another that does not decrease before hitting the end-marker. For the deterministic
case however, this is not true, as there is a DCM with only one counter that cannot be accepted by
any DCM machine that does not decrease before hitting the end of the input. Furthermore, the lan-

Oscar H. Ibarra
Department of Computer Science, University of California, Santa Barbara, CA 93106, USA,
e-mail: ibarra@cs.ucsb.edu

Ian McQuillan
Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada,
e-mail: mcquillan@cs.usask.ca

∗ Published in In: Adamatzky A. (eds) Reversibility and Universality. Emergence, Complexity and Computation,
vol 30. Springer, Cham. The final authenticated version is available online at https://doi.org/10.1007/
978-3-319-73216-9_17.

1

ibarra@cs.ucsb.edu
mcquillan@cs.usask.ca
https://doi.org/10.1007/978-3-319-73216-9_17
https://doi.org/10.1007/978-3-319-73216-9_17

2 Oscar H. Ibarra and Ian McQuillan

guages accepted by this same restricted model of DCM were shown to coincide with the languages
accepted by deterministic Parikh automata [3].

A key tool used in this paper for studying many of these machine models with input-position-
based restrictions is the store language of a machine. The store language of a machine M is an
encoding of the set of all configurations (state plus concatenated store contents) that can appear
in an accepting computation. For example, the store language of a pushdown automaton M is the
set of all words qγ where there is an accepting computation of M that passes through state q with
pushdown contents γ . It is known that the store language of every pushdown automaton is in fact a
regular language [1], and the store language of the more general stack automata (similar to pushdown
automata with the additional ability to read the contents of the pushdown in read-only mode) are all
regular languages [2]. The store languages of several other models were also recently studied in
[15, 14]. For example, the store languages of reversal-bounded queue automata (this is an NFA
augmented by a queue data structure with a bound on the number of switches between enqueuing
and dequeueing) and the store language of r-flip pushdown automata (pushdown automata with the
additional ability to reverse their pushdown contents at most r times) are also all regular [15].

Here, at first nondeterministic machines are investigated. The restriction that a store cannot de-
crease in size until the end-marker is a major focus. When restricting the pushdown of a nonde-
terministic pushdown automaton in this fashion, the machines coincide with the regular languages,
and similarly for reversal-bounded queue automata and r-flip nondeterministic pushdown automata.
When augmenting any of these three models with reversal-bounded counters, and the decreasing
property is only applied to the pushdown or queue, then these machines coincide with NCM. For
any of these models, also enforcing that the reversal-bounded counters cannot decrease until the
end-marker does not even reduce the capacity. For deterministic machines, the situation is more
complicated. In particular, DCM and DCM augmented by an unrestricted pushdown (DPCM) are
studied with the decreasing restriction placed on the counters and pushdown separately. Several wit-
nesses are found to separate deterministic classes. Also, a bridging technique is created to determine
that languages are not in DCM and DPCM from the decreasing-restricted restriction.

2 Preliminaries

We assume an introductory background in the area of formal language and automata theory; see e.g.
[11].

Let N0 be the set of non-negative integers. Given a set X and k ∈N0, let [X]k be the set of k-tuples
over X .

An alphabet is a finite set of symbols, with Σ ∗ being the set of all words over Σ ∗. The empty
word is denoted by λ . A language is any L ⊆ Σ ∗. Given a word w, wR is the word obtained by
reversing the letters of w, which can be extended to languages LR in the natural way, and also to
families of languages. Given w ∈ Σ ∗, then u is a prefix (resp. suffix) of w if w = ux,x ∈ Σ ∗ (resp.
w = xu,x ∈ Σ ∗). The length of w is denoted by |w|, and the number of a’s in w, a ∈ Σ , is |w|a.

A one-way nondeterministic k-pushdown automaton is a tuple M = (Q,Σ ,Γ ,δ ,q0,F), where Q
is a finite set of states, Σ is the input alphabet, Γ is the pushdown alphabet, containing the bottom-
of-stack marker Z0, q0 ∈Q is the initial state, F ⊆Q is the set of final states, and δ is a finite relation
from Q× (Σ ∪{λ ,�})∗× [Γ]k to Q× [Γ ∗]k, where � is the right input end-marker. A configuration
of M is a tuple (q,w,γ1, . . . ,γk), where q ∈ Q is the current state, w ∈ Σ ∗�∪{λ} is the remaining
input, and γi ∈ Z0(Γ −{Z0})∗ is the contents of the i’th pushdown, for 1≤ i≤ k. The derivation rela-

Input-Position-Restricted Models of Language Acceptors 3

tion between configurations, `M , is such that (q,aw,v1b1, . . . ,vkbk) `M (p,w,v1u1, . . . ,vkuk), where
(p,u1, . . . ,uk) ∈ δ (q,a,b1, . . . ,bk). Then `∗M is the reflexive and transitive closure of `M .

The language accepted by M,

L(M) = {w | (q0,w�,Z0, . . . ,Z0) `∗M (q f ,λ ,γ1, . . . ,γk),q f ∈ F,γi ∈ Γ
∗,1≤ i≤ k}.

Furthermore, the store language of M,

S(M) = {qγ1 · · ·γk | (q0,w�,Z0, . . . ,Z0) `∗M (q,v,γ1, . . . ,γk) `∗M (q f ,λ ,γ
′
1, . . . ,γ

′
k),q f ∈ F}.

Also, M is deterministic if |δ (q,a,b1, . . . ,bk) ∪ δ (q,λ ,b1, . . . ,bk)| ≤ 1, for all q ∈ Q,a ∈ Σ ∪
{�},bi ∈ Γ ,1≤ i≤ k.

Instead of a pushdown, other data structures, such as a queue can be attached to such a machine.
Often in the literature, one-way machines are defined without the right input end-marker �. For

nondeterministic machines, � is not necessary as machines can guess when they have hit the end of
the input. And for some types of deterministic machines, such as DPDAs, it is not needed [8], but
for others, such as DCM, this is not the case (see [13] for further discussion). For consistency, we
will define all machines using �. This is also useful as we will study restrictions of machines based
on whether � has been scanned yet or not.

A counter is a pushdown stack that uses only one stack symbol, in addition to a distinguished
bottom-of-stack symbol, Z0, which is never altered. It is known that deterministic machines with
only two pushdowns that are both counters have the same power as Turing machines [11]. When
there is only one pushdown, this is the well-known nondeterministic pushdown automaton, denoted
by NPDA (DPDA for the deterministic variant). Also, a counter is l-reversal-bounded if the machine
makes at most l changes between non-decreasing and non-increasing (and vice versa) on the counter.
Nondeterministic (resp. deterministic) finite automata with some number of reversal-bounded coun-
ters are denoted by NCM (resp. DCM). These machines have been extensively investigated in the
literature, e.g. [17], and they are closed under intersection and have a decidable emptiness prob-
lem (resp. containment problem for deterministic machines). Furthermore, machines with one unre-
stricted pushdown plus some number of reversal-bounded counters also have a decidable emptiness
problem, and are denoted by NPCM (DPCM for the deterministic variant).

By a slight abuse of notation, we will denote each family of machines synonymously with the
family of languages they accept. Therefore, DCM will denote both the reversal-bounded counter
machines, and also the family of languages they accept.

3 Restrictions on/before the end of input

In this section, we will restrict the operation of different classes of machines so that any instruction
that reduces the size of the store can only occur when the input tape has read the right input end-
marker �. Notice that this can be studied separately for each store. For example, NPCMs could
be studied where the pushdown cannot decrease in size before the end-marker, and separately, they
could be studied where the counters cannot be decreased before hitting the end-marker, and lastly,
they can be studied where both stores have this restriction. This restriction will be denoted on the
family by placing a “bar” on top of the letter denoting the store with this restriction. For example,
DPCM are machines where the pushdown is unrestricted, but the counters cannot decrease before
hitting the end-marker, and DPCM is where the restriction is on both the counters and the pushdown.

4 Oscar H. Ibarra and Ian McQuillan

In addition, a stronger notion whereby no decreasing of storage before the end-marker, plus no
increasing once the end-marker is hit is studied, and for this notion, two bars are placed over the
appropriate store letter, such as DPCM.

We first recall a result from [13], where the families NCM and DCM were introduced (eNCM
and eDCM was the notation used in [13]). For NCM, it was found that restricting the counters to
not decrease until the end-marker did not change the family accepted. It was also found that DCM
coincides with the family of languages accepted by deterministic Parikh automata [3], and that this
family is a strict subset of DCM. We will extend this proof by adding in NCM.

Proposition 1. DCM(DCM(NCM= NCM= NCM.

Proof. All but the last equality were shown in [13]. But we will briefly describe the construction of
NCM= NCM here for use later in the paper.

Let M be a k counter NCM over Σ , with the counters labelled by c1, . . . ,ck. It can be assumed
without loss of generality that all counters are 1-reversal-bounded [17].

Then, construct a NCM M′ with counters labelled by c1,d1, . . . ,ck,dk. On input w ∈ Σ ∗ fol-
lowed by the end-marker, M′ simulates M exactly using counters c1, . . . ,ck so long as they are non-
decreasing. If a counter ci attempts to decrease before hitting the end-marker (nothing is required
to be changed on the end-marker), counter di is instead increased and thus records the number of
decrements of ci in M. At some nondeterministically guessed point after a counter decrease, M′ ver-
ifies that the contents of di and ci are equal, and then continues the simulation, simulating transitions
on the counter being zero. Then L(M′) = L(M), and M′ does not decrease any counter before hitting
the end-marker.

This proof can be modified slightly to create a machine M′′ in NCM. M′ uses a third set of
counters e1, . . . ,ek. Then M′′ similarly simulates M exactly using c1, . . . ,ck as long as they are non-
decreasing and before the end-marker. Then, at some nondeterministically guessed spot before the
end-marker, on λ -transitions, for all counters ci that have not already started decrementing in M,
M′′ increases ei and di to the same arbitrary number. Then, M′′ verifies that the next character is the
end-marker. On the end-marker, for every increase of ci in M, M′′ instead decreases ei, verifying
that the simulated increasing ends when counter ei hits zero, and then when simulating the decreases
of ci in M, it decreases di until empty, then decreases ci until empty. Essentially then, M′ guesses
right before it reaches �, and does all the remaining additions nondeterministically instead. Then, it
decreases instead of increases at the end-marker. But it therefore needs two identical copies, di and
ei, one to simulate the increases of M and one to simulate decreases of M. ut

Next, we study these restrictions on standard NPDAs. Both restrictions induce a large collapse in
contrast to NCM.

Proposition 2. NPDA= NPDA= REG.

Proof. It is enough to show it for NPDA.
Let M = (Q,Σ ,Γ ,δ ,q0,F) be an NPDA. Assume without loss of generality that M empties the

pushdown in every computation on the end-marker. Assume also that Q is partitioned into Q←,Q�,
and Q→, whereby Q← are all states that are used before the end-marker, Q� are the states that can
be used on the end-marker (which immediately read the end-marker), and then Q→ are all states that
can be used after the end-marker has been read. Lastly, assume without loss of generality that all
transitions before the end-marker (on states of Q←), either replace the top of the pushdown X with
XY , where X ,Y ∈ Γ , or replaces X with X . Indeed, we know that the pushdown does not decrease
before the end-marker, it is easy to see that the machine only needs to push one symbol at a time,

Input-Position-Restricted Models of Language Acceptors 5

and also it never needs to replace the top symbol by storing the topmost symbol in the finite control
and not pushing it until another symbol is pushed.

From [1], for each state q ∈Q, the set co-Acc(q) = {β ∈ Γ ∗ | (q,v�,β) `∗M (q f ,λ , p),q f ∈ F} is
a regular language. Let R =

⋃
q∈Q�(co-Acc(q) · q) (over the alphabet of Γ ∪Q�), which also must

be regular. Let MR = (QR,Γ ∪Q�,δR,qR
0 ,FR) be an NFA accepting R.

Next, let M′=(Q′,Σ ,δ ′,q′0,F
′) be an NFA with λ transitions with state set Q′=(Q←∪Q�)×QR,

q′0 = (q0,qR
0), F ′ = Q�×FR that operates as follows. If M has a transition (p,γ) ∈ δ (q,a,X),q ∈

Q←, p ∈ Q←∪Q�,a ∈ Σ ∪{λ},X ∈ Γ , then create:

(p, pR) ∈ δ
′((q,qR),a) if γ = XY, and pR ∈ δR(qR,Y),

(p,qR) ∈ δ
′((q,qR),a) if γ = X .

Also, create ((q, pR) ∈ δ ′((q,qR),λ) if q ∈ Q�, and pR ∈ δR(qR,q).
Let w ∈ L(M). Then

(q0,w�,Z0) `∗M (q′,�,β) `∗M (q f ,λ ,Z0),

where q′ ∈Q�,q f ∈ F . Then, β ∈ co-Acc(q′), and so βq′ ∈ L(MR), and there exists p ∈ FR such that
p∈ δ̂R(qR

0 ,βq′). Then, by the construction, (q′, p)∈ δ̂ ′((q0,qR
0),w), and (q′, p)∈Q�×FR = F ′, and

hence w ∈ L(M′).
Let w ∈ L(M′). Then (q′, p) ∈ δ̂ ′((q0,qR

0),w), where q′ ∈ Q�, p ∈ FR. By the construction,
(q0,w�,Z0) `∗M (q′,�,β), where q′ ∈ Q�,βq′ ∈ L(MR). Hence, there exists q f ∈ F such that
(q′,�,β) `∗M (q f ,λ ,Z0). Hence, w ∈ L(M).

Then L(M′) = L(M). ut

Similarly, a reversal-bounded queue automaton, NQA, is an NFA augmented with a queue store,
with a bound on the number of switches between enqueuing and dequeueing, and let NQCM be the
same system augmented by reversal-bounded counters. Although it is known that queue automata
without a reversal-bound on the queue has the same power as a Turing machine, it is known that
both NQA and NQCM are more limited, and indeed only accept semilinear languages [10]. It was
shown in [15] that the store languages of all NQA are regular languages, and the store languages of
all NQCM are all in NCM.

Essentially the same proof of Proposition 2 can be used for NQA as well, ie. when enqueueing
before the end-marker, verify in parallel that whatever would be enqueued is in the store language.
Therefore,

Corollary 1. NQA= NQA= REG.

This same proof technique can be used for NPCM and NQCM, showing the resulting languages
are all NCM languages. Indeed, take an input NPCM M with k counters. The store language of every
NPCM is an NCM language [14]. Let Ms ∈ NCM with l counters be the store language of M. And
in the store language of an NPCM, the word on the pushdown comes first, and then the counters
(such as xci1

1 · · ·c
ik
k where x is the contents of the pushdown, and i j is the contents of counter j). So,

build an NCM M′ machine accepting L(M) with k+ l counters as follows: M′ simulates M with k
counters, but if M pushes y onto the pushdown, M′ runs it through the store language in parallel
using the other l counters. Then, when M′ reaches the end of the input, it just needs to verify that the
pushdown contents read this far, concatenated with the counter contents are in the store language.
So, it subtracts from each counter from c1 to ck, while still simulating the machine accepting the
store language. Hence,

6 Oscar H. Ibarra and Ian McQuillan

Proposition 3. NPCM= NPCM= NQCM= NQCM= NCM= NCM= NCM.

Next, consider r-flip pushdown automata. These machines are similar to pushdown automata
with the additional ability to “flip” the pushdown stack at most r times (more precisely, they flip
everything above the bottom-of-stack marker Z0, transforming pushdown contents Z0γ , with γ over
the pushdown alphabet, to Z0γR). Let r-NPDA be this family, and let r-NPCM be the same type of
machines augmented by reversal-bounded counters. In [15], it was shown that the store languages
of all r-NPDA are regular, and in [14], it was shown that the store languages of r-NPCM are all in
NCM. When restricting it to not decrease before the end-marker, these machines can therefore only
push or flip before the end-marker, but not pop.

Proposition 4. r-NPDA= r-NPDA= REG, and r-NPCM= r-NPCM= NCM.

Proof. First, for r-NPDA, let M be such a machine with input alphabet Σ , and stack alphabet Γ .
Then build a 2NFA (a two-way NFA [11] where there is a left and right end-marker on the input)
M′ over alphabet Σ ∪Γ ∪{$1, . . . ,$r} such that M′ reads a ∈ Γ of M as input instead of pushing it,
and also reads a new character $i when flipping the pushdown for the ith time. When M′ reaches the
end of the input, it now needs to verify that the pushdown letters are a “representation” of a word in
the store language of M. Let Z0v0$1 · · ·$ivi,v j ∈ Γ ∗,0≤ j ≤ i, be the sequence of letters read on the
input from Γ ∪{$i | 1 ≤ i ≤ r} (ignoring letters of Σ). Then, in M, the pushdown contents would
be x = Z0(· · ·((v0)

Rv1)
R · · ·vi−1)

Rvi. By using the two-way input, M′ can verify that x is in the store
language of M since S(M) is a regular language. Then, creating a homomorphism h that erases all
letters not in Σ , and fixes all others, leaves L(M) = h(L(M′)), and the regular languages are closed
under homomorphisms.

Similarly for r-NPCM, build a 2NCM (a two-way machine with reversal-bounded counters [9])
M′ that simulates M while reading symbols of Γ ∪{$i | 1≤ i≤ r} but uses counters of M′ to do so
faithfully. And then, at the end of the input, it needs to verify that the representation of the pushdown
letters is in the store language. For this, it uses the two-way input as above together with additional
counters as the store language of M is in NCM. Further, M′ makes a bounded number of turns on
the input since r is fixed, and therefore M′ can be converted to a one-way NCM [9]. Similarly again,
since NCM is closed under homomorphism [17], the proposition follows. ut

We can similarly study the increasing and decreasing restrictions when applied to the counters.
Notice that in the proof of Proposition 1, this same proof would hold to show that NPCM=NPCM=

NPCM since the pushdown is not used. In the same way, for example, NPCM = NPCM since the
counters are independent of the other stores. Similarly for all other types of stores. Hence:

Proposition 5. NPCM = NPCM= NPCM, and NPCM= NPCM= NPCM= NCM. Similarly for
NQCM and r-NPCM.

Next, we will turn our attention to deterministic machines. First, a result on reversal is needed.
Although closure of DCM under reversal has not been formally studied to the best of our knowledge,
it follows relatively easily that DCM is not closed under reversal from a recent paper.

Proposition 6. DCM is not closed under reversal. Hence, 2DCM that makes one turn on the input
is strictly more powerful than DCM.

Proof. Assume that DCM is closed under reversal. In [7], it was shown that DCM is closed under
the prefix operator, but not closed under the suffix operator. Let L∈DCM such that the suffix closure
of L is not in DCM. By assumption, and by the closure of DCM under prefix, (pref(LR))R ∈ DCM
(where pref is the prefix operator). But this is equal to the suffix closure of L, a contradiction.

Input-Position-Restricted Models of Language Acceptors 7

From this it follows that 2DCM that makes one turn on the input is strictly more powerful than
DCM. ut

The above proposition is quite interesting as the previous candidate witness language conjectured to
separate 2DCM from DCM was significantly more complex, being accepted by a 5-crossing 2DCM
(ie. the boundary of each input cell is crossed at most five times, a more general notion than turns
on the input) [16], and the proof that it is not in DCM did not appear in the text.

Next, it will be shown that DCM is no more general than DCM.

Lemma 1. DCM= DCM.

Proof. Let M ∈ DCM with k counters called c1, . . . ,ck, and with m states. First, on an input of size
n, each counter can increase until it is at most m · n by the time the right input end-marker is hit,
otherwise M enters an infinite loop and does not accept. Then at the end-marker, if one counter is
increasing, another must be decreasing after m transitions, otherwise an infinite loop is entered. Then
for every decrease, there is at most m increases of some other counter. Thus, other counters reach
a value of at most m2n. Continuing across all counters, the most M can store in any counter of an
accepting computation is f (n) = mkn.

Then, a 3k-counter DCM M′ machine will be built accepting L(M). M′ simulates M using coun-
ters c1, . . . ,ck, but in parallel, M′ increases counters di,ei, for each 1 ≤ i ≤ k, to f (n) by the end of
the input, which is possible by adding additional states. Then, at the right input end-marker, instead
of increasing counter ci say, it instead decreases counter di. Then, when M would start decreasing
counter ci, say M has increased ci by xi since hitting the end-marker. Then di holds f (n)− xi (and
indeed, f (n) ≥ xi in any accepting computation by the calculation of f (n)). At this point, M′ sub-
tracts both di and ei in parallel until both are zero. Then ei holds f (n)− (f (n)− xi) = xi. Then M′

can continue to simulate ci using counters ei until empty, then ci, as their combined length is the
same as counter ci in M at the point where counter ci starts to decrease. ut

Thus, every language by a deterministic Parikh automaton (equal to DCM) can be accepted by a
DCM where the machine only adds until the end-marker, and then at the end-marker, only subtracts.

Next, the families of DPCM and DPCM will be studied.

Lemma 2. DCMR ⊆ DPCM⊆ DPCM.

Proof. The second inclusion is immediate.
For the first, given M ∈ DCM, a machine M′ ∈ DPCM can be built, that on input x ∈ Σ ∗, pushes

x on the pushdown, and then it simulates M on xR by popping from the pushdown instead of reading
from the input, while simulating the counters exactly (all counter operations are performed after the
end-marker of M′ has been reached). Thus, L(M)R ∈ DPCM. ut

From this, the following can be shown:

Proposition 7. DCM= DCM(DCM(DPCM.

Proof. The first equality is from Lemma 1, and the first strict inclusion follows from Proposition 1.
The second inclusion follows trivially by not using the pushdown. Strictness follows since DCM is
not closed under reversal by Proposition 6, and since DCMR ⊆ DPCM by Lemma 2. ut

Next, it will be shown that DCM and its reverse are in DPCM.

Lemma 3. DCM∪DCMR ⊆ DPCM.

8 Oscar H. Ibarra and Ian McQuillan

Proof. DCM ⊆ DPCM follows by simulating the counters verbatim without using the pushdown.
And DCM

R
follows from Lemma 2. ut

Next, we will show that this containment is strict. A technique in [5] was used to find languages
that could not be accepted by deterministic reversal-bounded multicounter machines, and also de-
terministic machines with a pushdown augmented by counters. Essentially, it was shown that if L is
a DPCM, then there exists w ∈ Σ ∗ such that L∩wΣ ∗ is in DPDA, and similarly if L is a DCM, then
there exists w ∈ Σ ∗ such that L∩wΣ ∗ is a regular language. Then this property can be used to find
languages not in DCM or DPCM. However, a close reading of this paper shows that the definition
of DPCM and DCM used in this paper does not have an end-marker on the right end of the input.
However, at least for DCM, it is known that one-way deterministic machines with reversal-bounded
counters, accept strictly less languages when an end-marker is not used (unlike deterministic push-
down automata) [13]. And, a careful reading of the proof technique used to find languages outside
of DCM and DPCM, illustrates that the technique only works on machines without the end-marker
(as defined in the paper). Here though, we are using the more general definition with an end-marker.
The same technique though can be used to show that if L ∈DCM, then there exists w ∈ Σ ∗ such that
L∩wΣ ∗ is in DCM. Similarly with DPCM and DPCM. This can be used as a type of “bridge” to
show languages are not in DCM. And indeed, DCM coincides with deterministic Parikh automata
where witness languages are known [4] and can be used with this property. This will be shown next.

First, a definition is needed. Let M ∈ DPCM (resp. DCM) with k 1-reversal-bounded counters
(without loss of generality [6]). For an integer 1≤ i≤ k, then w is i-decreasing if, while M is reading
w, then the ith counter is decreased before reading the right end-marker.

The key here is that, if there is an i-decreasing word w, then for all y∈Σ ∗, then counter i decreases
on wy as well. If instead a word w decreases counter i on the end-marker, then there is no guarantee
that wy decreases for all y ∈ Σ ∗ before the end-marker. The first lemma is immediate.

Lemma 4. Let M ∈ DPCM (resp. DCM) with k-counters. If there exists 1 ≤ i ≤ k such that no
word in L(M) is i-decreasing, then counter i only decreases on the end-marker in an accepting
computation, and another machine M′ of the same type can be created where all transitions that
decrease counter i before the end-marker are removed, and L(M) = L(M′).

Lemma 5. Let M ∈ DPCM (resp. DCM) with k counters and L(M) 6= /0, such that, by Lemma 4, for
all counters c1, . . . ,cl (l ≤ k) that decrease before the end-marker, there is some w ∈ L(M) that is
i-decreasing, for each 1≤ i≤ l. Then, for each such w, there is a machine of the same type accepting
L(M)∩wΣ ∗ 6= /0 that has at most l−1 counters that decrease before the end-marker.

Proof. By applying Lemma 4 on all counters i whereby there is no i-decreasing word, the only
counters that can decrease before the end-marker are those that can do so on at least one word in the
language, in an accepting computation. Let i be such a counter, and w ∈ L(M) be an i-decreasing
word. Then, build a DPCM M′ that simulates M but enforces using the states that the input must
start with w. Also, it does not need to include counter i as this counter has already started decreasing
for any L(M)∩wΣ ∗ in M by the time w is read, and therefore, the counter can be stored in the
finite control. Therefore, L(M′) 6= /0. By another application of Lemma 4, another M′′ can be created
whereby at most l−1 counters can decrease before the end-marker. ut

By applying Lemma 5 iteratively, the following is true:

Proposition 8. Let L ∈ DPCM (resp. DCM) be non-empty. Then there exists w ∈ Σ ∗ such that L∩
wΣ ∗ is a non-empty DPCM (resp. DCM).

Input-Position-Restricted Models of Language Acceptors 9

This same technique also clearly works for all other deterministic machine models augmented by
reversal-bounded counters considered in this paper. Then this can serve as a “bridge” where wit-
nesses known for versions of machines with counters that only decrease on the end-marker can
possibly be used to show a witness in the more general model where the counter restriction does not
occur.

Furthermore, it is known that DCM coincides with deterministic Parikh automata [13]. And, it is
known that

L = {v ∈ {a,b}∗ | v[|v|a] = b},

where v[j] is the jth letter of v, cannot be accepted by deterministic Parikh automata [4]. Assume
by way of contradiction that L ∈ DCM. Then, by Proposition 8, there exists w ∈ Σ ∗ such that L∩
wΣ ∗ ∈ DCM. Let w be such a word, let i be the length of w, and let j be the number of a’s in w.
Then L∩wΣ ∗ = {wv ∈ {a,b}∗ | (wv)[|wv|a] = b} ∈ DCM. Since DCM is closed under left quotient
with a fixed word, it follows that L′ = {v ∈ {a,b}∗ | (wv)[|v|a + j] = b} ∈ DCM. Let x = ai− j. Let
L′′ = (L′)(x)−1 = {v ∈ {a,b}∗ | (wvx)[|v|a + j+ i− j] = b} = {v ∈ {a,b}∗ | (wvx)[|v|a + i] = b} =
{v ∈ {a,b}∗ | v[|v|a] = b}. But DCM is closed under right quotient with words [13], and L′′ = L, a
contradiction.

Lemma 6. L = {v ∈ {a,b}∗ | v[|v|a] = b} /∈ DCM.

Next, we will show that L /∈ DCMR. This is equivalent to showing that LR /∈ DCM. Then LR =
{v∈ {a,b}∗ | v[|v|−|v|a+1] = b} /∈DCM. Assume, by contradiction that LR ∈DCM. Given v∈ LR,
notice that |v|−|v|a is equal to |v|b. Therefore, LR = {v ∈ {a,b} | v[|v|b+1] = b}. But, this language
can also be shown to not be accepted by a deterministic Parikh automaton, similar to the proof that
L cannot in [4], a contradiction. Hence:

Proposition 9. There exists L ∈ DPCM such that L /∈ (DCM∪DCMR).

Proof. It has been shown already that L above is not in DCM∪DCMR.
Also, L ∈ DPCM, as a DPCM M can be built with 2 counters c1,c2, that on input v, pushes v to

the pushdown while in parallel, recording |v|a in counter c1, and recording |v| in counter c2. Then
at the end of the input, M subtracts the value of c1 from c2, so that c2 now contains |v|− |v|a. Then,
M pops |v| − |v|a characters from the pushdown, and then verifies that the next character on the
pushdown is a b, which then has the effect of verifying that position |v|a of v contains a b. ut

Corollary 2. DCM∪DCMR (DPCM.

It is still open as to whether DCM is a subset of DPCM, and whether DPCM is a strict subset
of DPCM. Though, the language L = {ci$wa jb jv | w,v ∈ {a,b}∗, j > 0, |w| = i} is in DCM and
DPCM. But we conjecture that L is not in DPCM, which would resolve both open problems. Even
though L can be accepted by a DCM with one counter and three reversals, we also conjecture that
all languages accepted by DCM with one counter and one reversal are in DPCM.

4 Restrictions when reading/not reading input letters

In this section, we generalize the concept of machines that can only decrease the store on the end-
marker. For example, in an NPCM, the first stack reversal only occurs on the end-marker. Here, we
will create a more general model that restricts what can happen when non-λ transitions are used on
the input.

10 Oscar H. Ibarra and Ian McQuillan

Definition 1. An sNPCM M is an NPCM with the restriction that the pushdown stack can only pop
on a λ transition.

An sNPCM is an slNPCM if all transitions that keep the same size of pushdown (ie. the top of
the pushdown symbol X is replaced with a symbol Y with potentially X = Y) are λ transitions.

For both types, M is reversal-bounded if the pushdown makes at most k alternations between
non-increasing and non-decreasing the size of its pushdown, for some odd k.

Definition 2. An NPCM M is in simple normal form if at every step, M can only do one of the
following:

1. reads an input symbol and pushes exactly one symbol on the stack,
2. reads λ and pops one symbol (i.e. the top symbol) from the stack,
3. reads λ and does not change the stack.

Note that for any machine in simple normal form, any transition that does not change the contents
of the pushdown must be a λ transition. Also, note that a simple normal form NPCM machine is an
slNPCM.

Lemma 7. An NPCM M over Σ can be converted to a slNPCM M′ over Σ ∪{#} in simple normal
form such that L(M) = h(L(M′)), where h is a homomorphism that erases # and fixes all letters of
Σ .

Proof. First, from M with pushdown alphabet Γ , create an intermediate M1 as follows: For all tran-
sitions that replaces A on the stack with Bγ , A,B ∈ Γ , replace this with transitions that replace A
with B, then pushes each symbol of γ , one at a time. Then, all transitions where a letter is replaced
with some γ ∈ Γ ∗ on the pushdown has |γ| ≤ 2.

Next, from M1, create M2 such that the only transitions that replaces A with B on the stack,
A,B ∈ Γ satisfy A = B, and are λ transitions. Indeed, M2 simulates M1, but for all transitions that
replaces A with B on the top of the pushdown, M2 instead pushes a primed symbol B′ (leaving A on
the stack). Then, when eventually decreasing, if a primed symbol is seen, M2 removes all primed
symbols plus one more, and continues the simulation as if the topmost primed symbol is the top of
the pushdown. Next, if there is a transition that reads a letter and pops A, M2 instead pushes A′ on
the letter, then on a λ , pops A′ then pops A

Lastly, let # be a new input symbol. From M2, create M′ such that, if a transition pushes on a λ

transition, it instead reads #.
Then M′ is in simple normal form, L(M) = h(L(M′)), where h is a homomorphism that erases #

and leaves the other symbols unchanged. ut

Notice that the normal form NPCM can have a non-reversal-bounded pushdown even if the origi-
nal machine has a reversal-bounded pushdown. Since NPCM is closed under homomorphism, the
following is obtained:

Corollary 3. NPCM= slNPCM= sNPCM.

We will show that reversal-bounded slNPCMs are equivalent to NCMs. We will need two lemmas
first.

Lemma 8. Every reversal-bounded NPCM M in simple normal form can be converted to M′ ∈NCM
such that L(M) = L(M′).

Input-Position-Restricted Models of Language Acceptors 11

Proof. Let M be an NPCM which makes at most k reversals on the stack for some k. Since the family
of NCM languages is closed under union, it is sufficient to assume that M makes exactly k-reversals
for some odd k.

We will show that we can construct a finite-crossing 2NCM M′ such that L(M) = h(L(M′)) for
some homomorphism h. The result would then follow, since finite-crossing 2NCMs are equivalent
to NCMs [9], and by closure of NCM under homomorphism [17].

We illustrate the construction for k = 3. Thus, M makes exactly 3 reversals: pushing, popping,
pushing, and popping. The input w to M′ has two “tracks”:

• Track 1 contains an encoding of the input x to M.
• Track 2 contains the string which represents the entire string that M pushes on its stack (from

the start to accepting) where the positions when the first popping started and ended and when
the second popping started and ended are marked.

Let P1,P2,E1,E2 be new symbols not in the input alphabet and stack alphabet of M. The input to M′

would have two tracks. The first track would look like:

x1E2x2E1x3P1x4P2

The second track would represent contents of the stack:

y1E2y2E1y3P1y4P2

where |xi| = |yi| for 1 ≤ i ≤ 4 (so, each symbol of each xi is in the same position of track 1 as the
corresponding symbol of yi on track 2). The 2-track input w to M′ indicates that the input to M is
x = x1x2x3x4, and M performs the following processes:

1. M reads input segments x1x2x3 while pushing y1y2y3 on the stack.
2. Then, M pops the stack content y3 on λ , leaving y1y2 on the stack. (These are indicated by the

markers P1 and E1.)
3. Then M reads input segment x4 while pushing y4 on the stack.
4. Finally, on λ , M pops the stack content y4 then y2.

The finite-crossing 2NCM M′, when given the two-track input w (provided with left and right
end-markers), simulates M and confirms the processes above. Then, M′ makes three turns on the the
input w. We also note that because the number of reversals the stack of M makes exactly is k, the
NCM M′ can remember the relative positions of P1,P2,E1,E2.

The 2-track input could have other forms, depending on the relative positions of the Pi’s and the
Ei’s (e.g., E1 P1 E2 P2 is another such form), and the processes of when to read/push and start/end
the popping is modified accordingly.

The above construction can easily be generalized for any k. The finite-crossing 2NCMs will need
markers P1, . . . ,P(k+1)/2 and markers E1, . . . ,E(k+1)/2. ut

Lemma 9. Every reversal-bounded slNPCM M can be converted to a reversal-bounded slNPCM
M′ in simple normal form such that h(L(M′)) = L(M).

Proof. First, from M with stack alphabet Γ , create M1 as follows: For all transitions that replaces A
on the stack with Bγ , A,B ∈ Γ ,γ ∈ Γ +, replace this with transitions that replace A with B that does
not read input, then pushes each symbol of γ , one at a time (reading the input on the first letter of
γ). Then, all transitions where any A ∈ Γ is replaced with γ on the pushdown has |γ| ≤ 2, and all
transitions that keep the same size of pushdown are λ transitions. (By the definition of slNPCMs,
all those transitions of M that replace A with B are on λ , and all those that pop are on λ .)

12 Oscar H. Ibarra and Ian McQuillan

Next, from M1, we will create M2 such that the only transitions that replaces A with B on the
stack, A,B ∈ Γ satisfy A = B. Then, for all transitions that replace A with B on the top of the stack,
A,B∈Γ ,A 6= B (then these must be λ transitions), then M2 simulates this as follows: M1 keeps track
of whether it is in “non-decreasing mode” or “non-increasing mode”.

• If it is in “non-decreasing mode”, then M2 instead pushes a primed symbol B′ (leaving A on the
stack) and continues the simulation as if B were the top of the stack. Then, when eventually in
decreasing mode, if a primed symbol is seen, M2 removes all primed symbols plus one more,
and continues the simulation as if the topmost primed symbol is the top of the pushdown.
• If the machine is “non-increasing mode”, then M2 leaves A on the top of the pushdown and

remembers B in the state and continues the simulation as if B was the top of the pushdown.
If this eventually pops B, then M2 pops A and continues. If the simulation does pop B, but
undergoes a reversal (so the simulation reverses), M2 pops A on λ transition, pushes B on a λ

transition, then continues the simulation.

It is clear then that L(M2) = L(M1), and M2 is reversal-bounded.
Lastly, introduce a new input letter #, and create M′ from M2. Then, M′ simulates M2 and for all

transitions of M that pushes a symbol on a λ transition, instead it will read input #.
Then L(M) = h(L(M′)), where h is a homomorphism that erases # and leaves the other symbols

unchanged. Furthermore M′ is in simple normal form, and is reversal-bounded if M is reversal-
bounded. ut

From this lemma, and since every reversal-bounded NPCM in simple normal form is in NCM,
and from closure of NCM under homomorphism [17], we can conclude:

Proposition 10. Every reversal-bounded slNPCM M can be converted to a NCM M′ such that
L(M) = L(M′).

But this is not true with only sNPCM, as we see next.

Proposition 11. Every reversal-bounded NPCM can be accepted by a reversal-bounded sNPCM.

Proof. Let M be a reversal-bounded NPCM. Then, for every pop transition that moves right on input
letter d, replace it with a transition that moves right on d that keeps the pushdown the same, followed
by a transition that pops without reading any input letter. ut

In this construction, the number of counters, and the reversal-bounds on the pushdown remain un-
changed.

Then, if an slNPDA is an slNPCM without reversal-bounded counters:

Corollary 4. If M is a reversal-bounded slNPDA, then L(M) is regular.

Proof. This is true as the constructions in the proofs above do not introduce any new counters. ut

We now show that Proposition 11 and Corollary 4 are not true when the pushdown stack is not
reversal-bounded.

Proposition 12. There is a non-regular language L such that:

1. L can be accepted by a DPDA in simple normal form (but the stack is not reversal-bounded).
2. L cannot be accepted by an NCM.

Input-Position-Restricted Models of Language Acceptors 13

Proof. Let L = {x#xR | x ∈ {0,1}∗}. Clearly, L is non-regular. For Part 1, we construct a DPDA M
which operates as follows, when given input w. M reads the symbols and pushes them in the stack
until it sees #, which it pushes on the stack, Then M pops the top of the stack (which is #), and
repeats the following process: It reads the next input symbol, say a, and remembers it in the finite
control and pushes a fixed dummy symbol D on top of the stack. Then it makes two consecutive
λ -moves, where on the first λ move, it pops D, and on the second, it verifies that the symbol on top
of the stack is the same as the symbol a remembered in the finite control. M accepts if it finds no
discrepancy during the process. Note that M is not reversal-bounded.

Part 2 follows from the fact that L cannot be accepted by an NCM [18]. ut

We note that restriction (2) in Definition 2 of an NPCM M in simple normal form is essential,
since if we remove this restriction, i.e., we allow M to read a symbol on the input while popping
the top of the stack, a DPDA whose stack makes only 1 reversal can clearly accept L = {x#xR | x ∈
{0,1}∗}, which cannot be accepted by an NCM. Hence, Proposition 10 and Corollary 4 are not valid
without restriction (2).

Now NPCMs are closed under union. But, they are not closed under intersection. In fact, it can
be shown using the proof of Theorem 4.2 in [12] that there are languages L1 and L2 accepted by
1-reversal DPDAs such that L1 ∩L2 cannot be accepted by any NPCM. However, from Lemma 8,
NPCMs in simple normal form are effectively closed under union and interesection since NCMs are
clearly closed under these operations.

Acknowledgements The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research
of I. McQuillan was supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant
2016-06172.

References

1. J.M. Autebert, J. Berstel, and L. Boasson. Handbook of Formal Languages, volume 1, chapter Context-Free
Languages and Pushdown Automata. Springer-Verlag, Berlin, 1997.

2. Suna Bensch, Johanna Björklund, and Martin Kutrib. Deterministic stack transducers. In Yo-Sub Han and
Kai Salomaa, editors, Implementation and Application of Automata: 21st International Conference, CIAA 2016,
Seoul, South Korea, July 19-22, 2016, Proceedings, volume 9705 of Lecture Notes in Computer Science, pages
27–38. Springer International Publishing, 2016.

3. Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded Parikh automata. International Journal of
Foundations of Computer Science, 23(08):1691–1709, 2012.

4. Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Affine parikh automata. RAIRO - Theoretical Informatics
and Applications, 46:511–545, 2012.

5. Ehsan Chiniforooshan, Mark Daley, Oscar H. Ibarra, Lila Kari, and Shinnosuke Seki. One-reversal counter
machines and multihead automata: Revisited. In Proceedings of the 37th International Conference on Current
Trends in Theory and Practice of Computer Science, SOFSEM’11, pages 166–177, Berlin, Heidelberg, 2011.
Springer-Verlag.

6. Ehsan Chiniforooshan, Mark Daley, Oscar H. Ibarra, Lila Kari, and Shinnosuke Seki. One-reversal counter
machines and multihead automata: Revisited. Theoretical Computer Science, 454:81–87, 2012.

7. Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan. Deletion operations on deterministic families of automata.
Information and Computation, TBA:1–20, 2017. Accepted.

8. Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Information and Control,
9(6):620–648, 1966.

9. Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for finite-turn multicounter machines.
Journal of Computer and System Sciences, 22(2):220–229, 1981.

10. Tero Harju, Oscar Ibarra, Juhani Karhumäki, and Arto Salomaa. Some decision problems concerning semilin-
earity and commutation. Journal of Computer and System Sciences, 65(2):278–294, 2002.

14 Oscar H. Ibarra and Ian McQuillan

11. J E Hopcroft and J D Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley,
Reading, MA, 1979.

12. O.H. Ibarra. Visibly pushdown automata and transducers with counters. Fundamenta Informaticae, 148(3–
4):291–308, 2016.

13. O.H. Ibarra and I. McQuillan. The effect of end-markers on counter machines and commutativity. Theoretical
Computer Science, 627:71–81, 2016.

14. O.H. Ibarra and I. McQuillan. Applications of store languages to reachability, 2017. Submitted.
15. O.H. Ibarra and I. McQuillan. On store languages of language acceptors, 2017. Submitted. A preprint appears in

https://arxiv.org/abs/1702.07388.
16. O.H. Ibarra and H.C. Yen. On the containment and equivalence problems for two-way transducers. Theoretical

Computer Science, 429:155–163, 2012.
17. Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM,

25(1):116–133, 1978.
18. Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilinear languages by one-way and two-

way deterministic machines. International Journal of Foundations of Computer Science, 23(6):1291–1306, 2012.

https://arxiv.org/abs/1702.07388

	Input-Position-Restricted Models of Language Acceptors
	Oscar H. Ibarra and Ian McQuillan
	Introduction
	Preliminaries
	Restrictions on/before the end of input
	Restrictions when reading/not reading input letters
	References

