
Modelling programmed frameshifting with frameshift machines. ∗

Mark Daley1, Ian McQuillan2,†

1 Department of Computer Science, Department of Biology
University of Western Ontario
London, ON, N6A 5B7, Canada

2 Department of Computer Science
University of Saskatchewan

Saskatoon, SK, S7N 5A9, Canada

Abstract

The translation of a messenger RNA into a functional protein is one of the most fundamental
molecular processes in a cell. Groups of three ribonucleotides, called codons, uniquely specify
amino acids to be used in the construction of a protein. When the translation process skips a
number of bases it is possible for the reading frame of the RNA to be shifted. By making use of
multiple reading frames, organisms and viruses are able to encode multiple proteins in a single
gene. We propose here a formal model of these frameshifting events and investigate its basic
mathematical properties and their relevance to biological systems. In addition, multiple time-
efficient algorithms are created for use in the study of frameshifting. Some of these algorithms
are created to work in general, for any type of frameshifting which could be found in organisms,
while others are optimized for known specialized types of frameshifting.

Key words: bioinformatics, frameshifting, formal language theory, genetic code, mathematical
modelling

Introduction

The fundamental dogma of molecular biology is that of a strand of DNA, encoding a gene, tran-
scribed into a messenger RNA which is then translated into a string of amino acids which comprises
the finished product: a protein. While this model is valid in a high-level sense, modern biological
discoveries have revealed that the process is much more complex, at every stage, than originally
thought. Indeed, DNA can be edited pre-transcription [1], several classes of post-transcriptional
RNA editing are now known, for example, intron removal and uridine insertion and deletion in
plants and kinetoplastids [2], as well as post-translational editing and assembly of proteins.

This complex processing of genetic information allows for a huge diversity of proteins (e.g. a
large proteome) from a relatively smaller genome; indeed, the human genome itself is estimated
to contain only 20000-25000 genes while C. elegans, a microscopic nematode of around 1000 cells,
has already 19,000 genes. Clearly, a large difference in the observed complexity of C. elegans and

∗Published in Natural Computing, 9, 239–261, 2010. https://doi.org/10.1007/s11047-009-9144-x
†Corresponding author, mcquillan@cs.usask.ca, ph: +306-966-2900, fax: +306-966-4884.

1

https://doi.org/10.1007/s11047-009-9144-x

humans must be related to the complexity introduced by the transformation of genetic information
rather than simply the number of genes.

In this paper, we will formally model and study one such transformational process: that of
frameshifting during the translation of RNA into a protein. Given the (perhaps edited) RNA tran-
script of a gene, the process of translation begins with the small ribosomal subunit binding upstream
of a particular sequence of three ribonucleotides called a start codon. The process of translation
proceeds linearly beginning with the start codon [3], with each substring of three ribonucleotides,
called a codon, indicating a single unique amino acid that should be placed next in the construction
of the protein. Note that the protein is also constructed in a linear fashion though, once translation
is finished and it is free of the ribosome, the protein will fold to form a three dimensional structure.
When a special type of codon, known as a stop codon, is reached, translation halts and the protein
is released into the cytoplasm.

Thus, the process of translation consists of the relatively straightforward mapping of triples
of ribonucleotides on to single amino acids. We can see immediately, however, that if for some
reason, we were to skip a single ribonucleotide, we would not only have a single-point error in our
translation, but every codon downstream from the shift would be affected. This is referred to as a
change of reading frame or frameshift. While it may seem that events of this nature are deleterious,
this is often not strictly the case in practice. Many organisms make use of intentional frameshifting
for purposes ranging from allowing for the simple production of multiple proteins from a single gene,
to a crude form of regulating gene expression in viruses. See, for example, the single-gene encoding
of the gag and gag-pol proteins in retroviruses [4]; the production of either gag or gag-pol during
translation depends on frameshift events which occur with a relatively fixed frequency, resulting in
a global production of different amounts of the two products.

The exact mechanism of frameshifting varies from case-to-case and organism-to-organism. Most
significantly for our purposes, in real systems, frameshift events may only take place at a subset
of codons which are flanked by very specific contexts. For a good survey of such frameshifting
mechanisms, organisms and sites at which this can occur, we direct the reader to [5] and [6].

This paper presents the frameshift machine as a formal model of the frameshifting process. In
section 2, we discuss mathematical notation and preliminaries. In section 3, we give the definition
of a frameshift machine and define some abstract properties that will be useful to discuss them.
In section 4, we will demonstrate some basic mathematical properties and construct a specialized
algorithm for certain realistic types of frameshifting. In section 5, we create a suite of algorithms
that work, in general, for different types of frameshifting, and in section 6 we present our conclusions.

The work in this paper differs from previous bioinformatics works on frameshifting. Most
algorithms developed in the past compare homologous proteins or DNA with proteins that differ
via frameshifting [7, 8, 9]. The algorithms developed here can be considered “exact algorithms”
in that they do not compare sequences for similarity, but rather, compare sequences that differ by
programmed frameshifting alone. Of particular interest are Propositions 0.4 and 0.5 which use an
algorithm that compares protein segments that differ via a single frameshift (using realistic types of
frameshifting) in linear time, even scanning the proteins in a unidirectional manner. Moreover, they
can produce regular expressions for exactly the RNAs that would produce these protein segments
in the same time as well. Algorithm 3, producing the regular expression can be seen as an analogue
to the study of synonymous/non-synonymous mutations when only one protein is produced from
an mRNA. In that case, the characterization is quite simple, as one can just examine the genetic
code for mutations which do not change the amino acids. But in the case where two (or more)
proteins are produced, a more complex algorithm (Algorithm 3) is necessary in order to understand
the synonymous mutations. Hence, exact algorithms are of definite interest. Furthermore, by
abstracting the frameshifting process in terms of a so-called “frameshift machine”, we are able

2

to analyze the process mathematically, and even construct algorithms regardless of the type of
frameshifting used.

Mathematical preliminaries

We will start by defining the mathematical notation needed in order to define and reason about
frameshift machines.

Let Z be the set of integers, let N be the set of positive integers and let N0 be the set of
nonnegative integers. For n ∈ N0, let Z(n) = {−n, . . . , n}, N(n) = {1, . . . , n}, N0(n) = {0, . . . , n}
and N−0 (n) = {−n, . . . , 0}.

We refer to [10] for formal language theory preliminaries. Let Σ be a finite alphabet, which is
simply a set of abstract symbols, such as the alphabet of nucleotides. We denote, by Σ∗ and Σ+, the
sets of all words and non-empty words, respectively, over Σ and the empty word by λ. A language
L is any subset of Σ∗. Thus, a language is any set of words over some alphabet. Let x ∈ Σ∗. We
let |x| denote the length of x. For i ∈ N, let x(i) be ai if x = a1 · · · ai · · · an, aj ∈ Σ, 1 ≤ j ≤ n,
and undefined otherwise. For i, τ ∈ N, x = a1 · · · an, let x(i, τ) = ai · · · ai+τ−1 if ai, . . . , ai+τ−1 are
defined and undefined otherwise. For i ∈ N0(|x|), let x←(i) be λ if i = 0 and x(1) · · ·x(i) otherwise.
For i ∈ N(|x|+ 1), let x→(i) be λ if i = |x|+ 1 and x(i) · · ·x(|x|) otherwise.

For n ∈ N0, let Σn = {w ∈ Σ∗ | |w| = n}, Σ≥n = {w ∈ Σ∗ | |w| ≥ n} and Σ≤n = {w ∈ Σ∗ |
|w| ≤ n}.

Let x, y ∈ Σ∗. We say x is a prefix of y, written x ≤p y, if y = xu, for some u ∈ Σ∗. We say x
is a suffix of y, written x ≤s y, if y = ux, for some u ∈ Σ∗.

We will also talk about both regular expressions and finite automata, defined in [10].

Frameshifting machines

We begin by defining a type of abstract machine which generalizes the biological process of trans-
lation while still allowing for shifts of reading frame. We will construct specific examples below.
Then, we define some abstract properties which we use to analyze frameshift machines.

Definition 0.1 A frameshift machine is a five-tuple M = (Σ,Γ, τ, E, δ) where

Σ is the finite input alphabet,

Γ is the finite output alphabet,

τ ∈ N is the frame size,

E ⊆ Στ is the set of end frames,

δ ⊆ Σ∗ × Στ × Σ∗ × Γ× Z(τ − 1),

δ finite, is the transition relation.

For a frameshift machine M = (Σ,Γ, τ, E, δ) and a transition (u,w, v, a, i) ∈ δ, we call u the
left context, v the right context, w the input, a the output, and i the shift amount.

For a frameshift machine M = (Σ,Γ, τ, E, δ), we define the derivation relation `M on Σ∗×Γ∗×N
by

(w,α, n) `M (w,αa, n+m+ τ)

if and only if (u,w(n, τ), v, a,m) ∈ δ and u ≤s w
←(n− 1), v ≤p w

→(n+ τ) where w, u, v ∈ Σ∗, α ∈
Γ∗, n, n+m+ τ ∈ N(|w|), a ∈ Γ,m ∈ Z. Then, let `∗M be the reflexive, transitive closure of `M .

3

U C A G

U UUU (f) UCU (s) UAU (y) UGU (c) U
UUC (f) UCC (s) UAC (y) UGC (c) C
UUA (l) UCA (s) UAA ($) UGA ($) A
UUG (l) UCG (s) UAG ($) UGG (w) G

C CUU (l) CCU (p) CAU (h) CGU (r) U
CUC (l) CCC (p) CAC (h) CGC (r) C
CUA (l) CCA (p) CAA (q) CGA (r) A
CUG (l) CCG (p) CAG (q) CGG (r) G

A AUU (i) ACU (t) AAU (n) AGU (s) U
AUC (i) ACC (t) AAC (n) AGC (s) C
AUA (i) ACA (t) AAA (k) AGA (r) A

AUG (m) ACG (t) AAG (k) AGG (r) G

G GUU (v) GCU (a) GAU (d) GGU (g) U
GUC (v) GCC (a) GAC (d) GGC (g) C
GUA (v) GCA (a) GAA (e) GGA (g) A
GUG (v) GCG (a) GAG (e) GGG (g) G

Table 1: The genetic code associating codons with amino acids, using the $ character for stop
codons [3].

Further, for w ∈ Σ∗ and L ⊆ Σ∗, let M(w) = {α | (w, λ, 1) `∗M (w,α, k), k ∈ N(|w|), w(k, τ) ∈
E} and M(L) =

⋃
w∈LM(w). Also, for α ∈ Γ∗ and L ⊆ Γ∗, let M−1(α) = {w | α ∈ M(w)} and

M−1(L) =
⋃
α∈LM

−1(α).

Although the type of machine described above is general enough to work over arbitrary finite
alphabets and frame sizes, we are primarily concerned here with the biological case. As such, we fix
the following notational conventions for the remainder of the paper. We use the alphabets ΣRNA =
{U,C,A,G}, ΓAA = {a, r,n,d, c, e, q, g, h, i, l, k,m, f,p, s, t,w, y, v} for the set of ribonucleotides
and amino acids, respectively. We use the underlines to disambiguate between individual amino
acids and variables, however we will omit the underlines in situations where it is clear from the
context. We also define the partial function which maps codons onto amino acids, φGEN : Σ3

RNA 7→
ΓAA, as done in the genetic code (see Table 1). Also, we define the set of stop codons, ESP =
{UAA,UAG,UGA}. We would like to note that the formal model could be used with alternate
genetic codes (which are known to occur in some organisms [12]) or stop codons coding for amino
acids [12], including the incorporation of the 21st amino acid, selenocysteine [5].

Then, usual translation (without frameshifting) is just a special case of the following machine,
MGEN = (ΣRNA,ΓAA, 3, ESP, δGEN) where δGEN = {(λ,w, λ, a, 0) | φGEN(w) = a}.

The derivation relation describes how the inputs can be converted to outputs in a single step.
If we have (w,α, n) `M (w,αa, n + m + τ), then w is the input (the RNA), α is the output (the

protein segment) we have generated so far, we are currently scanning the nth character of w, and
there is a transition (u,w(n, τ), v, a,m) which implies that the next τ letters of w is w(n, τ), the
machine outputs the letter a, and moves forward the codon size τ plus the frameshift amount m.
As an example,

(AUGGCCCGA, λ, 1) `MGEN
(AUGGCCCGA,m, 4) `MGEN

(AUGGCCCGA,ma, 7).

Lastly, everything before the current position of the input must end in u, and everything after the

4

codon of the input must begin with v which in the case of MGEN is always true since the left and
right contexts are always empty. The contexts are necessary however as often times a stimulatory
signal in the RNA distinct from the shift site is necessary in order to shift frames [5]. We will
discuss the contexts more shortly. Then, `∗GEN describes how inputs can be converted to outputs
after arbitrarily many steps.

Then if w is a gene, then M(w) would be the corresponding protein (or in the case where M
can frameshift, a set of proteins). Similarly, a set of genes L generates a set of proteins M(L).
Conversely, if we have a protein α, then M−1(α) is the set of RNAs which can generate α, and this
is extended to sets of proteins.

Next, we introduce some properties that we will use to analyze frameshift machines.

Definition 0.2 We call M functional if, for every w ∈ Στ and (u,w, v, a, i), (u′, w, v′, b, j) ∈ δ
implies a = b for a, b ∈ Γ, i, j ∈ Z, u, v, u′, v′ ∈ Σ∗. If M is functional, then we define δ(w) = a
where (u,w, v, a, i) ∈ δ for some w ∈ Στ , u, v ∈ Σ∗, a ∈ Γ, i ∈ Z. We call M injective if, for every
a ∈ Γ, (u,w, v, a, i), (u′, y, v′, a, j) ∈ δ implies w = y for w, y ∈ Στ , i, j ∈ Z, u, v, u′, v′ ∈ Σ∗. We call
M deterministic if, for every w ∈ Στ , (u,w, v, a, i), (u′, w, v′, b, j) ∈ δ implies both a = b and i = j
for a, b ∈ Γ, i, j ∈ Z, u, v, u′, v′ ∈ Σ∗. We call M nondeterministic otherwise.

Furthermore, we call M a downstream frameshift machine if δ ⊆ Σ∗×Στ×Σ∗×Γ×N0(τ−1) and
we call M an upstream frameshift machine if δ ⊆ Σ∗×Στ ×Σ∗×Γ×N−0 (τ −1). For A ⊆ Z(τ −1),
we call M an A-frameshift machine, if δ ⊆ Σ∗ × Στ × Σ∗ × Γ × A. We call M non-contextual if
δ ⊆ {λ}×Στ ×{λ}×Γ×Z(τ −1). In the case where M is non-contextual, we also write transitions
of δ as being ordered triples, where we leave out the left and right contexts and δ ⊆ Στ×Γ×Z(τ−1).

So, MGEN is a frameshift machine which is non-contextual since an amino acid is only determined
by a codon and not any other nucleotides to the left or right. It is also functional since each
individual codon only has a single amino acid associated with it in the genetic code. Lastly, MGEN

is deterministic since codons uniquely determine an amino acid and it always shifts forward three
letters (0-frameshifting). However, if we allow frameshifting, then our frameshift machine is still
functional, however, we get nondeterminism. This would be obtained by adding extra transitions
to MGEN.

To study realistic extensions of MGEN which allow frameshifting, we define the following:

Definition 0.3 We say that a frameshifting machine M = (Σ,Γ, τ, E, δ) is extended if Σ =
ΣRNA,Γ = ΓAA, τ = 3, ESP = E, δGEN ⊆ δ and M is functional.

Then a machine M is extended if and only if M can do everything MGEN can do, can potentially
also frameshift, however can still output only the same amino acid given a codon. Most known
types of biological frameshifting are extended and most are either a {0, 1}- or {0,−1}-machine.
For example, in the prfB gene of Escherichia coli (reviewed in [5]), the sequence CUUUGAC can
either terminate with the stop codon UGA, or shift forward one ribonucleotide. Thus, it would
be modelled with an extended frameshift machine with an extra transition (λ,CUU,UGAC, l, 1).
Thus, if we are scanning an RNA sequence and starting at the current position, the sequence
CUUUGAC appears, then we can either use the “standard” transition and output l and then hit a
stop codon thereby terminating, or the machine can use the new transition, which outputs l, and
then shifts forward so that the machine is scanning G and would likely next output d. In this case,
CUU becomes the input and UGAC the right context which is necessary to be directly after the
input in order for frameshifting to occur. This example, along with many others in [5] show why
the contexts are necessary.

Some of the results of this paper could be reformulated in terms of shift spaces, higher block
shifts and higher power shifts (see [11]). These constructs allow to scan words one block at a time,

5

and then shift forward by a constant amount, while outputting (the constructs are much more gen-
eral than only that purpose). In particular, it is possible to reformulate Proposition 0.1 in terms
of these notions. However, this formulation, as defined, does not accommodate different shifting
amounts, which is present whenever frameshifting occurs and is important for the General Algo-
rithms section. Also, we wanted a model that more closely maps on to the biological mechanisms
and nomenclature of frameshifting.

Properties and algorithms for extended machines

In this section, we will start by showing some interesting mathematical properties of extended
machines, which are of particular interest. In addition, we will develop some specialized algorithms
which will work only on these types of frameshift machines.

We note the following remark for arbitrary frameshift machines, relating the various mathemat-
ical properties, which follow directly from the definitions.

Remark 0.1 Let M = (Σ,Γ, τ, E, δ) be a frameshift machine. Then the following are true:

1. If M is deterministic, then M is functional,

2. If w ∈M−1(L), for some L ⊆ Γ∗, then wΣ∗ ⊆M−1(L).

Next, we use frameshift machines to examine an interesting property of the genetic code. Es-
sentially, it shows that if translation is forced to proceed one ribonucleotide at a time, then there
is only one RNA which could code for (except for the first and last nucleotides) each protein. It
examines combinatorially the various ways that codons can overlap with each other. We will also
discuss the relevance of this result below.

Let M = (Σ,Γ, τ, E, δ) be a frameshift machine. We define M← = (Σ,Γ, τ, E, δ′) to be the
frameshift machine where, for every (u,w, v, a, i) ∈ δ, we let (u,w, v, a, 1− τ) ∈ δ′. Then, at every
step of the derivation relation, we are moving forward exactly one symbol. It is clear that this type
of frameshift machine is unrealistic, although it may be of use, as we will see below.

Remark 0.2 If M is functional, then M← is functional.

The injective condition, as defined, is too strong. As such, we now define a weakened version.
Let M = (Σ,Γ, τ, E, δ) be a frameshift machine. Let k ∈ N. We say that M is k-pseudo-injective,
if, for every x1, x2 ∈ Γk, a ∈ Γ,

(w, λ, k0) `∗M (w, x1, k1) `M (w, x1a, k2) `∗M (w, x1ax2, k3),

(v, λ, l0) `∗M (v, x1, l1) `M (v, x1a, l2) `∗M (v, x1ax2, l3),

implies w(k1, τ) = v(l1, τ).
Roughly, M is k-pseudo injective if and only if, given x1ax2 with x1, x2 of length k and a of

length 1, there is only one possible input word of length τ which gets “translated” into a. This
is a slightly weaker condition than injectivity, but it has similar side effects. The following two
lemmata are quite technical, however they are used in the proposition below.

Lemma 0.1 Let M = (Σ,Γ, τ, E, δ) be an upstream k-pseudo-injective frameshift machine, let
x ∈ Γ≥2k+1 and let x = x1x

′ax2 with x1, x2 ∈ Γk, a ∈ Γ, x′ ∈ Γ∗. Then

(w, λ, k0) `∗M (w, x1, k1) `∗M (w, x1x
′, k2) `M (w, x1x

′a, k3) `∗M (w, x1x
′ax2, k4),

(v, λ, l0) `∗M (v, x1, l1) `∗M (v, x1x
′, l2) `M (v, x1x

′a, l3) `∗M (v, x1x
′ax2, l4),

implies w(k1) · · ·w(k2 + τ − 1) = v(l1) · · · v(l2 + τ − 1).

6

Proof. Assume
(w, λ, k0) `∗M (w, x1, k1) `M (w, x1a1, k2) `M · · ·

` (w, x1a1 · · · an, kn) `∗M (w, x1a1 · · · anx2, kn+1),

and
(v, λ, l0) `∗M (v, x1, l1) `M (v, x1a1, l2) `M · · ·

` (v, x1a1 · · · an, ln) `∗M (v, x1a1 · · · anx2, ln+1).

Then, ki+1 ≤ ki + τ and li+1 ≤ li + τ , for all i, 1 ≤ i < n since M is upstream. Also, w(k1, τ) =
v(l1, τ), . . . , w(kn−1, τ) = v(ln−1, τ) sinceM is k-pseudo-injective. Hence, w(k1) · · ·w(kn−1+τ−1) =
v(l1) · · · v(ln−1 + τ − 1).

Lemma 0.2 M←GEN is 1-pseudo-injective.

Proof. We first note by examining the genetic code that given a ∈ ΓAA with a 6= s, φGEN(a1a2a3) =
a, φGEN(b1b2b3) = a, a1, a2, a3, b1, b2, b3 ∈ ΣRNA implies a2 = b2.

Let M = M←GEN. Let w, v ∈ Σ∗RNA, a, b, c ∈ ΓAA. Assume,

(w, λ, k0) `M (w, a, k1) `M (w, ab, k2) `M (w, abc, k3),
(v, λ, l0) `M (v, a, l1) `M (v, ab, l2) `M (v, abc, l3).

Necessarily,

(w′, λ, 1) `M (w′, a, 2) `M (w′, ab, 3) `M (w′, abc, 4),
(v′, λ, 1) `M (v′, a, 2) `M (v′, ab, 3) `M (v′, abc, 4).

where w′ = w(k0, 5), v′ = v(l0, 5) since M←GEN only moves forward one input letter at each step.
Let w′ = a1a2a3a4a5, v

′ = a′1a
′
2a
′
3a
′
4a
′
5, ai, a

′
i ∈ ΣRNA.

Assume that b 6= s. Thus, there is only one possibility for a3; that is a3 = a′3. Assume also
that a 6= s, then a2 = a′2. So, assume a = s. Thus, a1a2, a

′
1a
′
2 is equal to UC or AG. However, no

two elements in φ−1
GEN(d), for any d ∈ ΓAA, can start with G and C. Thus, there is only one value

for a2; a2 = a′2. Then, assume c 6= s. Then, a4 = a′4. Assume c = s. Thus, a3a4 is either equal to
UC or AG. But, there is only one possibility for a3 and so there is also only one possibility for a4.
Hence, if b 6= s, a2a3a4 = a′2a

′
3a
′
4.

Assume that b = s. Then there is only one possibility for a2 since there is no two words in
φ−1(d), for some d ∈ ΓAA, that has U and A in the middle. Thus, there is also only one possibility
for a3, since a2 = U implies a3 = C and a2 = A implies a3 = G. Also, there is only one possibility
for a4, since no two words of φ−1(d), for some d ∈ ΓAA that start with either G or C can have two
different middle letters. Hence, a2a3a4 = a′2a

′
3a
′
4.

Combining these two lemmas together, since M←GEN is 1-pseudo-injective and upstream, we
obtain:

Proposition 0.1 Let x = ax′b, x ∈ Γ+
AA with a, b ∈ Γ. Then

(w, λ, 1) `∗M←GEN
(w, ax′b, k),

(v, λ, 1) `∗M←GEN
(v, ax′b, l),

implies w(2) · · ·w(k + 1) = v(2) · · · v(l + 1).

7

We are unsure if this result is known in another form, but a formal mathematical proof that it is
necessarily true follows quite easily using the frameshift machine. This is interesting mathematically
and also potentially interesting in the study of various genetic codes. If (unrealistically), translation
were forced to proceed by shifting forward one ribonucleotide, as opposed to three, then given a
string of amino acids, there would only be a single possible transcript that could code for that
particular protein (except for the first and last nucleotide). This is in sharp contrast to normal
translation, where a single codon can code for as many as six amino acids. This could be an
important property of the standard genetic code. Note however, that it is not possible to obtain all
possible sequences of amino acids using this approach. From the perspective of bioinformatics, it
may be of use for studying frameshifting. For example, it may prove beneficial, given one or more
proteins to “fill in” the “missing” amino acids and then uniquely determine the coding mRNA. We
will explore the relevance of this idea next.

Although examining such a sequence of amino acids as above would be unusual, it would
be useful to have two protein sequences which were obtained from the same RNA, but in two
consecutive reading frames (likely after a +1 or -1 frameshift). Here, we will start with two such
protein sequences (that are in two consecutive reading frames) and then try to determine the
original RNA. This will be relevant for any {0, 1} or {0,−1} frameshifting where there is at most
one occurrence of frameshifting in the gene. There are many such biological examples of this
scenario including the dnaX gene in E. coli, V. Cholerae, Y. pestis and N. meningitidis [5].

As a first step towards this problem, we start with a slightly easier problem. The next two
propositions takes as “input” two protein segments produced in two consecutive reading frames,
and tries to determine which reading frame each protein segment originated within. For arbitrary
segments, this is not always possible. We start by developing a complete characterization of exactly
which segments it is possible to do this for, and which segments for which this is ambiguous. It
turns out that this characterization forms a regular language. We will take the two protein segments
as input in the form (a1, b1) · · · (an, bn), where a1a2 · · · an is the first segment and b1b2 · · · bn is the
second.

Let us first define a function ρ used in the characterization of the next proposition. For a, b ∈
ΓAA ∪ {λ, $}, a 6= λ or b 6= λ, let

ρ(a, b) = {cdef | c, d, e, f ∈ ΣRNA, either φGEN(a) = cde or a = λ or (a = $, cde ∈ ESP),

either φGEN(b) = def or b = λ or (b = $, def ∈ ESP)}.

If a and b are produced in two consecutive reading frames respectively, then ρ(a, b) are exactly those
ribonucleotides which can produce a in the first frame and b in the second. The $ will represent
the end of a protein associated with a stop codon. Let Γ̂AA = {(a, b) | a, b ∈ ΓAA ∪ {$}, ρ(a, b) 6=
∅, ρ(b, a) 6= ∅}. The set Γ̂AA is relevant as we are trying to understand the situations whereby it is
ambiguous as to which protein segment occurs in which reading frame (whether a occur in the first
frame while b occurs in the second, or vice versa). This set along with ρ at each of these values is
presented in Table 2. Then we can show the following:

Proposition 0.2 Let M be an extended frameshift machine. Let w, v ∈ Σ∗RNA. Then

(w, λ, i) `M (w, a, i+ 3), (w, λ, i+ 1) `M (w, b, i+ 4),

(v, λ, j) `M (v, b, j + 3), (v, λ, j + 1) `M (v, a, j + 4)

if and only if w(i, 4) ∈ ρ(a, b) and v(j, 4) ∈ ρ(b, a).

8

ρ(s, l) = {UCUU,UCUC,UCUA,UCUG} ρ(l, s) = {CUCU,CUCC,CUCA,CUCG}
ρ(a, r) = {GCGU,GCGC,GCGA,GCGG} ρ(r, a) = {CGCU,CGCC,CGCA,CGCG}
ρ(e, r) = {GAGA,GAGG}, ρ(r, e) = {AGAA,AGAG,CGAA,CGAG}
ρ(i, y) = {AUAU,AUAC}, ρ(y, i) = {UAUU,UAUC,UAUA}
ρ(v, c) = {GUGU,GUGC}, ρ(c, v) = {UGUU,UGUC,UGUA,UGUG}
ρ(t, h) = {ACAU,ACAC}, ρ(h, t) = {CACU,CACC,CACA,CACG}
ρ(f, l) = {UUUA,UUUC}, ρ(l, f) = {CUUU,CUUC}
ρ(f, f) = {UUUU,UUUC}, ρ(p, p) = {CCCU,CCCC,CCCA,CCCG}
ρ(k, k) = {AAAA,AAAG}, ρ(g, g) = {GGGU,GGGC,GGGA,GGGG}
ρ(l, l) = {CUUA,CUUG}.

Table 2: The function ρ restricted to Γ̂AA.

Proof. Let a, b ∈ ΓAA. “⇐” Let x ∈ ρ(a, b) and y ∈ ρ(b, a). Then by inspection of the definition
of ρ and similarly with y, φGEN(x(1)x(2)x(3)) = a and φGEN(x(2)x(3)x(4)) = b. Hence, the first
statement follows.

“⇒” This also follows by inspection. If one exhaustively tests all pairs of codons where the last
two ribonucleotides of the first are the same as the first two of the second, such that both ρ(a, b)
and ρ(b, a) are defined, we arrive at ρ restricted to Γ̂AA.

We need two more definitions for the characterization. Let c, d, e, f ∈ ΣRNA. Let

η(c, d, e, f) = {(a, b) | cc′d′d ∈ ρ(a, b), ee′f ′f ∈ ρ(b, a), c′, d′, e′, f ′ ∈ ΣRNA, a, b ∈ ΓAA}.

Consider the following language:

Lduo = {(a1, b1) · · · (an, bn) | ∃ci, di, ei, fi, 1 ≤ i ≤ n, (ai, bi) ∈ η(ci, di, ei, fi),

di = ci+1, fi = ei+1, 1 ≤ i < n}.

Proposition 0.3 Let M be an extended frameshift machine. Then

(w, λ, 1) `M (w, a1, 4) `M · · · `M (w, a1 · · · an, 1 + 3n), (1)

(w, λ, 2) `M (w, b1, 5) `M · · · `M (w, b1 · · · bn, 2 + 3n), (2)

(v, λ, 1) `M (v, b1, 4) `M · · · `M (v, b1 · · · bn, 1 + 3n), (3)

(v, λ, 2) `M (v, a1, 5) `M · · · `M (v, a1 · · · an, 2 + 3n), (4)

for some w, v ∈ Σ∗RNA, a1, . . . , an, b1, . . . , bn ∈ ΓAA if and only if (a1, b1) · · · (an, bn) ∈ Lduo. More-
over, if the first statment is true, then for each i, 1 ≤ i ≤ n, w(3(i − 1) + 1, 4) ∈ ρ(ai, bi) and
v(3(i− 1) + 1, 4) ∈ ρ(bi, ai).

Proof. “⇒”. Let w, v satisfy the first condition. Thus, for 1 ≤ i ≤ n,w(3(i− 1) + 1, 4) ∈ ρ(ai, bi)
and v(3(i − 1) + 1, 4) ∈ ρ(bi, ai) by Proposition 0.2. For each 1 ≤ i ≤ n, (ai, bi) ∈ η(w(3(i − 1) +
1), w(3(i − 1) + 4), v(3(i − 1) + 1), v(3(i − 1) + 4)). Also, for each 1 ≤ i < n,w(3(i − 1) + 4) =
w(3((i+ 1)− 1) + 1) and v(3(i− 1) + 4) = v(3((i+ 1)− 1) + 1) and hence (a1, b1) · · · (an, bn) ∈ Lduo.

“⇐” Let (a1, b1) · · · (an, bn). Thus, there exist ci, di, ei, fi, 1 ≤ i ≤ n, (ai, bi) ∈ η(ci, di, ei, fi)
and for i, 1 ≤ i < n, di = ci+1, fi = ei+1.

Then, cic
′
id
′
idi ∈ ρ(ai, bi), eie

′
if
′
ifi ∈ ρ(bi, ai), for some c′i, d

′
i, e
′
i, f
′
i ∈ ΣRNA. Let

w = c1c
′
1d
′
1

(=d1)
c2 c′2d

′
2 · · ·

(=dn−1)
cn c′nd

′
ndn

9

w = U C U G A G A A A A G A G G G C

v = C U C A G A A A A G A G G G G A

s e k r g

l r k e g

s e k r g

Figure 1: An example where (s, l)(e, r)(k, k)(r, e)(g, g) ∈ Lduo.

and

v = e1e
′
1f
′
1

(=f1)
e2 e′2f

′
2 · · ·

(=fn−1)
en e′nf

′
nfn.

Then, by Proposition 0.2, for each i, 1 ≤ i ≤ n,

(w, λ, 3(i− 1) + 1) `M (w, ai, 3(i− 1) + 4), (w, λ, 3(i− 1) + 2) `M (w, bi, 3(i− 1) + 5),

(v, λ, 3(i− 1) + 1) `M (v, bi, 3(i− 1) + 4), (v, λ, 3(i− 1) + 2) `M (v, ai, 3(i− 1) + 5).

Hence, the statement follows.

Thus, Lduo characterizes all pairs of protein segments which can be read in two consecutive
reading frames where we cannot determine which protein comes from which reading frame (without
additional knowledge, for example, the RNAs).

Example 0.1 Consider the two protein segments α = sekrg and β = lrkeg. If these two segments
are produced starting in two consecutive reading frames, then one cannot tell if α is in the first
frame and β is in the second frame or β is in the first and α is in the second. Indeed, consider
the diagram in Figure 0.1 which provides two substantially different RNAs, where the first has
α in the first frame and β in the second frame, and the second RNA has them reversed. This
follows immediately from Proposition 0.3 (without needing to construct the RNAs) by noticing that
(s, l)(e, r)(k, k)(r, e)(g, g) ∈ Lduo. If we start with some string in Lduo, then we can guarantee that it
can be read in opposite reading frames from (potentially different) RNAs. Moreover, because Lduo

is a complete description of such strings, we cannot arrive at such an ambiguity as to which protein
is in which reading frame without being in Lduo. Notice also that this language is prefix-closed and
subword-closed. That means that if we have some string in this language, every prefix, and every
subword of that string is also in this language.

In each string of Lduo, the presence of some character in a string depends only on the previous
character in the string. Consider Table 3 and its caption. Indeed, this table describes what amino
acid pairs can appear directly after another amino acid pair in Γ̂AA.

Then, we can make a deterministic finite automaton which accepts the language Lduo. We
are able to collapse states based on similarity in terms of the symbols that can come next. This
corresponds to the label in the last column of Table 3. Let Mduo = (Q, Γ̂AA, q0, F, δ) where Q =
{1, . . . , 9}, F = Q, q0 = 1. Each input letter can only go into one state. Let θ be a function from
Γ̂AA into Q defined by mapping the amino acid pair in the first column of the table above to the
label in the last column. Then we define the transition function δ as in Table 4. This DFA has an
input alphabet of size 19, 9 states and 68 transitions and it accepts Lduo.

10

AA pairs in out next label
(s, l) (U,C) ΣRNA × ΣRNA all 1
(l, s) (C,U) ΣRNA × ΣRNA all 1
(a, r) (G,C) ΣRNA × ΣRNA all 1
(r, a) (C,G) ΣRNA × ΣRNA all 1
(e, r) {G} × {A,C} {A,G} × {A,G} (r, e), (e, r), (k, k), (g, g) 2
(r, e) {A,C} × {G} {A,G} × {A,G} (r, e), (e, r), (k, k), (g, g) 2
(i, y) (A,U) {U,C} × {U,C,A} (s, l), (l, s), (y, i), (h, t), (f, f), (p, p), (l, l) 3
(y, i) (U,A) {U,C,A} × {U,C} (s, l), (l, s), (i, y), (t, h), (f, f), (p,p), (l, l) 4
(v, c) (G,U) {U,C} × {U,C,A,G} (s, l), (l, s), (r, a), (y, i), 5

(c, v), (h, t), (f, f), (p, p), (l, l)
(c, v) (U,G) {U,C,A,G} × {U,C} (s, l), (l, s), (a, r), (i, y), 6

(v, c), (t, h), (f, f), (p,p), (l, l)
(t,h) (A,C) {U,C} × {U,C,A,G} (s, l), (l, s), (r, a), (y, i), 5

(c, v), (h, t), (f, f), (p, p), (l, l)
(h, t) (C,A) {U,C,A,G} × {U,C} (s, l), (l, s), (a, r), (i, y), 6

(v, c), (t, h), (f, f), (p,p), (l, l)
(f, l) (U,C) {A,C} × {U,C} (l, s), (i, y), (t,h), (p, p), (l, l) 7
(l, f) (C,U) {U,C} × {A,C} (s, l), (y, i), (h, t), (p,p), (l, l) 8
(f, f) (U,U) {U,C} × {U,C} (s, l), (l, s), (f, f), (p, p), (l, l) 9
(p, p) (C,C) ΣRNA × ΣRNA all 1
(k, k) (A,A) {A,G} × {A,G} (r, e), (e, r), (k, k), (g, g) 2
(g, g) (G,G) ΣRNA × ΣRNA all 1
(l, l) (C,C) {A,G} × {A,G} (r, e), (e, r), (k, k), (g, g) 2

Table 3: In each column respectively, we describe the amino acid pair (a, b), the pair (C,D) where
C are the possible nucleotides for the first letter in ρ(a, b) and D are the possible letters for the
first letter in ρ(b, a), pair (E,F) where E are the nucleotides which can appear in the last letter in
ρ(a, b) and F are those that can appear in the last letter in ρ(b, a), the next possible amino acid
pair, and lastly a label associated with different values for the next amino acid pair (a label based
on the different values for the fourth column).

δ(1, x) = θ(x), ∀x ∈ Γ̂AA.
δ(2, x) = θ(x), ∀x ∈ {(r, e), (e, r), (k, k), (g, g)}.
δ(3, x) = θ(x), ∀x ∈ {(s, l), (l, s), (y, i), (h, t), (p, p), (f, f), (l, l)}.
δ(4, x) = θ(x), ∀x ∈ {(s, l), (l, s), (i, y), (t,h), (p,p), (f, f), (l, l)}.
δ(5, x) = θ(x), ∀x ∈ {(s, l), (l, s), (y, i), (h, t), (r, a), (c, v), (p,p), (f, f), (l, l)}.
δ(6, x) = θ(x),∀x ∈ {(s, l), (l, s), (i, y), (t, h), (a, r), (v, c), (p,p), (f, f), (l, l)}.
δ(7, x) = θ(x),∀x ∈ {(l, s), (i, y), (t, h), (p, p), (l, l)}.
δ(8, x) = θ(x),∀x ∈ {(s, l), (y, i), (h, t), (p,p), (l, l)}.
δ(9, x) = θ(x),∀x ∈ {(s, l), (l, s), (p,p), (f, f), (l, l)}.

Table 4: The definition of the transition function in Mduo.

11

Given a string Lduo, (a1, b1) · · · (an, bn), it is possible not only to determine if this string is in
Lduo, but also to determine all possible RNAs which could have produced this pair, depending upon
whether a1 · · · an is in the first frame or the second.

Let w and v be as in equations (1), (2), (3), (4) of Proposition 0.3. Then, for every i,
1 ≤ i ≤ n,w(3(i − 1) + 1, 4) ∈ ρ(ai, bi), v(3(i − 1) + 1, 4) ∈ ρ(bi, ai). Given each i, and the
pair (ai, bi), then the second and third ribonucleotides of each string in ρ(ai, bi) and ρ(bi, ai)
can be uniquely determined (by inspection of Table 2). Moreover, the only pair for which
the first nucleotide is not unique is ρ(R,E). Thus, if w(3(i − 1) + 1, 4) ∈ ρ(r, e) and either
i = 1 or the nucleotide at the end of ρ(ai−1, bi−1) can end with both A and C, then the ri-
bonucleotide at position 3(i − 1) + 1 can be either A or C. This occurs if either i = 1 or
(ai−1, bi−1) ∈ {(s, l), (l, s), (h, t), (c, v), (y, i), (a, r), (r, a), (f, l), (p, p), (g, g)}. Lastly, the nucleotide
at position 3(n − 1) + 4 is always ambiguous since ρ(an, bn) necessarily has different last letters.
Similarly with v. Therefore, we construct Algorithm 1 which provides a simple regular expres-
sion for all possible values of w and v of minimal length in equations (1), (2), (3), (4). Each
letter of each regular expression is either a single ribonucleotide or a set of ribonucleotides in the
case that there is a set of possibilities. More generally, Algorithm 1 finds the largest i such that
(a1, b1) · · · (ai, bi) ∈ Lduo and determines the two regular expressions w and v for this prefix. If
i = n then the whole segment is in Lduo. Essentially, the algorithms scans each letter in Mduo until
the prefix is not in L(Mduo). The variable q will be the current state of the automaton Mduo.

Example 0.2 We will continue the example in Example 0.1. On the protein pair
(s, l)(e, r)(k, k)(r, e)(g, g), the output of Algorithm 1 would be i = 5 and

w = UCUGAGAAAAGAGGG{U,C,A,G}, v = CUC{A,C}GAAAAGAGGGG{U,C,A,G}.

This expression for w is exactly the set of possible RNAs which can produce sekrg in the first frame
with lrkeg in the second. While the expression for v is exactly those which can be produced in
switched frames.

Of course, we are not only interested in words in Lduo, but also in those where it is not ambiguous
as to which protein is being read in which reading frame. However, now that we have an algorithm
which determines the possible RNAs, we can extend this algorithm so that it works with strings
that are not in Lduo, and in such a case, will disambiguate as to which protein is in which reading
frame. In this way, it will use Algorithm 1 first and when it reads a letter which renders the prefix
out of Lduo, it will eliminate either w or v as a possible regular expression, leaving only the other.
The algorithm will terminate when we reach a letter that is not in ΓAA × ΓAA. In Algorithm 3
below, we will introduce the handling of stop codons and situations where one protein segment is
longer than the other.

If α ∈ Lduo, then Algorithm 1 can be used to create two regular expressions which are exactly
the possible RNAs of minimal length generating those protein segments. If α /∈ Lduo and there is
another letter in ΓAA × ΓAA, then Algorithm 2 will determine which one of isW or isV is true (at
most one can be true, otherwise a longer prefix would be in Lduo), and if the former is true, will
determine a regular expression w consisting of exactly the set of words w of minimal length such
that the following is true:

(w, λ, 1) ` (w, a1, 4) ` · · · ` (w, a1 · · · aj , 1 + 3j), (5)

(w, λ, 2) ` (w, b1, 5) ` · · · ` (w, b1 · · · bj , 2 + 3j),

12

Algorithm 1: determine prefix and dual RNA regular expressions

input: α = (a1, b1) · · · (an, bn), aj , bj ∈ ΓAA ∪ {λ, $},Mduo = (Q, Γ̂AA, F, q0, δ) .
output: i, the longest prefix such that (a1, b1) · · · (ai, bi) ∈ Lduo,

regular expressions w, v for all possible w, v of minimal length
corresponding to (a1, b1) · · · (ai, bi) in equations (1), (2), (3), (4) of Proposition 0.3.

i← 1
inDuo ← true //this will be true if the prefix of length i is in Lduo

q ← 1 //start state of Mduo

while i ≤ n and inDuo = true
q ← δ(q, (ai, bi))
if q is defined //true if (a1, b1) · · · (ai, bi) ∈ Lduo

if (ai, bi)← (r, e) and (i = 1 or i− 1 ∈ {(s, l), (l, s), (h, t), (c, v), (y, i), (a, r),

(r, a), (f, l), (p, p), (g, g)}) then w(3(i− 1) + 1)← {A,C}.
//as discussed above.

else let w(3(i− 1) + 1) be the unique first character of words in ρ(ai, bi).
if (ai, bi) = (e, r) and (i = 1 or i− 1 ∈ {(s, l), (l, s), (t, h), (v, c), (i, y), (a, r),

(r, a), (l, f), (p, p), (g, g)}) then v(3(i− 1) + 1)← {A,C}.
else let v(3(i− 1) + 1) be the unique first character of words in ρ(bi, ai).
let w(3(i− 1) + 2) and w(3(i− 1) + 3) be unique 2nd, 3rd chars of words in ρ(ai, bi).
let v(3(i− 1) + 2) and v(3(i− 1) + 3) be unique 2nd, 3rd chars of words in ρ(bi, ai).
i++

else inDuo ← false.
let w(3(i− 1) + 4) be the set of all last ribonucleotides of strings in ρ(ai, bi).
let v(3(i− 1) + 4) be the set of all last ribonucleotides of strings in ρ(bi, ai).
output i− 1,w,v

13

Algorithm 2: determine RNAs and order

input: α = (a1, b1) · · · (an, bn), aj , bj ∈ ΓAA ∪ {λ, $}, Mduo = (Q, Γ̂AA, F, q0, δ) be DFA above.
output: j such that a1, . . . , aj , b1, . . . , bj ∈ ΓAA, isW, isV, w and v,
let i, w and v be the outputs from Algorithm 1.
isW ← true //true as long as w is still a possible regular expression
isV ← true //true as long as v is still a possible regular expression
if i = n or (ai+1, bi+1) /∈ ΓAA × ΓAA, then output i, isW, isV, w, v

and only one of w, v is correct. //otherwise (a1, b1) · · · (aj , bj) /∈ Lduo

j ← i+ 1
//determines if w or v is only possible reg. exp., and thus the reading frame of each protein.
let X be the set of characters in the last position of w,
let Y be the set of characters in the last position of v,
let X ′ be the set of first characters of words in ρ(aj , bj)
let Y ′ be the set of first characters of words in ρ(bj , aj)
if X ∩X ′ = ∅, isW ← false.
if Y ∩ Y ′ = ∅, isV ← false. //one must be false otherwise i = n or i not maximal
while j ≤ n and aj , bj ∈ ΓAA

if isW is true
let X be the set of characters in the last position of w,
let X ′ be the set of first characters of words in ρ(aj , bj)
let w(3(j − 1) + 1) be the set of characters X ∩X ′
let w(3(j − 1) + 2) and w(3(j − 1) + 3) be unique 2nd, 3rd chars of words in ρ(aj , bj).
let w(3(j − 1) + 4) be the set of all last ribonucleotides of strings in ρ(aj , bj).

if isV is true
let Y be the set of characters in the last position of v,
let Y ′ be the set of first characters of words in ρ(bj , aj)
let v(3(j − 1) + 1) be Y ∩ Y ′
let v(3(j − 1) + 2) and v(3(j − 1) + 3) be unique 2nd, 3rd chars of words in ρ(bj , aj).
let v(3(j − 1) + 4) be the set of all last ribonucleotides of strings in ρ(bj , aj).

j++
if isW is true or isV is true, output j − 1, isW, isV, w and v.
else there is no RNA which can produce these two proteins.

14

while the latter determines a regular expression v consisting of exactly the set of words v of minimal
length such that the following is true:

(v, λ, 1) ` (v, b1, 4) ` · · · ` (v, b1 · · · bj , 1 + 3j), (6)

(v, λ, 2) ` (v, a1, 5) ` · · · ` (v, a1 · · · aj , 2 + 3j).

Moveover, if isW is false, then there are no such words w, and if isV is false, then there are no such
words v. Both these expressions only have a letter at each position or a set of letters (not a set of
words). Indeed, characters at position 1 + 3i, 0 ≤ i ≤ j of w and v can be a set of characters, while
those at 2 + 3i and 3 + 3i, 0 ≤ i < j cannot as the second and third letters of ρ(a, b) are unique for
each a, b ∈ ΓAA.

Example 0.3 Let’s say we have some string that is not in Lduo. For example, let α =
(s, l)(e, r)(k, k)(r, e)(c, v). We already know that (s, l)(e, r)(k, k)(r, e) ∈ Lduo since it is a prefix
of the example in Example 0.1. Indeed, one can accept this prefix using Mduo with the sequence
of states 1 → 1 → 2 → 2 → 2. But α /∈ Lduo since there is no transition from state 2 on
(c, v). On input (s, l)(e, r)(k, k)(r, e), Algorithm 1 constructs w = UCUGAGAAAAGA{A,G} and
v = CUC{A,C}GAAAAGAG{A,G}. Considering every word in ρ(c, v) starts with U and w ends
with either A or G, we cannot have w as a regular expression. Therefore, sekrc cannot be pro-
duced in the first frame while lrkev produced in the second (equation (5) cannot be true for any w).
However, there are words in ρ(v, c) that start with G. Indeed, we can eliminate w and modify the
regular expression v with v = CUC{A,C}GAAAAGAGGUG{U,C} are all possible RNAs which
code for both protein segments (which makes equation (6) true for all v in the regular expression
v), but necessarily lrkev is produced in the first frame and sekrc in the second.

The output of Algorithm 2 on this example is v. Of interest is that even though this regular
expression is of size greater than one (unlike the somewhat artificial example of Proposition 0.1), it
is of very small size. Conversely, if there is not any frameshifting, given a sequence of amino acids,
there is a large number of RNAs which could code for that sequence. Frameshifting drastically
reduces the possible RNAs or the “degeneracy”. The RNA would need to be extremely conserved
throughout evolution except for exactly the positions with small sets in the regular expression
above, in order to continue to generate both proteins.

We will extend this algorithm once more to take into account stop codons and reaching the ends
of individual protein segments. Algorithm 2 at present takes in strings of ordered pairs between
two protein segments and only continues while we have letters in ΓAA×ΓAA. Of course, one protein
could end with a stop codon and the other keep going or perhaps one or two of the protein segments
are incomplete proteins and of different lengths. We will use the new symbol $ to represent the end
of a protein associated with a stop codon. Then α is over (ΓAA ∪{λ, $})× (ΓAA ∪{λ, $}) where for
all j, aj 6= λ or bj 6= λ, and aj ∈ {$, λ} implies aj+1 · · · an = λ, bj ∈ {$, λ} implies bj+1 · · · bn = λ.
We will create Algorithm 3 which determines all possible RNAs of minimal length generating the
segments.

After using Algorithm 2, j will be the largest such that (a1, b1) · · · (aj , bj) ∈ ΓAA×ΓAA. Notice
that it is impossible for any RNA to produce a protein pair α if ($, $) is a letter, since ρ($, $) is
empty.

We will explain case 3 of Algorithm 3 in detail with case 4 being symmetric using v instead of
w, and cases 1 and 2 being simpler.

In case 3, we see that the ribonucleotides which produces aj and aj+1 can be any two codons
producing ajaj+1 such that there is a stop codon starting at position two, and the first nucleotide is

15

Algorithm 3: determine full RNAs

input: α = (a1, b1) · · · (an, bn), aj , bj ∈ ΓAA ∪ {λ, $}, aj 6= λ or bj 6= λ,
aj ∈ {$, λ} implies aj+1 · · · an = λ, bj = {$, λ} implies bj+1 · · · bn = λ,

Mduo = (Q, Γ̂AA, F, q0, δ) be DFA above.
output: isW, isV, w, v

let j, isW, isV, w, v be the outputs from Algorithm 2
if j = n then output isW, isV, w, v
j + + //then necessarily either aj /∈ ΓAA or bj /∈ ΓAA

let X be the set of characters in the last position of w,
let Y be the set of characters in the last position of v,
let X ′ be the set of first characters of words in ρ(aj , bj)
let Y ′ be the set of first characters of words in ρ(bj , aj)
if X ∩X ′ = ∅, isW ← false
if Y ∩ Y ′ = ∅, isV ← false

//case 1
if isW, and either aj ∈ ΓAA ∪ {$}, bj = λ or aj = $, bj ∈ ΓAA, or aj ∈ ΓAA, bj = $, j = n

if bj = λ let Z be those of φ−1
GEN(aj) which start with a letter from X

else let Z be those of ρ(aj , bj) which start with a letter from X,
remove last letter of w and append Z
j + +

//case 2
if isV, and either bj ∈ ΓAA ∪ {$}, aj = λ or bj = $, aj ∈ ΓAA, or bj ∈ ΓAA, aj = $, j = n

if aj = λ let Z be those of φ−1
GEN(bj) which start with a letter from Y

else let Z be those of ρ(bj , aj) which start with a letter from Y ,
remove last letter of w and append Z
j + +

//case 3
if isW, and aj ∈ ΓAA, bj = $, j < n //thus aj ∈ ΓAA, aj+1 ∈ ΓAA ∪ {$},bj+1 · · · bn = λ

let Z be words of 6 nucleotides which are in φ−1
GEN(aj)φ

−1
GEN(aj+1) which start with

one of the last letters of w and letters 2 through 4 is in ESP,
remove last letter of w and append Z

j ← j + 2
//case 4
if isV, and bj ∈ ΓAA, aj = $, j < n //thus bj ∈ ΓAA, bj+1 ∈ ΓAA ∪ {$},aj+1 · · · an = λ

let Z be words of 6 nucleotides which are in φ−1
GEN(bj)φ

−1
GEN(bj+1) which start with

one of the last letters of v and letters 2 through 4 is in ESP,
remove last letter of v and append Z

j ← j + 2

for j ← j to n,

if isW and aj 6= λ, append φ−1
GEN(aj) to w

if isW and bj 6= λ, append φ−1
GEN(bj) to w

if isV and aj 6= λ, append φ−1
GEN(aj) to v

if isV and bj 6= λ, append φ−1
GEN(bj) to v

output isW, isV, w, v.

16

aj+1

λ$

· · ·
b3b2b1

aja3a2a1

Figure 2: Case 3 of Algorithm 3.

any for which the RNA producing (a1, b1) · · · (aj−1, bj−1) can end (this is the set of last characters
of w). Then, the for loop at the end appends any codons which can produce aj+1 · · · an, as the top
segment (see Figure 2) until the protein pair has been finished.

Proposition 0.4 Let a1 · · · an, b1 · · · bm ∈ (ΓAA ∪ {$})∗, a1 · · · an−1, b1 · · · bm−1 ∈ Γ∗AA. Let M be
an extended frameshift machine. Then we can determine all w (if they exist) and all v (if they
exist) such that the following are true:

1. (w, λ, 1) ` (w, a1, 4) ` · · · ` (w, a1 · · · aj , 1 + 3j),
(w, λ, 2) ` (w, b1, 5) ` · · · ` (w, b1 · · · bj , 2 + 3j), for some w ∈ Σ∗RNA,

2. (v, λ, 1) ` (v, b1, 4) ` · · · ` (v, b1 · · · bj , 1 + 3j),
(v, λ, 2) ` (v, a1, 5) ` · · · ` (v, a1 · · · aj , 2 + 3j), for some v ∈ Σ∗RNA,

and produce regular expressions for each in time O(m+ n).

Notice that ($, a) /∈ Γ̂AA, (a, $) /∈ Γ̂AA for any a ∈ ΓAA ∪ {$}, which means that it is impossible
for both isW and isV to be true if either there is a $ in both {a1, . . . , an} and {b1, . . . , bm}, or
if there is a letter in α which is in ΓAA × {$}, or {$} × ΓAA. Thus, we arrive at the following
proposition:

Proposition 0.5 Let a1 · · · an, b1 · · · bm ∈ (ΓAA ∪ {$})∗, a1 · · · an−1, b1 · · · bm−1 ∈ Γ∗AA and either
ai = $, bi ∈ Σ or bi = $, bi ∈ Σ, for some i. Let M be an extended frameshift machine. Then at
most one of the following can be true:

1. (w, λ, 1) ` (w, a1, 4) ` · · · ` (w, a1 · · · aj , 1 + 3j),
(w, λ, 2) ` (w, b1, 5) ` · · · ` (w, b1 · · · bj , 2 + 3j), for some w ∈ Σ∗RNA,

2. (v, λ, 1) ` (v, b1, 4) ` · · · ` (v, b1 · · · bj , 1 + 3j),
(v, λ, 2) ` (v, a1, 5) ` · · · ` (v, a1 · · · aj , 2 + 3j), for some v ∈ Σ∗RNA.

We can determine which is true, and all possible words in Σ∗RNA for which this is true in time
O(m+ n).

Indeed, Algorithm 3 above operates in linear time (in fact, it operates in a unidirectional manner
on the input, scanning each protein segment one amino acid at a time). It will determine regular
expressions w for all w of minimal length making Proposition 0.5 (1) true, and all v for all v of
minimal length making Proposition 0.5 (2) true.

Therefore, if we have two protein segments, we can use these two propositions on the protein
segments where they start to differ from each other. Then we can determine all possible RNAs
which could code for them if there is one occurrence of frameshifting, and as long as the two
protein segments are in two consecutive reading frames. This would be the case with either {0, 1}-
or {0,−1}-frameshifting which are the most common.

17

General algorithms

Next, we consider the following biologically-motivated question: given a finite set of transcribed
genes and a fixed translation apparatus (that is, the translation mechanisms of a single organism,
with well-defined frameshifting rules), can we efficiently determine all possible translational prod-
ucts, allowing for frameshift events? It turns out that we are able to build a nondeterministic
finite automaton (NFA) accepting all such products in time linear in the sum of the lengths of the
transcribed genes and thus able to decide membership of an arbitrary protein product in quadratic
time. The power of this algorithm comes from the fact that it is sufficiently general, that it will
work for any type of frameshifting, as long as it is functional (for which all known types are). It
suffices to specify the type of machine, and the algorithm is automatically provided.

Let Σ be an alphabet and L ⊆ Σ∗, L finite. Then let sL =
∑

w∈L |w|.

Lemma 0.3 Let M = (Σ,Γ, τ, E, δ) be a fixed functional frameshifting machine. Let L ⊆ Σ≥τ with
|L| = m. Then, there exists a nondeterministic finite automaton M ′ = (Q,Γ, q1, F, δ

′) such that
|Q| = sL − τm+ 1, |δ′| ≤ sL(2τ − 1) and M(L) = L(M ′) and we can construct M ′ in time O(sL).

Proof. Let L = {w1, . . . , wm} ⊆ Σ≥τ . For 1 ≤ i ≤ m and 1 ≤ j ≤ |wi|−τ+1, let b(i,j) = δ(wi(j, τ)).
Let Q = {q1} ∪ {q(i,j) | 1 ≤ i ≤ m, 2 ≤ j ≤ |wi| − τ + 1} and we create the symbols q(i,1)

and set q(i,1) = q1, for every i, 1 ≤ i ≤ m. We create the transitions: q(i,j) ∈ δ′(q(i,l), b(i,l))
if and only if (u,wi(l, τ), v, b(i,l), k) ∈ δ, l + τ + k = j, u ≤s w

←
i (l − 1), v ≤p w→i (l + τ). Let

F = {q(i,j) | wi(j, τ) ∈ E, 1 ≤ i ≤ m, 1 ≤ j ≤ |wi|}.
Then |Q| = sL − τm+ 1 (there are (|w1| − τ) + (|w2| − τ) + · · ·+ (|wm| − τ) + 1 = sL − τm+ 1

states) and |δ′| ≤ m+sL(2τ−1) (for each position of each word, there are at most 2τ−1 subsequent
positions and since M is functional, at most 2τ − 1 transitions. Moreover, M ′ can be constructed
in O(sL) time since M is fixed.

It suffices to prove that M(L) = L(M ′).
“⊆” First, if λ ∈ M(L), then λ ∈ L(M ′). Assume then, that (wi, α1, k1) `M (wi, α2, k2) `M

· · · `M (wi, αx, kx), 1 ≤ i ≤ m,x > 1, where α1 = λ, k1 = 1 and αj = αj−1b(i,j−1), for 1 < j ≤ x.
We know q(i,1) ∈ δ′(q1, λ) (q1 = q(i,1) and δ′ is the transition function extended to Q × Σ∗ as

usual for finite automata [10]). Assume that q(i,kj) ∈ δ′(q1, αj), for j, 1 ≤ j < x. We also know
(wi, αx−1, kx−1) `M (wi, αx, kx). So, (u,wi(kx−1, τ), v, b(i,x−1), l) ∈ δ, where kx−1 + τ + l = kx, u ≤s

w←i (kx−1 − 1), v ≤p w
→
i (kx−1 + τ). Then, q(i,kx) ∈ δ′(q(i,kx−1), b(i,kx−1)) and thus q(i,kx) ∈ δ′(q1, αx).

Hence, M(L) ⊆ L(M ′).
“⊇” If λ ∈ L(M ′), then λ ∈ M(L). Assume that, for some i, 1 ≤ i ≤ m, x ≥ 2, q(i,kj+1) ∈

δ′(q(i,kj), bj), bj ∈ Γ for all j, 1 ≤ j < x. Then (wi, λ, 1) `∗M (wi, λ, 1). Let α = b(i,1) · · · b(i,x−1).
Assume that (wi, λ, 1) `∗M (wi, α

←(j − 1), kj), where 1 ≤ j < x. But bj = b(i,kj) = δ(wi(kj , τ)).
We already know q(i,kx) ∈ δ′(q(i,kx−1), bx−1). Then, (u,wi(kx−1, τ), v, b(i,kx−1), k) ∈ δ, kx−1 + τ + k =
kx, u ≤s w

←
i (kx−1 − 1), v ≤p w

→
i (kx−1 + τ). Thus, (wi, λ, 1) `∗M (wi, α

←(x− 1), kx).
Hence, L(M ′) ⊆M(L).

It is known that, given an NFA M = (Q,Σ, q0, F, δ) and z ∈ Σ∗, we can decide whether
z ∈ L(M) in time O(|Q| · |z|) [13]. Thus, we can decide whether z ∈M(L) in time O(sL · |z|). One
can also just use dynamic programming, whereby a matrix is calculated with the states on one axis
and the sequence z on the other. For each column i, it will contain a 1 if each row where z←(i) can
be read ends up in that state, and 0 otherwise. Because each state can only have 2τ −1 subsequent
states, we can calculate this matrix in time O(sL|z|). If z ∈ M(L), then |z| ≤ sL, so we can also
decide whether z ∈M(L) in time O(s2

L).

18

Proposition 0.6 Let M = (Σ,Γ, τ, E, δ) be a fixed, functional frameshifting machine. Let L ⊆ Σ≥τ

and let z ∈ Γ∗. Then we can decide whether z ∈M(L) in time O(sL · |z|).

This is quite fast and general, although it is still an open question as to whether the time
complexity can be improved while maintaining the generality for “realistic” types of frameshifting
much like that of the previous section.

From a biological standpoint, it may be more interesting to ask the opposite question: given
a set of desired proteins and a fixed translational mechanism which allows frameshift events, can
we efficiently determine a set of gene transcripts which would translate into the given proteins?
The fast algorithms of the previous section were dealing with a simplified version of this question.
Here we will try to solve the problem completely in a general way, but the solution does not run
as fast as the algorithms in the previous section. Indeed, we show that, as above, we can construct
a λ-NFA (this is a nondeterministic finite automaton with additional λ-transitions [10]) accepting
this set in time linear in the sum of the inputs and decide membership in the set in quadratic time.

Lemma 0.4 Let M = (Σ,Γ, τ, E, δ) be a fixed, functional frameshifting machine. Let l1 be the
length of the longest left context of M and let r1 be the maximum of the longest right context of M
and 2τ − 1. Let L ⊆ Γ+ with |L| = m. Then, there exists a λ-NFA M ′ = (Q,Σ, q0, F, δ

′) such that
|Q| = (|Σ| + 1)l1+r1+τ (sL + m + 1), |δ′| ≤ (|Σ| + 2τ)l1+r1+τ+1(sL + m − 1) and M−1(L) = L(M ′).
We can construct M ′ in time O(|sL|).

Proof. Intuitively, we create a λ-NFA by keeping three buffers in the states, one to hold the left
context, one to hold the current reading frame and one to hold the right context. By reading the
input, we fill up the buffers using transitions of the form (7), (8), (9), (10). We also keep track of a
position inside one of the words of L in the state. Then, if there is a transition of M that matches
the current reading frame of the buffer, the left and right buffers, and the letter at the position of
the word of L, then we shift the buffers by the frameshift amount plus τ , and increase the position
inside the word of L by one. The formal proof is quite a bit more technical and is to follow.

Let L = {z1, . . . , zm} ⊆ Γ+. Let X = {(i, j) | 1 ≤ i ≤ m, 0 ≤ j ≤ |zi|} ∪ {0}.
Let Σ1 = Σ ∪ {#}, # a new symbol (which we will use like a blank symbol). Let di be a

function from Σ∗1 to Σ∗1 which eliminates the first i characters. Let Q = Σl1
1 × Στ

1 × Σr1
1 ×X, q0 =

(#l1 ,#τ ,#r1 , 0), F = Σl1
1 × E × Σr1

1 × {(i, j) | 1 ≤ i ≤ m, j = |zi|} and δ′ is defined as follows:

q ∈ δ′(q, a), a ∈ Σ, q ∈ F (7)

(#l1 ,#τ−1a,#r1 , (i, 0)) ∈ δ′((#l1 ,#τ ,#r1 , 0), a), a ∈ Σ, 1 ≤ i ≤ m (8)

(#l1 ,#lya,#r1 , (i, 0)) ∈ δ′((#l1 ,#l+1y,#r1 , (i, 0)), a), a ∈ Σ, 1 ≤ i ≤ m, y ∈ Σ≤τ−1, l < τ (9)

(#j1u, y, va#j2−1, (i, j)) ∈ δ′((#j1u, y, v#j2 , (i, j)), a), (i, j) ∈ X, a ∈ Σ, 0 ≤ j1 ≤ l1, j2 > 0 (10)

u ∈ Σ≤l1 , v ∈ Σ≤r1−1, y ∈ Στ , (#j1u, y, v#j2 , (i, j)) ∈ Q− F

and

((dk+τ (#j1uyv))←(l1), (dk+τ (yv))←(τ), (dk+τ (v#r1))←(r1), (i, j + 1)) ∈ δ′((#j1u, y, v#j2 , (i, j)), λ),

j1, j2 ≥ 0, y ∈ Στ , u ∈ Σ≤l1 , v ∈ Σ≤r1 , a ∈ Σ, (i, j), (i, j + 1) ∈ X, (#j1u, y, v#j2 , (i, j)) ∈ Q − F, if
and only if (u′, y, v′, zi(j + 1), k) ∈ δ, u′ ≤s u, v

′ ≤p v.
“⊆” Let w ∈ M−1(L). Necessarily, |w| ≥ τ . Then (w,α1, k1) `M · · · `M (w,αl, kl), where

αj ∈ Γ∗, kj ∈ N(|w|) for 1 ≤ j ≤ l, k1 = 1, α1 = λ, αl = zi′ , for some i′, 1 ≤ i′ ≤ m and w(kl, τ) ∈ E.
Let p is the smallest integer such that w(kp, τ) ∈ E and αp = zi, for some i, 1 ≤ i ≤ m, which
must exist. Assume p = 1. Then w(1, τ) ∈ E and it is clear that (#l1 , w(1, τ),#r1 , (i, 0)) ∈

19

δ′(q0, w(1, τ)) ∩ F ∩ δ′(q0, w). Assume p > 1. Then, |w| > τ and l > 1. We will prove by induction
that for every j, 1 ≤ j ≤ p, (u,w(kj , τ), v, (i, |αj |)) ∈ δ′(q0, w

←(k)), where |αj | = j − 1, u =
#l1−kj+1w(1) · · ·w(kj − 1), if kj ≤ l1 and u = w(kj − l1, l1), otherwise (if we have not read enough
characters to have the left buffer full, then it is preceeded by the appropriate number of # symbols),
and v = w(kj+τ) · · ·w(|w|)#r1−|w|+kj+τ−1 with k = |w| if |w|−kj−τ+1 ≤ r1 and v = w(kj+τ, r1)
with k = kj + τ + r1 − 1, otherwise (the right buffer is full if there is enough characters of w left,
otherwise it is padded with # symbols).

For the base case, (#l1 , w(1, τ), v, (i, 0)) ∈ δ′(q0, w
←(k)) where v = w(τ + 1) · · ·w(|w|)#r1−|w|+τ

with k = |w| if |w| − τ ≤ r1 and v = w(τ + 1, r1) with k = τ + r1 otherwise, by using one transition
from (8), τ − 1 transitions from (9) and at most |v| transitions from (10).

Assume that, for 1 ≤ j < p, (u,w(kj , τ), v, (i, |αj |)) ∈ δ′(q0, w
←(k)), where |αj | = j −

1, u = #l1−kj+1w(1) · · ·w(kj − 1), if kj ≤ l1 and u = w(kj − l1, l1), otherwise and v =
w(kj + τ) · · ·w(|w|)#r1−|w|+kj+τ−1 with k = |w| if |w| − kj − τ + 1 ≤ r1 and v = w(kj + τ, r1)
with k = kj + τ + r1 − 1, otherwise. We know that (w,αj , kj) `M (w,αj+1, kj+1) and so
(u′, w(kj , τ), v′, b,m′) ∈ δ, u′ ≤s w

←(kj−1), v′ ≤p w
→(kj+τ), αj+1 = αjb, b ∈ Γ, kj+1 = kj+m′+τ .

Then, |αj+1| = j, u′ ≤s u, v
′ ≤p v (since u and v are of the longest possible lengths). Thus, if

u′′ = (dm
′+τ (uw(kj , τ)v)←(l1), y′′ = (dm

′+τ (w(kj , τ)v))←(τ), v′′ = (dm
′+τ (v#r1))←(r1), then

(u′′, y′′, v′′, (i, j)) ∈ δ′((u,w(kj , τ), v, (i, j − 1)), λ),

and so (u′′, y′′, v′′, (i, j)) ∈ δ′(q0, w
←(k)). Here y′′ = w(kj + m′ + τ, τ) = w(kj+1, τ), u′′ =

#l1−kj+1+1w(1) · · ·w(kj+1 − 1) if kj+1 ≤ l1 and u′′ = w(kj+1 − l1, l1) otherwise. Then, if
k = |w|, then v′′ = w(kj+1 + τ) · · ·w(|w|)#r1−|w|+kj+1+τ−1, kj+1 ≤ r1, and we are done. As-
sume k < |w|. In this case, the right buffer is not full and we will fill it up as much as possible.
Then (u′′, y′′, v′′′, (i, j)) ∈ δ′(q0, w

←(min{|w|, kj+1 +τ+r1−1}) where v′′ = x#l, x ∈ Σ∗, l > 1, v′′′ =
xx′#l′ , xx′ = w(kj+1 + τ) · · ·w(min{|w|, kj+1 + τ + r1 − 1}) using transitions of type (10), and we
are done, by induction. Hence, w ∈ L(M ′).

“⊇” Let w ∈ L(M ′). Thus, qj+1 ∈ δ′(qj , aj+1), 0 ≤ j < l′, aj+1 ∈ Σ ∪ {λ}, a1 · · · al′ = w with
ql′ ∈ F . Let p be the smallest number such that qp ∈ F . Let 1 ≤ i1 < · · · < ik = p be those indices
such that aij = λ. If k = 0, then w(1, τ) ∈ E and w ∈M−1(L). Assume k > 0. Then, there exists

i, 1 ≤ i ≤ m such that, for each j, 1 ≤ j ≤ k, qij−1 = (#l1−|uj |uj , yj , vj#
r1−|vj |, (i, j − 1)), for some

uj , yj , vj ∈ Σ∗,

qij = (#l1−|u′′j |u′′j , y
′′
j , v
′′
j#r1−|v′′j |, (i, j))

= ((dmj+τ (#l1−|uj |ujyjvj))
←(l1), (dmj+τ (yjvj)

←(τ)), (dmj+τ (vj#
r1)←(r1), (i, j))

and so (u′j , yj , v
′
j , zi(j),mj) ∈ δ, u′j ≤s uj , v

′
j ≤p vj . We wish to prove by induction that

(w,α1, x1) `M · · · `M (w,αk, xk), where for every j, 1 ≤ j < k, x1 = 1, xj+1 = xj + mj + τ, α1 =
λ, αj+1 = αjzi(j) and w(xj , τ) = yj , uj ≤s w←(xj − 1), vj ≤p w→(xj + τ) and |a1 · · · aij | =
xj + τ + |vj | − 1 (the last condition is necessary for the inductive step in order to prove that
vl ≤p w

→(xl + τ)).
For the base case, one can see by the construction that w(1, τ) = y1, u1 ≤s w

←(0) = λ, v1 ≤p

w→(τ + 1) and |a1 · · · ai1 | = τ + |v1|.
Assume that (w,α1, x1) `M · · · `M (w,αl, xl), 1 ≤ l < k, where, for every j, 1 ≤ j < l, x1 =

1, xj+1 = xj+mj+τ, α1 = λ, αj+1 = αjzi(j) and w(xj , τ) = yj , uj ≤s w
←(xj−1), vj ≤p w

→(xj+τ)
and |a1 · · · aij | = xj + τ + |vj |−1. Notice (u′l, yl, v

′
l, zi(l),ml) ∈ δ, u′l ≤s ul and v′l ≤p vl. We will first

try to show |a1 · · · ail | = xl + τ + |vl| − 1. Then, xl = xl−1 +ml−1 + τ , by the induction hypothesis
and |vl| = |vl−1|−ml−1− τ + |ail−1+1 · · · ail | since the right buffer gets shifted by ml−1 + τ and new

20

characters ail−1+1 · · · ail are read between qil−1−1 and qil−1. Thus,

|a1 · · · ail | = |a1 · · · ail−1
|+ |ail−1+1 · · · ail | = xl−1 + τ + |vl−1| − 1 + |ail−1+1 · · · ail |

= xl −ml−1 + |vl−1| − 1 + |ail−1+1 · · · ail | = xl + |vl| − 1 + τ.

Next, we will show ul ≤s w
←(xl − 1), yl = w(xl, τ) and vl ≤p w→(xl + τ). We know ul−1 ≤s

w←(xl−1 − 1), yl−1 = w(xj , τ), vl−1 ≤p w
→(xl−1 + τ) by the induction hypothesis and hence after

shifting by ml−1 + τ , we determine that u′′l−1 ≤s w
←(xl−1 + ml−1 + τ − 1) = w←(xl − 1), y′′l−1 =

yl = w(xl−1 + ml−1 + τ, τ) = w(xl, τ), v′′l−1 ≤p w→(xl−1 + ml−1 + τ) = w→(xl + τ). Moreover,
u′′l−1 = ul and vl = v′′l−1ail−1+1 · · · ail , as the states change between qil−1

and qil−1 (ail = λ which
is why vl can end with ail) by keeping the same left buffer and reading ail−1+1 · · · ail into the right
buffer. Thus ul = u′′l−1 ≤s w

←(xl− 1). Indeed, we already showed |a1 · · · ail | = xl + |vl| − 1 + τ and
so the number of characters read from w, |a1 · · · ail | minus |vl|+ 1 gives the starting position of vl
in w. This is xl + τ and hence vl ≤p w

→(xl + τ). So, u′l ≤s w
←(xl − 1), v′l ≤p w

→(xl + τ). Thus,
(w,αl, xl) `M (w,αl+1, xl+1) with xl+1 = xl +ml + τ . Hence M−1(L) = L(M ′).

Also, the size of Q has the stated number of elements, and the number of transitions is less
than or equal to m|Σ|(|Σ|+ 1)l1+r1+τ) +m|Σ|+m(|Σ|+ 1)τ−1 + (sL +m+ 1)(|Σ|+ 1)l1+r1+τ−1 +
(sL +m+ 1)(|Σ|+ 1)l1+r1+τ (2τ − 1) ≤ (|Σ|+ 2τ)l1+r1+τ+1(sL +m− 1)

Similarly to Proposition 0.6, we get the following:

Proposition 0.7 Let M = (Σ,Γ, τ, E, δ) be a fixed frameshifting machine. Let L ⊆ Γ+ and let
w ∈ Σ∗. Then, we can decide whether w ∈M−1(L) in time O(sL · |w|).

Proof. We can either build a single λ-NFA for all z ∈ L, or build separate λ-NFAs for each z ∈ L
accepting M−1(z) and then test if w ∈ M−1(z) for each z. We will adopt the latter approach.
To test if w is in the λ-NFAs, we could compute the λ-closure and then use an NFA membership
algorithm, but we will instead describe a dynamic programming approach. We will compute a
dynamic programming matrix with each λ-NFA, with the states on one axis and the sequence w
on the other. In the matrix, we will put a 1 at a position in column i if we can reach the row-
indexed state after reading the input w←(i), and a 0 otherwise. For each state, there at most 2τ−1
subsequent states on λ and at most one on each letter. Thus, we can calculate the matrix on that
word in time O(|z| · |w|) for each word z ∈ L, and then with all the λ-NFAs in time O(sL · |w|).

Here again, this algorithm will work for any type of frameshifting, so long as the machine is
functional. We next present the last algorithm.

Let Mi = (Qi,Σ, q0,i, Fi, δi) be λ-nondeterministic finite automata, for 1 ≤ i ≤ m. The product
automaton of M1,M2, . . . ,Mm, denoted by M1×· · ·×Mm, is defined as being the λ-nondeterministic
finite automaton M1 × · · · ×Mm = (Q1 × · · · × Qm,Σ, q0,1 × · · · × q0,m, F1 × · · · × Fm, δ), where
(q1, . . . , qm) ∈ δ((p1, . . . , pm), a) if and only if qi ∈ δi(pi, a), for all i, 1 ≤ i ≤ m. Let M be a
finite automaton. Then, M is the finite automaton obtained by removing loops. If we construct
a finite automaton M ′ from a frameshift machine M as in Lemma 0.4, then M ′ will be acyclic,
by the construction. Moreover, the only loops are using transitions of the form q ∈ δ(q, a), q ∈ F .
Thus, a shortest path from the initial state to a final state in M1 × · · · ×Mm will be present in
M1 × · · · ×Mm.

We now consider a more restricted version of the above question: given a fixed translational
mechanism and a finite set of protein products, does there exist a single gene transcript which can
generate exactly that set of proteins?

21

Proposition 0.8 Let L = {z1, . . . , zm} ⊆ Γ+ and let M = (Σ,Γ, τ, E, δ) be a fixed, functional,
frameshift machine. Then, there is an algorithm to determine whether there exists a string w ∈ Σ≥τ

such that L ⊆M(w), and moreover, if such a string exists, a representative of smallest length can
be constructed in time O(|z1| · · · · · |zm|).

Proof. Let Zi = {zi}, for 1 ≤ i ≤ m and let Mi = (Qi,Σ, q0,i, Fi, δi) be the λ-nondeterministic
finite automaton constructed from Lemma 0.4 such that Mi(Zi) = M−1(Zi), for each i, 1 ≤ i ≤ m.
Let M ′ = M1×· · ·×Mm be the product automaton of M1 through Mm. Thus, w ∈ L(M1×· · ·×Mm)
if and only if w ∈ L(M1) ∩ · · · ∩ L(Mm) = M−1(z1) ∩ · · · ∩M−1(zm). Then, there exists such a
w if and only if there exists a w such that L ⊆ M(w). Moreover, by the observations preceding
the Lemma, it suffices to decide whether there exists w ∈ L(M1 × · · · ×Mm). Moreover, since the
automaton is merely a weighted, acyclic graph with weights of 0 for a λ-edge and 1 otherwise, we
can determine the length of a shortest path from an initial state (or vertex) to a final state (or
vertex) in time O(|Q′| + |δ′|), where Q′ is the set of states (or vertices) in M ′ and δ′ is the set of
transitions (or edges) in M ′ (see the standard algorithm to determine the single-source shortest
paths in directed acyclic graphs, for example in section 24.2 of [14]). Indeed, |Q′| = O(|z1| · · · · · |zm|)
and similarly, |δ′| = O(|z1| · · · · · |zm|). In addition, it is possible to determine such a path in this
time, so we can determine a shortest such w. Hence, we can determine whether there exists w such
that L ⊆M(w) and output a smallest such w, if it exists in time O(|z1| · · · · · |zm|).

Conclusions

We have introduced the frameshift machine as a formal model of the biological event of the reading-
frame shift during translation. Our model allows us to mathematically study the relationships
between products and operands in both the context of an abstract transformation on strings and,
more significantly, in the special case of biological systems with RNA and amino acids.

We have demonstrated that this model yields efficient methods for investigating the relationships
between protein products and gene transcripts under translation with frameshifting. Specifically,
we can determine the set of all potential proteins for a given set of gene transcripts and given a
set of target proteins, we can efficiently determine a set of gene transcripts which will translate
to the desired protein. These algorithms will work for any type of frameshifting. Moreover, if we
are primarily interested in known types of frameshifting, then in this case we can determine all
possible RNAs which could code for two proteins at their point of divergence via frameshifting in
linear time.

In light of recent discoveries indicating that the number of genes in higher organisms is many
fewer than previously hypothesized, biologists are increasingly accepting the critical role that ge-
netic information processing events play in proteomic diversity. Frameshifting during translation is
one such process. We have presented here a mathematical foundation for studying the possibilities
introduced by these events and which will hopefully lead to a better understanding of this process
both theoretically and in vivo.

Acknowledgements

This research was supported by grants from the Natural Sciences and Engineering Research Council
of Canada, institutional grants of the University of Saskatchewan and the University of Western
Ontario and the SHARCNET Research Chairs Program.

22

References

[1] Prescott, D.: Genome gymnastics: Unique modes of DNA evolution and processing in ciliates.
Nature Reviews Genetics 1 (2000) 191–198

[2] Horton, T., Landweber, L.: Rewriting the information in DNA: RNA editing in kinetoplastids
and myxomycetes. Microbiology 5(6) (2002) 620–626

[3] Alberts, B.: Molecular Biology of the Cell, 5th edition. Garland Science, NY (2007)

[4] Shehu-Xhilaga, M., Crowe, S., Mak, J.: Maintenance of the gag/gag-pol ratio is important
for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. Journal of
Virology 75 (2001) 1834–1841

[5] Baranov, P.V., Gesteland, R.F., Atkins, J.F.: Recoding: Translational bifurcations in gene
expression. Gene 286 (2002) 187–201

[6] Stahl, G., McCarty, G.P., Farabaugh, P.J.: Ribosome structure: Revisiting the connection
between translational accuracy and unconventional decoding. Trends in Biochemical Sciences
27(4) (2002) 178–183

[7] Huang, X., Zhang, J.: Methods for comparing a DNA sequence with a protein sequence.
Computer Applications in the Biosciences 12(6) (1996) 497–506

[8] Guan, X., Uberbacher, E.C.: Alignments of DNA and protein sequences containing frameshift
errors. Comput. Appl. Biosci. 12(1) (February 1996) 31–40

[9] Birney, E., Thompson, J., Gibson, T.: PairWise and SearchWise: finding the optimal align-
ment in a simultaneous comparison of a protein profile against all DNA translation frames.
Nucleic Acids Res. 24 (1996) 2730–2739

[10] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA (1979)

[11] Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University
Press, Cambridge, NY (1995)

[12] Lozupone, C., Knight, R., Landweber, L.: The molecular basis of nuclear genetic code changes
in ciliates. Current Biology 11 (2001) 65–74

[13] Holub, J., Melichar, B.: Implementation of nondeterministic finite automata for approximate
pattern matching. In Champarnaud, J.M., Maurel, D., Ziadi, D., eds.: WIA ’98, Lecture Notes
in Computer Science. Volume 1660. Springer-Verlag (1999) 92–99

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second
Edition. The MIT Press (September 2001)

23

