
Inferring Stochastic L-systems Using a Hybrid
Greedy Algorithm

* **

Jason Bernard
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

jason.bernard@usask.ca

Ian McQuillan
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

mcquillan@cs.usask.ca

Abstract—Stochastic context-free Lindenmayer systems (S0L-
systems) are a formal grammar system that produce sequences
of strings based on parallel rewriting rules over a probability
distribution. The resulting words can be treated as symbolic
instructions to create visual models by simulation software.
S0L-system have been used to model different natural and
engineered processes. One issue with S0L-systems is the difficulty
in determining an S0L-systems to model a process. Current
approaches either infer S0L-systems based on aesthetics or rely
on a priori expert knowledge. This work introduces PMIT-S0L,
a tool for inferring S0L-systems from a sequence of strings
generated by a (hidden) L-system, using a greedy algorithm
hybridized with search algorithms. PMIT-S0L was evaluated
using 3600 procedurally generated S0L-systems and is able to
infer the test set with 100% success so long as there are 12 or
less rewriting rules in total in the L-system. This makes PMIT-
S0L applicable for many practical applications.

Index Terms—Lindenmayer Systems, Stochastic L-systems,
Inductive Inference, Plant Modeling, Natural Process Modeling

I. INTRODUCTION

Lindenmayer systems (L-systems) [1] are a well-known
mechanism for modeling processes. They have been partic-
ularly successful at modeling plants [2, 3], but have also
been applied to modeling other biological processes [4, 5, 6],
and geological processes [7]. Modeling a process in this
manner can allow for an improved understanding of the
process’ underlying mechanisms. Using plant modeling as an
example, understanding the algorithm of how plants grow may
allow plant physiologists to produce plants more suited to a
variety of different environmental factors [2, 8]. In addition,
simulating in silico saves time, money, and can even help
improve crop yields [8].

This research was undertaken thanks in part to funding from the Canada
First Research Excellence Fund and National Science, and from the Engineer-
ing Research Council.

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/ICTAI.2018.00097

Due to the importance of models, it is desirable to try
to automate their creation rather than the current practice of
experts creating them manually [5, 9]. This manual process has
been described as requiring “tedious and intricate handwork”
[5] that could be improved by an algorithm to “infer rules and
parameters automatically from real . . . images” [5]. Indeed,
as an example, 3D imagery can be captured for a plant
over time which could then be converted into sequences of
symbolic instructions for a simulation software to reproduce
the imagery. The final step is to infer the L-system that
produces the sequence of strings, which is called the inductive
inference problem and is the focus of this research.

L-systems [1] are a formal grammar system. Context-free
L-systems (0L-systems) are defined by an alphabet V (a set
of symbols), an axiom (a word over V), and a finite set of
rewriting rules (or productions) P . Each rule specifies that a
symbol in a string can be replaced by a string. For example,
the rule A → AB states that any symbol A in a string
can be replaced with an AB. In this example, A is called
the predecessor and AB is the successor. A derivation step
(denoted by ⇒) involves rewriting in parallel each letter in
a string using some rule with that letter as the predecessor
and replacing it with the successor. When derivation steps are
done iteratively, the resulting sequence of strings may then be
interpreted as instructions, usually visualized, for simulation
software such as the “virtual labratory” (vlab) [10], to act as
a model for a process over time. If a 0L-system has a single
replacement rule for each symbol in the alphabet, then it is
called a deterministic context-free L-systems (D0L-system)
[2]. A stochastic context-free L-system (S0L-system) is a 0L-
system, where each rewriting rule has an associated probability
[2, 3, 4, 5, 7]. To continue the previous example, the rules
A→ AB : 60% and A→ BB : 40% indicates that for every
copy of the symbol A in a word, there is a 60% probability
of replacing it with AB and a 40% probability of replacing it
with BB. With D0L-systems, the sequence of strings is well-
defined for the axiom and the set of rules. For S0L-systems,
different strings may result from different applications of the
rules to the axiom.

https://doi.org/10.1109/ICTAI.2018.00097

For many processes where multiple outcomes are possible,
a stochastic model is the most appropriate. As an example, for
plant modeling, S0L-systems have been used as a mechanism
to convert the stem of a plant into the apex [2, 3]. In this case,
say a symbol S represents the stem and has two successors.
One successor adds stem growth and other structural compo-
nents, e.g. branches, with a probability p1. The other successor
has a symbol for the apex, e.g. A, with probability p2. For
flowering plants, the apex then has a successor to create the
flower. All of the critical elements, the successors for S and A,
and the probabilities for p1 and p2 are created by hand either
experimentally by considering the aesthetics of the resulting
system or using a priori knowledge of the modeled plant [2, 3].
Also, S0L-systems were used by Mech [3] to model the growth
of trees under different environmental factors. Some examples
outside of plant modeling, include the use of stochastic L-
systems and a priori knowledge of environmental modifiers
to model secondary structure of protein folds [4], and using
stochastic rules to produce curves similar to facies’ segment
[7].

Another interesting potential use of stochastic models, is
the ability to use the large number of output images to train
computer vision problems. This is similar to the approach
used in [11], where they used many images from an L-system
model to augment a limited number of real images to train a
deep learning network for the purposes of leaf counting. This
worked better than using real images alone. Thus, stochastic
L-systems and automatic inference of them are of interest
towards this goal.

Given a sequence of input strings ω0, . . . , ωn, the challenge
is to find the “best” S0L-system that will initially generate
those strings in order. Although there has been some research
on inferring D0L-systems in this fashion [12, 13, 14, 15, 16],
with [12] providing a recent successful approach as the authors
were able to infer 28 of 28 D0L-systems correctly, there has
been less work on inferring S0L-systems. Thus, it is now
desirable to attempt to infer the strictly more difficult S0L-
systems. Notice that this problem is more complicated as there
is never a unique solution (some of the other challenges to
inferring S0L-systems will be discussed in Section II).

This paper introduces the Plant Model Inference Tool for
Stochastic Context-Free L-systems (PMIT-S0L) that infers
S0L-systems based on a single observed sequence of strings. It
is implemented in a domain agnostic fashion, and is not strictly
tied to plant modeling. This paper presents an evaluation for
four different implementations of PMIT-S0L, all of which
are based conceptually on a greedy decision process. The
four algorithms are: greedy algorithm, random forest, greedy
algorithm hybridized with brute force search, and greedy
algorithm hybridized with genetic algorithm. Although S0L-
systems are used frequently in the literature [2, 3, 4, 5, 6, 7],
specific S0L-systems are rarely published. So although it
would be preferred to use a test set of known S0L-systems,
PMIT-S0L is evaluated using procedurally generated S0L-
systems with up to 9 symbols and up to 14 rewriting rules
that are designed to be similar to existing known L-systems.

A further challenge is defining a useful metric of success.
For D0L-systems, success may be defined as finding an L-
system that generates the strings (within a practical execution
time). However, with S0L-systems there is a large number
of L-systems that could generate the strings, so compatibility
of an S0L-system to a sequence of strings is not so clear.
Described in greater detail in Section II, for this paper, the
argument is made that one mechanism of measuring success
is to find an S0L-system with at least as high a probability
of producing the sequence of strings as the “real” (original
hidden) L-system that generates them.

PMIT-S0L is based on a greedy decision process; however,
on initially implementing this process using a greedy algorithm
alone, it was found to rarely infer S0L-systems with even
as few as 3 rewriting rules. One approach to addressing the
limitations of a greedy algorithm is to use random forest, and
although slightly better it was still not practical algorithm for
inferring S0L-systems. The next step was to hybridize the
greedy algorithm with a search algorithm. Using a genetic
algorithm as the search algorithm, the hybridized approach
was 100% successful at inferring S0L-systems with 5 rewriting
rules or less (97% at 6 rewriting rules). However, when
using brute force search, PMIT-S0L was 100% successful at
inferring all 3600 of the generated S0L-systems with at most
12 rewriting rules, in less than 4 hours.

The remainder of this paper is structured as follows. Section
II provides a formal definition of stochastic L-systems, dis-
cusses some of the unique challenges associated with inferring
S0L-systems, and then describes how a greedy algorithm may
be used to infer S0L-systems. Section III will discuss the
methodology used to evaluate PMIT-S0L at inferring S0L-
systems. Section IV provides the results of the evaluation.
Finally, Section V will conclude the paper and discuss the
future of PMIT-S0L as a tool for inferring S0L-systems.

II. INFERRING S0L-SYSTEMS USING GREEDY
ALGORITHM

PMIT-D0L is an earlier approach for inferring D0L-systems.
The first PMIT-D0L implementation in [17], searched for
successors as an ordered sequence of symbols in a search space
that was pruned using logic based on necessary conditions. A
significant improvement was made when it was recognized
that every successor must be a subword of the input strings,
and that searching for an ordered sequence of symbols could
be replaced by searching for successor lengths [12, 18]. The
successor length-based search space was made easier to search
by using diophantine equations to restrict the solution space
to only those solutions that are possible [12, 18]. Critically,
with a D0L-system, anything learnt about the successor of
a symbol A using any method is true for every copy of A
due to the deterministic nature of the D0L-system. For S0L-
systems, this is not true as any facts determined about the
successor for an instance of A are not necessarily true for
other instances of A, because it is always possible that any
instance of A might be rewritten to a different successor.
Without making assumptions with respect to the number of

successors for each symbol in the alphabet, inferring an S0L-
system requires finding the successor for every instance of
every symbol. This paper investigates inferring an S0L-system
by scanning the words symbol-by-symbol and choosing each
successor by preferring successors that have been previously
selected using a greedy algorithm.

As previously described informally, S0L-systems will be
formally defined, as in [19]. First, given an alphabet V , then
V ∗ is the set of all words over V . Also, given a word x ∈
V ∗, |x| is the length of x. An S0L-system is a tuple G =
(V, P, p, ω), where V is an alphabet, ω ∈ V ∗ is the axiom, P
is a finite set of productions a → u, a ∈ V , u ∈ V ∗ (where
a is called the predecessor and u is the successor) with at
least one production for each letter, and p is a function from
P to (0, 1] such that, for all A ∈ V ,

∑
A→α∈P

p(A → α) = 1.

Some S0L-systems are defined as having multiple axioms with
a probability of each occurring, but this is not necessary for
inference from a single sequence.

Given x, y as words over V , a derivation d of x to y of
length n consists of two items:

1) a trace, which is a sequence of n+1 words ω0, . . . , ωn
such that x = ω0 ⇒ · · · ⇒ ωn = y

2) a function σ from the set of pairs {(i, j) | 0 ≤ i <
n, 1 ≤ j ≤ |ωi|} into P such that, for i from 0 to n−1,
if ωi = a1 . . . am, aj ∈ V , then ωi+1 = α1 . . . αm where
σ(i, j) = (aj → αj) for j from 0 to m.

Given such a derivation d, the probability of ωi = a1 . . . am
deriving ωi+1, denoted p(ωi ⇒ ωi+1, d) is

∏m
j=1 p(σ(i, j)).

Further, the probability of d occurring is p(d) =
∏n−1
i=0 p(ωi ⇒

ωi+1, d). The computation of the probability that an S0L-
system produces a derivation is used as the criteria for the
greedy algorithm to make a selection (described below), and
as a fitness value for the hybrid of the greedy algorithm with
the two search algorithms.

For inference, the input is a trace of the derivation, and the
goal is to find a “good” L-system that has a derivation with
this trace, and to determine the derivation. In fact, suppose an
inference algorithm exists that can determine the derivation,
by selecting a successor for every symbol of every string
(except the last one). Then an S0L-system can be created
by assigning a probability to each successor equal to the
number of times it was selected divided by the total number
of instances of that symbol (in all strings before the last
string). For example, if the inference algorithm concludes that
successor x1 is used for 9 out of 10 instances of A, then the
probability for A → x1 is 0.9. This is justified because if
the successor has been used for 90% of the instances of a
symbol, it is expected that the probability of selection should
be 90%. However, this does not imply that the hidden S0L-
system has exactly these probabilities. Table I shows two
abstracted S0L-systems, where in parentheses is the number of
times that each successor was selected to produce a sequence
of strings. The odds column computes the probability of the
derivation occurring. If both S0L-systems produce the same
sequence of strings, then the first L-system is more likely

TABLE I
TWO ABSTRACTED S0L-SYSTEMS WITH ODDS THAT IT WOULD GENERATE

A SPECIFIC SET OF STRINGS

Successors Odds
A→ x1 : 90%(9)

0.99 × 0.11 = 3.87%
A→ x2 : 10%(1)
A→ x3 : 50%(5)

0.55 × 0.55 = 0.097%
A→ x4 : 50%(5)

to have produced the strings. Furthermore, all other things
being equal, the probability will be higher if one or a few
successors have a high probability, than if the probabilities
are more evenly distributed, which can be seen in Table I. For
example, suppose that the inference algorithm has selected x1
as the successor for A eight times and x2 once. It now must
select a successor for the tenth instance of A, and it can pick
either x1 or x2 (meaning that the next |x1| symbols match x1
and the next |x2| also match x2), then the best local choice is
to select x1 as it improves the odds that the resulting L-system
produces the strings. Using the two concepts explained so far,
a greedy algorithm can infer an S0L-system, and perhaps even
the original system using the following process.

Consider a sequence of strings (ω0 ⇒ · · · ⇒ ωn) of the
form previously described. Furthermore, suppose that a search
algorithm has produced a sequence y1, . . . , yN that represent
candidate successor lengths, where N is the expected number
of successors in the S0L-system (the process for selecting a
value for N is described after the next paragraph), and let z =
1 (a programming variable used as in index for the sequence
of successor lengths). For each A ∈ V , maintain a list of
successors found so far. For each word ωi, 0 ≤ i ≤ n − 1
in sequence, scan each symbol from left to right maintaining
a pointer to the next symbol to be produced in ωi+1. The
successor selection process works by applying the following
abstract rules in order described below:

1) Last symbol of current word,
2) Existing successor matches current symbol,
3) Build a successor of length yz ,
4) Iterate over all possible successor lengths. For each

length, check if remaining symbols have matching suc-
cessors; or,

5) Terminate with error.
For rule 1, if the algorithm is scanning the last symbol

(am) in ωi, the successor picked consists of all the remaining
symbols in ωi+1 starting from the current pointer location.
Rule 2 states that for the xth symbol ax in ωi with x 6= m,
choose a successor α from the list of successors of ax that
matches the next |α| symbols in ωi starting from the current
pointer location. If more than one successor matches, then a
so-called look ahead process is used to consider the remaining
symbols in ωi to try to match them by hypothesizing each
matching successor of ax as the correct successor. The look
ahead process stops for the first successor that results in all the
remaining symbols in ωi matching. Otherwise, it selects the
the successor with the largest number of successive matches.
In case of a tie, it selects the longest successor. If rule 2 fails

to produce a successor, then under rule 3, the successor for
ax is made of the next yz symbols in ωi+1 starting from
the current pointer location, and z is incremented by 1. If
z > N , then rule 4 uses the look ahead process from rule
2 by instead hypothesizing successor lengths up to 10 (the
maximum length of a successor considered in this paper, which
is discussed in Section III-B). The pointer is then advanced
by the length of the successor picked. If no successor can be
found for a symbol, then the algorithm terminates and reports
to the operator that N should be increased (note, that is for
purposes of controlling the experiments, in practice, this could
be automated).

The process described above should be considered as the in-
ner loop for a search algorithm. Thus, in essence, the search al-
gorithm is finding the best list of choices for successor lengths
to be made when the greedy algorithm is uncertain of what to
pick. Two algorithms are used to implement the search: brute
force and genetic algorithm. For the search, a literal encoding
scheme [20] is used, with N integer values where the values
represent successor lengths. A standard genetic algorithm is
used with roulette wheel selection, uniform crossover, uniform
mutation, and elite survival mechanisms [20]. As previously
mentioned, the fitness value is the probability that a candidate
solution produced the input strings. Using a hyperparameter
search [21], a population size of 50, crossover weight of 0.9,
and mutation weight of 0.01 were found to be optimal. N ,
the number of dimensions for the search, is an estimation of
the number of successors believed to be in the S0L-systems,
which is unknown. Since it is difficult to compute N precisely,
there are three possible outcomes. First, N may be exactly
right. Second, N may be too small in which case rule 4, the
look ahead process, may find the successors. Third, N may
be too large, which increases the size of the search space, so
pruning techniques can be used to eliminate unneeded parts
of the search space (pruning is still done for the other two
conditions, but it is much more prevalent for this condition).
For this paper, the evaluations for PMIT-S0L are reported for
the first two conditions for N . The condition where N is too
large was evaluated but was found to be very slow because
the pruning could not reduce the space very much, as there
are such a large number of possible S0L-systems that could
produce the sequence of strings, i.e. there were not very many
impossible sections of the search space. Further investigation
should be done to look for better pruning methods; however,
in the interim, in practice an acceptable solution is to use a
single execution using the largest value for N that will execute
in an acceptable time frame.

Example 1: Let ω1 = AAA and ω2 = AAAAAABBBB.
Furthermore, assume that N = 1, and the search algorithm has
found the solution sequence of y1 = (3) and z is initialized
to 1. An initially empty list of successors is created for A
and B. A pointer is initialized pointing to the first A in ω2.
The scanning process finds the first A in ω1. Since the list of
successors is empty, it uses the yz from the solution (3) and
so assigns A the successor AAA and adds it to the list. The
pointer is advanced 3 symbols to the 4th symbol A in ω2.

The process now finds the second A in ω1. This time it finds
the successor AAA in the list matches the next three symbols
in ω2 so it picks it as the successor for the second A in ω1.
The pointer is advanced three positions to the first B in ω2.
The third A in ω1 is the last symbol so it receives a successor
composed of all remaining symbols in ω2, which is BBBB.

This process has a logical limitation that it may make
incorrect choices when for some symbol A, if it has two
or more successor where one is the prefix of another. This
limitation is demonstrated in the example below.

Example 2: Let ω1 = AAA and ω2 = AAAAAABBB.
Furthermore, suppose that the successors for A in the original
system are AAA (prob p1);AAAB (prob p2);BB (prob p3).
Finally, assume that the search algorithm has a candidate
solution with the value 3. As before, the first A will be
assigned the successor AAA based on the search algorithm’s
choice. The second A will be also assigned AAA based on
the greedy choice, but this decision is incorrect as the desired
choice is AAAB. Finally, the third A will also have the wrong
successor of BBB. In this case, PMIT-S0L will not fail to find
some S0L-system; however, there is an element of chance to
whether the solution will be the original or best S0L-system
depending on the exact successors, the probabilities of the
successors, and the order in which they are encountered.

III. METHODOLOGY FOR EVALUATION

This section describes how PMIT-S0L was evaluated and
the results of the evaluation. First, the metrics used to evaluate
PMIT-S0L are described. As discussed in Section 1, since there
are very few specific S0L-systems to be found in the litera-
ture, the data used to evaluate PMIT-S0L was procedurally
generated and this generation process is described.

A. Performance Metrics

When inferring D0L-systems in [12, 13, 14], the main
measure of performance used is whether or not an L-system
was found that is compatible with the input strings (meaning it
initially generates them), called success rate (SR). With S0L-
systems though, it is less clear what success means. Indeed,
for a single sequence of strings given as input, there are a
multitude of possible S0L-systems that could produce them.
Therefore, an algorithm’s performance for inferring S0L-
systems cannot be based only on whether or not it produces the
strings. For a single sequence of strings produced by a known
S0L-system, the probability (pknown) that the known S0L-
system produced that particular set of strings can be computed.
Then for a candidate solution S0L-system, the probability
(psolution) can be computed that it produced the strings. If the
algorithm’s candidate solution has psolution ≥ pknown then
this is counted as a success, otherwise it is a failure. SR can
then be computed as the percentage of executions for which
the algorithm was successful. Although there may be other
ways to measure success (such as quantifying the amount by
which psolution is less than pknown), this measure can certainly
indicate that an algorithm would be successful.

Measuring success in the manner described above does not
capture how closely the candidate solution matches the hidden
L-system, which is also of interest. Furthermore, as produc-
tions with high probability are more often used, inferring such
productions should be given a higher priority. This can be
done using a weighted generalizations of true positive, false
positives, and false negatives that match the successors in the
hidden system and the candidate solution. The four metrics
are: weighted true positive - system to candidate (WTP-S2C),
weighted true positive - candidate to system (WTP-C2S),
weighted false positive (WFP), and weighted false negative
(WFN). WTP-S2C is the sum of the successor probabilities
averaged over |V | from the hidden system for successors that
are in both the hidden system and the solution. WTP-C2S is
the sum of the successor probabilities averaged over |V | from
the candidate solution that are in both the candidate and hidden
system. For example, suppose that an S0L-system has V =
{A}, and the successors and associated probabilities of A are
AA (90%), AAA (6%), andAAAA (4%). If the solution finds
an S0L-system with the successors and associated probabilities
of A as AA (80%), AAA (9%), andAAAAA (11%), then the
WTP -S2C = 0.90 + 0.06 = 0.96 (0.04 is not included as
the successor AAAA is not found in the candidate solution)
and WTP -C2S = 0.80 + 0.09 = 0.89 (0.11 is not included
as the successor AAAAA is not in the original system). WFP
is the sum of the successor probabilities averaged over |V |
from the candidate solution for successors that are not in the
hidden system. WFN is the sum of the successor probabilities
averaged over |V | from the hidden system for successors that
are not in the candidate. For a given system, if the successors
match perfectly, both WTP values should be 1, while both
WFN and WFP should be 0.

In addition to measuring how often an algorithm is suc-
cessful at finding a suitable S0L-system, the amount of time
to find the S0L-system is an important performance metric
for an algorithm to be considered a practical tool. Since the
goal is for PMIT-S0L to be used as a tool by the research
community, its performance is also measured using the mean
time to solve (MTTS), which is the mean time until PMIT-
S0L returns a successful or failed solution over all executions.
A time limit is imposed on PMIT-S0L of 4 hours (14, 400
seconds). The 4 hour limit is arbitrary but was selected to
keep the overall experimental time reasonable given the large
number of executions performed (described next in Section
III-B). All timings were captured on a single core of an Intel
4770 @ 3.4 GHz with 12 GB of RAM on Windows 10.

B. Data

The S0L-systems used for test cases for PMIT-S0L are
procedurally generated, meaning that they are produced ran-
domly but certain techniques are used to make them somewhat
realistic. The rules are based on observations of L-systems
found in the University of Calgary’s virtual laboratory (vlab)
[22]. When simulating L-systems, typically some subset of
the letters are interpreted graphically; for example, the com-
monly used “turtle graphics” are interpreted as instructions

for moving a turtle in a 2D or 3D Euclidean space [2]. The
authors [12] found that graphical symbols often make the
L-system inference problem simpler to infer. To summarize
their findings, graphical symbols may be used as “markers”
to deduce successor relationships, e.g. showing that a specific
symbol in ωi−1 must produce a specific symbol in ωi. Markers
provide a lot of information about the L-system by both elim-
inating specific symbols as possible members of successors
and slicing up the words into subwords that may be processed
separately. Moreover, the graphical symbols may be filtered
out of the strings which are then solved as individual sub-
problems [12, 17]. These sub-problems are easier to solve
than the initial problem of the production of the non-graphical
symbols, which must be solved together. In other words, the
hardest problem is finding the non-graphical symbols of the
productions. Since this is also true for S0L-systems, for this
research all of the test cases will consist only of non-graphical
symbols and the following observations are made with the
graphical symbols filtered out from the original D0L-systems
in vlab [22].

It is observed that most D0L-systems in vlab have an
alphabet size from 1 to 6 symbols. Most successors are
observed to have 1 to 10 symbols. The number of symbols
in the successors is unevenly distributed with the majority
of successors having 2 to 5 symbols but quite a few having
as many as ten symbols. It is observed that most successors
usually have less than four unique symbols and that successors
only using one letter (e.g., A → BBB) are almost never
longer than 6 symbols. The axioms are found to almost always
be one symbol, and almost never longer than three symbols.

Based on the observations above, the procedure for
generating S0L-systems will be described (these are then
hidden and PMIT-S0L is used to infer them). The alphabet
V for the generated S0L-system consist of a random number
of letters between 2 to 9 symbols corresponding to A to K
(the symbol F is skipped as it is often used to mean draw
a line). Alphabets with 1 symbol are not considered. After
selecting an alphabet size, a number of successors for each
symbol is chosen from 1 to 3. There is a 50% chance of a
symbol having 1 successor, 40% chance of 2 successors, and
10% chance of having 3 successors. A control parameter U
on the upper bound of total successors is imposed on the
generated L-system. If a number of successors is selected
for a symbol that would result in going over this limit, then
the value is reduced to maintain the limit. So if U = 10 and
10 successors has been reached, any remaining symbols are
eliminated as they will have 0 successors. Since this research
is about inferring S0L-systems, each system generated is
given at least one symbol with at least two successors.
When there are multiple successors, the probability for
each successor is picked randomly between a lower bound
and upper bound, pmin and pmax, which are controlled
experimentally (described in the next paragraph). The value
for pmax is computed according to the number of successors
and the probabilities selected so far. For example, if there
are three successors, and pmin = 15%, then the range of

values for the first successor is between 15% and 70%, as
the second and third successor need to have 15% (pmin)
each reserved for them. The next step is to pick a successor
length for every successor of each A ∈ V that varies from
1 to 10, with a value from 2 to 6 preferred. The following
probability distribution for successor lengths is used:
length 1: 4%, 2: 16%, 3: 20%, 4: 20%, 5: 20%, 6: 16%, 7: 4%,
8: 2%, 9: 1%, and10: 1%. For each successor, a symbol list
is created of up to five (not to exceed the successor length)
unique symbols, with the probability evenly distributed (20%
of 1 unique symbol, 20% of 2, etc.). Finally, symbols are
picked up to the successor length for each successor, by
sequentially picking from the symbol list until the desired
length is reached, where each symbol in the list has equal
probability of being selected; however, every symbol in the
list is guaranteed to occur at least once. The axiom for the
L-system is generated by picking symbols from V to a length
of 1 to 4, which is also evenly distributed, with every symbol
having equal probability of being selected.

To evaluate PMIT meaningfully, a systematic approach is
used to ensure that PMIT experiences as many different sce-
narios as possible. To this end, two experimentally controlled
parameters are used. The first is an upper bound on the
number of successors, U . The lowest possible value for U
is 3, then U was iteratively increased by 1 until PMIT-S0L
timed out with brute force search (ultimately to a maximum
of 14). For each value of U , five separate experiments were
done to evaluate the effects of having less dimensions than
the number of successors. A search space was constructed
with a number of dimensions N incremented from U − 4
to U . For each of these four values of N , pmin was set to
1%, 10%, 20%, 30%, 40% and 50% (as pmin > 50% is not
logically possible). For each combination, ten S0L-systems
were procedurally generated and each of these systems was
executed twice, generating a different set of input strings for
each of the two executions. As previously discussed, there is
a certain element of chance when a symbol has two or more
successors that have a common prefix; therefore, when such
a situation occurred the experiments were not performed and
a new system was generated (the effects of this limitation on
PMIT-S0L were investigated in separate experiments, but not
included here for reasons of space). In total, 3600 S0L-systems
were generated resulting in 7200 executions of PMIT-S0L for
each approach.

IV. RESULTS

On completing the experiments for PMIT-S0L, it was ob-
served that changing pmin had no statistical effect on any of
the performance metrics (with Pearson’s correlation coefficient
r = −0.0064, p < 0.05); therefore, the tables below show
the results averaged over the values of pmin, i.e. each row
represents an average over 120 executions. Tables II and III
show the results for brute force search and GA respectively
when N equals the number of successors in the hidden L-
system. WFP and WFN are not shown as they are equal to
1− (WTC-C2S) and 1− (WTP-S2C). Table IV shows the SR

for the greedy algorithm and random forest (the SR for GA
is repeated for ease of comparison). MTTS is not shown for
greedy algorithm or random forest in Table IV since they are
both extremely fast (sub-second).

It can be seen that with brute force search, a compatible
S0L-system is always found in under 4 hours when there
are 10 successors or less that has a psolution ≥ pknown. The
GA is less successful, especially with 7 successors or more.
The probable cause is that the fitness function is not effective
for searching the solution space and so alternatives should be
explored, since the GA is generally much faster (it is slower
early on due to a minimum number of generations). However,
it can be seen that enhancing the greedy algorithm with genetic
algorithm greatly improved the SR over the greedy algorithm
and random forest. Since brute force search did much better
than the GA, the remainder of the discussion will focus only
on the results for brute force search.

Table V shows the results (SR only) for brute force search
when the number of dimensions in the search (N) is less
than the actual number of successors. When N is one less
than the actual number of successor (N − 1 column in Table
V), then PMIT-S0L has a 100% SR, until the number of
successors is greater than 11. In these cases, PMIT-S0L ran
out of time. However, it would be expected based on the
previous results, that if the time limit were increased that these
would also be 100% and so they are marked with a “*”. For
N − 2, PMIT-S0L is only 100% successful when the number
of successors is between 6 and 12 (for 13 and more the same
issue occurs as for N − 1). Similarly, for N − 3 and N − 4,
it can be seen that as the number of successors increases, the
SR increases. One possible explanation to explain the effect,
is that when the number of successors is small, the ratio of
N to the number of successors is larger, e.g. if the number
of successors is 4, and N = 2, then ratio is 50%; however,
when the number of successors increases to 10, then the ratio
is 20%. Algorithmically, this means that PMIT-S0L is more
reliant on using the look ahead process to find successors
since there are not enough dimensions in the search space
to find suitable successors. Furthermore, this implies that the
look ahead process is not particularly effective. This warrants
further investigation to find an improvement since estimating
the number of successors is difficult.

With respect to finding the original system, based on the
WTP, WFP, and WFN values, it can be seen that when the
number of successors is less than 5 the original system is
always found. When the number of successors grows, the
original system is not always found but the differences are
fairly minor as can be seen by the WTP values not exceeding
2%. In the cases where it might be important to find the
original system exactly, some additional technique(s) may be
required.

V. CONCLUSIONS

The paper has introduced the Plant Model Inference Tool for
Stochastic Context-Free L-systems (PMIT-S0L). Conceptually,

TABLE II
PERFORMANCE METRICS FOR PMIT-S0L WHEN USING BRUTE FORCE

SEARCH

#Succ SR
WTP WTP MTTS

S2C C2S
3 100% 1.000 1.000 0 : 00 : 00.212
4 100% 1.000 1.000 0 : 00 : 00.192
5 100% 1.000 1.000 0 : 00 : 00.821
6 100% 0.985 0.984 0 : 00 : 01.672
7 100% 0.989 0.986 0 : 00 : 18.126
8 100% 0.997 0.997 0 : 02 : 18.747
9 100% 0.988 0.988 0 : 19 : 40.131

10 100% 0.989 0.988 3 : 48 : 48.530

TABLE III
PERFORMANCE METRICS FOR PMIT-S0L WHEN USING GENETIC

ALGORITHM

#Succ SR
WTP WTP MTTS

S2C C2S
3 100% 1.000 1.000 0 : 00 : 00.306
4 100% 1.000 1.000 0 : 00 : 00.400
5 100% 0.997 0.996 0 : 00 : 00.486
6 97% 0.971 0.936 0 : 00 : 01.206
7 87% 0.965 0.915 0 : 00 : 04.069
8 68% 0.909 0.778 0 : 00 : 09.598
9 44% 0.882 0.343 0 : 00 : 54.388

10 19% 0.841 0.232 0 : 02 : 04.130

TABLE IV
SUCCESS RATE COMPARISON FOR A GREEDY ALGORITHM, RANDOM

FOREST AND GENETIC ALGORITHM

#Succ
Greedy Random Genetic

Algorithm Forest Algorithm
3 22% 52% 100%
4 16% 35% 100%
5 3% 11% 100%
6 0% 5% 97%
7 0% 2% 87%
8 0% 0% 68%
9 0% 0% 44%

10 0% 0% 19%

TABLE V
SUCCESS RATE FOR PMIT-S0L WHEN USING BRUTE FORCE SEARCH AND

NUMBER OF DIMENSIONS IS UNDERESTIMATED

#Succ
Number of Dimensions (N)
−1 −2 −3 −4

3 100% 0% n/a n/a
4 100% 0% 0% n/a
5 100% 77% 0% 0%
6 100% 96% 21% 0%
7 100% 100% 56% 0%
8 100% 100% 62% 5%
9 100% 100% 59% 7%
10 100% 100% 73% 6%
11 100% 100% 71% 11%
12 0%∗ 100% 83% 12%
13 0%∗ 0%∗ 84% 16%
14 0%∗ 0%∗ 0%∗ 23%

PMIT-S0L uses a greedy decision process to find the S0L-
system. Although there are other elements, the core concept
of the algorithm is to scan each symbol in each input string
and choose a successor from the list of successors found so far
if it matches the next n symbols to be produced to maximize
the likelihood that the solution S0L-system produces the input
strings. Early on, when the list of known successors is empty
or near empty, the greedy decision is incapable of making
good choices due to a lack of information. Canonically, this
is often resolved with a random forest, but this also did not
perform well. So the greedy algorithm was hybridized with a
search technique to help choose the successor.

PMIT-S0L was evaluated using brute force search and
genetic algorithm as the search techniques. Brute force search
was more successful than genetic algorithm, but much slower.
Using a time limit of 4 hours, the combined algorithm with
brute force search was able to reliably (with 100% success
rate) find S0L-systems with up to 12 successors in total. With
genetic algorithm, success rate dropped considerably with 7
total successors. It is probable that either the fitness function or
genetic algorithm is not ideal for searching the solution space.
However, enhancing a greedy algorithm with optimization
greatly improved the results over the greedy algorithm alone
or random forest. The greedy decision process also implies a
limitation that no single symbol can have successors where one
is a prefix of another. PMIT-S0L can still infer S0L-systems
when this occurs but it will succeed by chance. Overall,
PMIT-S0L with brute force search is a reliable, practical tool
for inferring S0L-systems with the specified limitations. With
brute force search, it was found that most of the time, the
original L-system is found; however, when the original is not
found the variations between the solution and the original were
very minor.

S0L-systems have been shown to have applications in many
different research domains to model processes. Prior to this
research, using an S0L-systems to model such processes
required taking a specific problem within the research domain
and building the L-system by hand [2, 5], generally using a
priori knowledge (e.g. [2, 4, 7]). Although that technique has
been successful, it is inefficient as every problem within every
domain would need to be investigated separately and a priori
knowledge may not always be available. Indeed, PMIT-S0L
allows for the possibility of revealing the mechanisms in such
processes since it only requires a sequence of input strings.
PMIT-S0L opens up the possibility of additional research
communities to use S0L-systems for modeling.

For future work, the main issue is to address the limitation
on successor prefixes. It is uncertain how often this occurs
for real-world systems but regardless it should be investigated
further. As it would be ideal to have a more efficient search
algorithm that brute force search (although it can be trivially
made massively parallel), and since genetic algorithm was
not very successful, either new fitness functions or different
search algorithms should be investigated. Finally, this research
assumed that there is one observed sequence of strings but
another possible scenario is to infer an S0L-system that best

describes many observed sets of strings, e.g. obtained from a
“field of plants”.

REFERENCES

[1] A. Lindenmayer, “Mathematical models for cellular in-
teraction in development, parts I and II,” Journal of
Theoretical Biology, vol. 18, no. 3, pp. 280–315, 1968.

[2] P. Prusinkiewicz and A. Lindenmayer, The Algorithimic
Beauty of Plants. New York: Springer Verlag, 1990.

[3] R. Mech, “Modeling and simulation of the interaction of
plants with the environment using L-systems and their
extensions,” Thesis, University of Calgary, 1997.

[4] G. Danks, S. Stepney, and L. Caves, “Protein folding with
stochastic L-systems,” in 11th International Conference
on the Simulation and Synthesis of Living Systems, 2008,
Conference Proceedings, pp. 150–157.

[5] M. A. Galarreta-Valverde, M. M. Macedo, C. Mekkaoui,
and M. Jackowski, “Three-dimensional synthetic blood
vessel generation using stochastic L-systems,” in Medical
Imaging: Image Processing, 2013, Conference Proceed-
ings, p. 86691I.

[6] G. S. Hornby and J. B. Pollack, “Evolving L-systems
to generate virtual creatures,” Computers & Graphics,
vol. 25, no. 6, pp. 1041–1048, 2001.

[7] G. Rongier, P. Collon, and P. Renard, “Stochastic sim-
ulation of channelized sedimentary bodies using a con-
strained L-system,” Computers & Geosciences, vol. 105,
pp. 158–168, 2017.

[8] T. Watanabe, J. S. Hanan, P. M. Room, T. Hasegawa,
H. Nakagawa, and W. Takahashi, “Rice morphogenesis
and plant architecture: measurement, specification and
the reconstruction of structural development by 3D ar-
chitectural modelling,” Annals of Botany, vol. 95, no. 7,
pp. 1131–1143, 2005.

[9] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and
B. Lane, “The use of positional information in the
modeling of plants,” in Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Tech-
niques. ACM, 2001, Conference Proceedings, pp. 289–
300.

[10] P. Prusinkiewicz, R. Karwowski, and B. Lane, “The L+C
plant modelling language,” Functional-Structural Plant
Modelling in Crop Production, vol. 22, pp. 27–42, 2007.

[11] J. Ubbens, M. Cieslak, P. Prusinkiewicz, and I. Stavness,
“The use of plant models in deep learning: an application
to leaf counting in rosette plants,” Plant Methods, vol. 14,
no. 1, p. 6, 2018.

[12] J. Bernard and I. McQuillan, “A fast and reliable hybrid
approach for inferring L-systems,” in Proceedings of the
2018 International Conference on Artificial Life. MIT
Press, 2018, Conference Proceedings, pp. 444–451.

[13] R. Nakano and N. Yamada, “Number theory-based induc-
tion of deterministic context-free L-system grammar,” in
International Conference on Knowledge Discovery and
Information Retrieval. SCITEPRESS, 2010, Conference
Proceedings, pp. 194–199.

[14] B. Runqiang, P. Chen, K. Burrage, J. Hanan, P. Room,
and J. Belward, “Derivation of L-system models from
measurements of biological branching structures using
genetic algorithms,” in Proceedings of the International
Conference on Industrial, Engineering and Other Appli-
cations of Applied Intelligent Systems. Springer, 2002,
Conference Proceedings, pp. 514–524.

[15] K. J. Mock, “Wildwood: The evolution of L-system
plants for virtual environments,” in Proceedings of the
1998 IEEE World Congress on Computational Intelli-
gence. IEEE, 1998, Conference Proceedings, pp. 476–
480.

[16] F. Ben-Naoum, “A survey on L-system inference,” IN-
FOCOMP Journal of Computer Science, vol. 8, no. 3,
pp. 29–39, 2009.

[17] J. Bernard and I. McQuillan, “New techniques for infer-
ring L-systems using genetic algorithm,” in Proceedings
of the 8th International Conference on Bioinspired Opti-
mization Methods and Applications, ser. Lecture Notes
in Computer Science, vol. 10835. Springer, 2018,
Conference Proceedings, pp. 13–25.

[18] I. McQuillan, J. Bernard, and P. Prusinkiewicz, “Algo-
rithms for inferring context-sensitive L-systems,” in 17th
International Conference on Unconventional Computa-
tion and Natural Computation, ser. Lecture Notes in
Computer Science, vol. 10867. Springer International
Publishing, 2018, Conference Proceedings, pp. 117–130.

[19] P. Eichhorst and W. J. Savitch, “Growth functions of
stochastic Lindenmayer systems,” Information and Con-
trol, vol. 45, no. 3, pp. 217–228, 1980.

[20] T. Back, Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic
algorithms. Oxford University Press, 1996.

[21] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning
Research, vol. 13, pp. 281–305, 2012.

[22] University of Calgary. Algorithmic Botany. [Online].
Available: http://algorothmicbotany.org

http://algorothmicbotany.org

	Introduction
	Inferring S0L-Systems using Greedy Algorithm
	Methodology for Evaluation
	Performance Metrics
	Data

	Results
	Conclusions

