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ABSTRACT

We investigate the state size of DFAs accepting the shuffle of two words. We provide
an infinite family of words u and v, such that the minimal DFA for u v requires
an exponential number of states as a function of their lengths. We also show some
conditions for the words u and v which ensure a quadratic upper bound on the state
size of u v. Moreover, switching only two letters within one of u or v is enough to
trigger the change from quadratic to exponential.

Keywords: shuffle, words, finite languages, finite automata, state complexity

1. Introduction

Since its introduction, the shuffle operation has been aggressively studied as a model of
nondeterministic interleaving in both purely theoretical and practical contexts. Per-
haps due to the intrinsic nondeterminism of the operation, many problems concerning
shuffle remain unsolved; e.g., shuffle decomposition for regular languages (though it
is decidable [3] for commutative regular languages or locally testable languages while
for context-free languages it is undecidable [3]).

We follow here the recent trend of attacking the special case of the shuffle of two
words, inspired by attempts to solve the decomposition problem. It has been shown
in [1] that shuffle decomposition on individual words is unique as long as there are two
letters used within the words. In [2], the result from [1] was extended to show that if
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two words u and v both contain at least two letters, then the shuffle decomposition
is the unique decomposition over arbitrary sets and not just words.

In this paper we ask a different type of question: what is the minimal state size for a
DFA accepting the shuffle of two given words? For the more general case of languages,
it has been shown in [4] that the shuffle of two DFAs can yield an exponential minimal
DFA (Ω(2nm), where n,m were the sizes of the two DFAs). We show here that DFAs
accepting the shuffle of two words also require an exponential number of states in
general; however, for words obeying certain conditions, a DFA may be constructed
with, at most, quadratically many states.

A striking reminder of the complexity of the shuffle is operation is illustrated by
showing that two words which may be accepted by a quadratically-bounded shuffle
DFA can only be accepted by an exponentially large DFA when only two letters in
one word are exchanged.

2. Preliminaries

Let N be the set of non-negative integers. An alphabet Σ is a finite, non-empty set of
letters. The set of all words over Σ is denoted by Σ∗, and this set contains the empty
word, λ. The set of all non-empty words over Σ is denoted by Σ+.

Let Σ be an alphabet and let u, v ∈ Σ∗. If u = aα1
1 aα2

2 · · · aαn
n with a1, . . . an ∈ Σ,

α1, . . . , αn ∈ N and ai 6= ai+1, for 1 ≤ i < n, then the skeleton of u is defined as
χ(u) = a1a2 · · · an. The different occurrences of the same letter a in the skeleton of u
are called the a-sections of u. Furthermore, for a ∈ Σ, |u|a denotes the number of a’s
in u. A word u over Σ is called non-repeating if |u|a ≤ 1 for all a ∈ Σ. Let u, v ∈ Σ∗.
The shuffle of u and v is defined as u v = {u1v1 · · ·unvn | u = u1 · · ·un, v =
v1 · · · vn, ui ∈ Σ∗, vi ∈ Σ∗, 1 ≤ i ≤ n}. We say u is a suffix of v, written u ≤s v, if
v = xu, for some x ∈ Σ∗.

A trajectory for two words u and v is a word t ∈ {0, 1}∗, such that |t|0 = |u| and
|t|1 = |v|. Then the shuffle of u and v on t is denoted by u t v and is the unique
string in u v, where a letter from u is used whenever t has a 0 at the respective
position, and a letter from v is used whenever t has a 1. For details regarding shuffle
on trajectories, consult [6].

We assume the reader to be familiar with nondeterministic and deterministic finite
automata. See [5, 8] for an introduction and more details on finite automata. For
each NFA we can effectively construct an equivalent DFA by using the so-called subset
construction [5]. For an NFA with n states, the DFA constructed this way can have
up to 2n states. There exists a unique minimal DFA (up to isomorphism) for each
regular language. States p and q of a DFA are distinguishable if there exists x such
that δ(p, x) is a final state, but δ(q, x) is not, or vice versa. Moreover, if every state
of a DFA is accessible and every pair of states are distinguishable, then the DFA is
minimal [5]. For both NFAs and DFAs we use size synonymously with state size, and,
thus, we define |A| = |Q|.
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3. Shuffle NFAs for Words

In this section we discuss basic properties of shuffle NFAs for two words.

Definition 1 Let Σ be an alphabet and let u = u1 · · ·um, v = v1 · · · vn ∈ Σ+, where
ui, vj ∈ Σ for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We say A is the naive shuffle NFA
for u and v if A = (Q,Σ, δ, q0, F ) where Q = {0, . . . ,m} × {0, . . . , n}, q0 = (m,n),
F = {(0, 0)} and

• for 1 ≤ k ≤ m, 0 ≤ l ≤ n, we have (k − 1, l) ∈ δ((k, l), u(m−k+1)); and

• for 0 ≤ k ≤ m, 1 ≤ l ≤ n, we have (k, l − 1) ∈ δ((k, l), v(n−l+1)).

For all i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n we denote by ui and vj the
suffixes of length i and j or the words u and v, respectively. We furthermore define
LA(i, j) = ui vj, which is accepted by the automaton A′ = (Q,Σ, δ, (i, j), F ).

Note that the automaton as defined above is not complete. It is clear from Defini-
tion 1 that the naive shuffle NFA for u and v does, in fact, accept u v.

Definition 2 Let A be the naive shuffle NFA for two words u and v over some alpha-
bet Σ. The vertical layers and horizontal layers (shortly, v-layers and h-layers) are
numbered 0, 1, . . . , |u|+ |v| and |u|, |u| − 1, . . . 1, 0,−1, . . . ,−|v|, respectively. The ver-
tical layer (horizontal respectively) k, contains all states (i, j) with i+j = k (contains
all states (i, j) with k = i− j).

The vertical layer tells us how many letters we have read thus far, while the hori-
zontal layer tells us the difference between the numbers of letters we have read from
u and v. Note that the initial state (|u|, |v|) is in horizontal layer |u| − |v| if |u| ≥ |v|,
and in horizontal layer |v| − |u| if |v| ≥ |u|.

We now define what we mean by nondeterministic areas of a naive shuffle NFA.

Definition 3 Let Σ be an alphabet and let A be the naive shuffle NFA for some
words u, v ∈ Σ+. Let a ∈ Σ and i1, i2, j1, j2 ∈ N. Then R = (a, (i1, j1), (i2, j2)) is a
nondeterministic area of A if |u| ≥ i1 ≥ i2 ≥ 0, |v| ≥ j1 ≥ j2 ≥ 0 and

1. all states (i, j) with i1 ≥ i > i2, j1 ≥ j > j2 are nondeterministic on a,

2. if they exist, (i1 + 1, j1) and (i1, j1 + 1) are deterministic on a, and

3. δ((i2, j2), a) is undefined.

The set of all nondeterministic areas of A is denoted by Area(A), and we define the
entrance and exit states of R and the states in R = (a, (i1, j1), (i2, j2)) as

ent(R) = {(i1, j) | j1 ≥ j ≥ j2} ∪ {(i, j1) | i1 ≥ i ≥ i2};
ex(R) = {(i2, j) | j1 ≥ j ≥ j2} ∪ {(i, j2) | i1 ≥ i ≥ i2};

states(R) = {(i, j) | i1 ≥ i > i2, j1 ≥ j > j2}.
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Figure 1: Naive shuffle NFA for u = bbaa and v = aab

Example 1 Let u = bbaa, v = aab. Then the naive shuffle NFA A for u and v has
Area(A) = {(a, (2, 3), (0, 1)), (b, (4, 1), (2, 0))}. A is depicted twice in Figure 1, first
with the different horizontal and vertical layers labelled and then with the nondeter-
ministic areas shown in grey.

We know from [7] that given an NFA accepting a finite language over a k letter
alphabet with q states, a minimal DFA accepting the same language has at most

O(k
q

log2(k)+1 ) states in the worst case. Thus for a binary alphabet, O(2
√
q) states are

both necessary and sufficient in the worst case.
In the case of naive shuffle NFAs, it is immediately obvious that during a subset-

construction only state labels from the same vertical layer can appear within the same
state of the DFA. If |u| = m and |v| = n with 0 ≤ n ≤ m, then for each number i
between 1 and n there are two vertical layers with i states, and there are (m−n+ 1)
vertical layers with (n + 1) states. If we assume that for each v-layer, all subsets of
states except the empty set are possible (it is sufficient to add the empty set once)
then this gives us an upper bound of

2

n∑
i=1

(2i − 1) + (m− n+ 1)(2n+1 − 1) + 1 = 2n+1(m− n+ 3)−m− n− 4 (1)

for the number of states in the equivalent DFA. Recall that the NFA has (m+1)(n+1)

states, so the bound in (1) is better than the bound O(k
(m+1)(n+1)
log2(k)+1 ) (where k is the

size of the alphabet) from [7] for arbitrary finite languages, even when k = 2.
When u and v are over disjoint alphabets then the naive shuffle NFA for u and v is

also the minimal DFA for u v. This can be seen as every pair of states that are not
distinguishable would have to be in the same vertical layer, however, every two states
in the same layer have some different path to the final state. Thus, all pairs of states
are distinguishable. So, in the worst case there is a lower bound of (|u|+ 1) · (|v|+ 1)
on the size of the shuffle DFA for u and v.
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We can also see that the bound (1) is not tight, as only labels of states of the NFA
which have identical Parikh vectors can appear together as the label of a state in the
DFA. Thus the bound (1) would be reached only if u, v ∈ {a}∗ for some a ∈ Σ. But
then the minimal DFA for u v would only have |u|+ |v|+ 1 states, a contradiction.

Definition 4 Let u and v be words over some finite alphabet Σ and let A be the naive
shuffle NFA for u and v. A walk through A is a sequence of states s0, s1, . . . , s|u|+|v|,
where s0 = (|u|, |v|), s|u|+|v| = (0, 0), and for all i with 0 ≤ i < |u| + |v|, we have
si+1 ∈ δ(si, a) for some a ∈ Σ. We say that a given vertical or horizontal layer is
visited x-times during a given walk if exactly x states from that layer appear in the
walk.

Note that there exists a bijective mapping between the walks through a naive shuffle
NFA and the set of possible trajectories for the shuffle of u and v.

Lemma 1 Let u, v be words over some alphabet Σ and let A be the naive shuffle NFA
for u and v. Then during each walk through A, every vertical layer has to be visited
exactly once, while each horizontal layer may be visited once, multiple times or not at
all. However, if |u| ≥ |v| then each of the horizontal layers 0, 1, . . . |u| − |v| has to be
visited at least once, and similarly if |v| ≥ |u|.

4. Shuffle DFAs for Periodic Words

In this section we focus on a special case of the shuffle of two words, namely the
shuffle of two words that are periods of a common underlying word. Thus u = w1w

k

and v = w2w
l, where w ∈ Σ+, w /∈ a+ for any a ∈ Σ, k, l ≥ 0 and both w1 and

w2 are suffixes of w. At first glance one could conjecture that these words lead to
an exponential blow-up in the state size when converting the naive shuffle NFA to
a DFA, because they induce long common factors. However we will show that this
is not the case when the underlying word w contains at most one section per letter
in Σ. We first show two subset-relations between different periodic shuffles over the
same underlying word. These subset-relations are then used to construct the DFA in
a more efficient manner.

Lemma 2 Let Σ be a finite alphabet and let w = a1 · · · an for some n ≥ 2, such that
alph(w) ≥ 2. Let u = w1w

k, v = w2w
l, u′ = w1w

k′ , v′ = w2w
l′ where 0 ≤ l < k′ < k,

0 ≤ l < l′ < k, k + l = k′ + l′ and each of w1, w2 is either empty or a proper suffix of
w. Then u v ( u′ v′.

Proof. Let A be the naive shuffle NFA for u and v. Let t be a trajectory for u and v.
We construct a trajectory t′ for u′ and v′, such that u t v = u′ t′ v

′. As mentioned
above, the trajectory t correponds to a walk w through A.

As discussed in Lemma 1, the horizontal layers 0, . . . , |u| − |v| have to be visited at
least once during any walk through A. Let p be maximal such that

p ≤ |u| − |v| and p mod n = 0.
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Thus p ≥ |u| − |v| − n, which implies, as |u| − |v| ≥ n, that layer p has to be visited
at least once during any walk through A. Let p′ = p− n(l′ − l) (see Figure 2). Then

p′ ≥ |u|− |v|−n− l′n+ ln = kn− ln+ |w1|− |w2|−n− l′n+ ln > kn− l′n−2n ≥ −n.

Thus p′ > −n, but as p′ mod n = 0, this implies that p′ ≥ 0 and, thus, p′ is also
visited at least once during any walk through A.

We let (i, j) be the first occurrence of a state in h-layer p in x and we let (i′, j′) be
the first occurrence of a state in h-layer p′ in x.

Then i mod n = j mod n and i′ mod n = j′ mod n, which means that when in
states (i, j) and (i′, j′) we are at the same point in the underlying period w for both
words u and v. Let t = t1t2t3 where t1 is the part of t before visiting (i, j), t2 is
the part of t after visiting (i, j) but before visiting (i′, j′) and t3 is the part of t after
visiting (i′, j′). Then |t2|1 = |t2|0 +n(l′− l). Now let t′ = t1t2t3, where t2 is obtained
from t2 by switching all 0’s for 1’s and vice versa. Then u′ t′ v

′ = u t v.

p

p− n(l′ − l)

wth

✎✍ ☞✌|u|, |v|wth

✎✍ ☞✌0, 0
✓
✒

✏
✑

✎✍ ☞✌|u|, 0

✎✍ ☞✌0, |v|

t1

t2

t3
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wth

✎✍ ☞✌|u′|, |v′|wth

✎✍ ☞✌0, 0
✓
✒

✏
✑

✎✍ ☞✌|u′|, 0

✎✍ ☞✌0, |v′|

t1 t2 t3

Figure 2: Transformation of a trajectory by switching all 0’s and 1’s in t2.

Thus u v ⊆ u′ v′ and by [1], we know that u v 6= u′ v′, which implies
u v ( u′ v′. 2

Example 2 Let u = abc(babc)5, v = bc(babc)2, u′ = abc(babc)4 and v′ = bc(babc)3.
Then u v ( u′ v′ by Lemma 2, and an example of a word z ∈ u′ v′ \ u v is
z = ab2c2(b2a2b2c2)3babc.

The next result is similar to the previous one, but now only the suffixes of w at
the beginning of the words are swapped and the number of repetitions of w do not
change.
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Lemma 3 Let Σ be a finite alphabet and let w = a1 · · · an for some n ≥ 2, such that
alph(w) ≥ 2. Let u = w1w

k, v = w2w
l, u′ = w2w

k, v′ = w1w
l where 0 ≤ l < k and

w2 <s w1 ≤s w. Then u v ( u′ v′.

Proof. The proof is similar to the proof of the previous lemma. If w1 = w, then
u = wk+1, v = w2w

l, u′ = w2w
k and v′ = wl+1 and the claim follows by Lemma 2 as

k + 1 > k > l and k + 1 > l + 1 > l.
Assume that |w1| < |w| = n. Let A be the naive shuffle NFA for u and v. We show

again that for any trajectory t for u and v there exists a trajectory t′ for u′ and v′,
such that u t v = u′ t′ v

′.
Let t be a trajectory for u and v. We define p = |w1| − |w2|, which implies that

1 ≤ p < n. Again t corresponds to a walk x through A. Let (i, j) be the first state in
x that is in the horizontal layer |u|−|v|−p. As |u|−|v| = |w1|−|w2|+n(k−l) ≥ p+n,
this layer has to be visited at least once while reading u t v.

Let t = t1t2, where t1 is the part of t before visiting (i, j) and t2 is the part of t
after visiting (i, j). Now let t′ = t1t2, where t1 is obtained from t1 by switching all
0’s for 1’s and vice versa. Then u′ t′ v

′ = u t v.
Thus u v ⊆ u′ v′ and by [1], we know that u v 6= u′ v′, which implies

u v ( u′ v′. 2

Example 3 Let u = abc(babc)3, v = bc(babc)2, u′ = bc(babc)3 and v′ = abc(babc)2.
Then u v ( u′ v′ by Lemma 3, and an example of a word z ∈ u′ v′ \ u v is
z = bcba2b2c2(b2a2b2c2)2.

We can use Lemma 2 and Lemma 3 to show a subset-relation between the languages
defined by certain states of the naive shuffle NFA for two words that are periodic over
the same underlying word. This result will be useful in the next subsection to show
that the minimal DFA for the shuffle of periodic words over certain underlying words
is smaller than the naive NFA for these words.

Lemma 4 Let u = w1w
k and v = w2w

l, where w = a1 · · · an for some n ≥ 1 such
that a1, . . . an ∈ Σ and w1 and w2 are suffixes of w. Let A be the naive shuffle NFA
for u and v and let i, j, i′, j′ be natural numbers such that

1. 1 ≤ i ≤ |u|, 1 ≤ i′ ≤ |u|, 1 ≤ j ≤ |v|, 1 ≤ j′ ≤ |v|;
2. i+ j = i′ + j′;

3. {i mod n, j mod n} = {i′ mod n, j′ mod n}; and abcdefghijklmnopqrs

4. |i− j| ≥ |i′ − j′|.

Then LA(i, j) ⊆ LA(i′, j′), and LA(i, j) = LA(i′, j′) if and only if {i, j} = {i′, j′}.

Proof. Obviously {i, j} = {i′, j′} implies LA(i, j) = LA(i′, j′), so we only have to
show that Conditions 1 through 3 and |i−j| > |i′−j′| imply that LA(i, j) ( LA(i′, j′).

By Condition 1 there exist suffixes ui and ui′ of u and suffixes vj and vj′ of v, such
that L(i, j) = ui vj and L(i′, j′) = ui′ vj′ . Condition 3 implies that there exist
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suffixes w1, w2 of w, such that

{ui, vj} = {w1w
p, w2w

q} and {ui′ , vj′} = {w1w
p′ , w2w

q′}

for some p, q, p′, q′ ≥ 0. Furthermore, Condition 2 implies that the words in L(i, j)
and L(i′, j′) all have the same length, which implies p+ q = p′ + q′. Now we get two
cases, depending on whether i and j are from the same iteration of w as i′ and j′ or
not.

If {i div n, j div n} = {i′ div n, j′ div n}, then {p, q} = {p′, q′}. Then |i − j| >
|i′ − j′| implies that p = q′ and q = p′ and either both |w1| > |w2| and p > q, or both
|w1| < |w2| and p < q. We assume the former without loss of generality and obtain
L(i, j) ( L(i′, j′) by Lemma 3.

If {i div n, j div n} 6= {i′ div n, j′ div n} then {i, j} 6= {i′, j′} follows immediately.
Thus, by Condition 4, we have |i − j| > |i′ − j′|, which implies without loss of
generality that q < q′ < p and q < p′ < p (the case where p < q′ < q and p < p′ < q
is symmetric). But this implies that L(i, j) ( L(i′, j′) by Lemma 2.

Thus, LA(i, j) ⊆ LA(i′, j′) and LA(i, j) = LA(i′, j′) if and only if {i, j} = {i′, j′}.
2

4.1. Underlying Non-Repeating Words

We now show that the shuffle of periodic words over a non-repeating w yields deter-
ministic finite automata that have at most a quadratic number of states.

The next two theorems show that the minimal DFA accepting u v for two words u
and v that are periodic over the same non-repeating word has less than (|u|+1)·(|v|+1)
states. The first theorem deals with the case where u 6= v and the second theorem
deals with the case where u = v.

Theorem 5 Let u = w1w
k and v = w2w

l, where k > l ≥ 0 and w = a1 · · · an for
some n ≥ 2 such that ai = aj implies i = j whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n and
w1, w2 are non-empty suffixes of w. Then the minimal DFA for u v has

(|u|+ 1) · (|v|+ 1)− 1

2
(|v|) · (|v|+ 1)− 1

2
m · (m+ 1)

states, where m ≤ |v| is maximal such that (|u| −m) mod n = 0.

Proof. We first construct a naive shuffle NFA A = (Q,Σ, δ, s0, F ) for u and v. Ob-
viously |Q| = (|u|+ 1) · (|v|+ 1) by Definition 1. In the following we perform several
transformations with the automaton A, so that in the end A has the properties that
are mentioned in the theorem statement.
Removing 1

2
|v| · (|v|+ 1) + 1

2
m · (m+ 1) states: We look at the horizontal layer

0, which contains the final state (0, 0) as well as the states (|v|, |v|), . . . , (1, 1). All
the states in this layer except the final state are nondeterministic, so for all i with
0 < i ≤ |v| there exists a ∈ Σ, such that δ((i, i), a) = {(i− 1, i), (i, i− 1)}. By Lemma
4 we know that L(i, i− 1) = L(i− 1, i). Thus, we can modify the transition function
δ to δ((i, i), a) = (i, i − 1) without changing the accepted language. When we have
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done this modification of δ for all nondeterministic states in the horizontal layer 0,
the states in the horizontal layers −1, . . . ,−|v| are unreachable and can be removed
from Q. It is easy to see that the number of states removed in this way is

|v|∑
i=1

i =
1

2
|v| · (|v|+ 1).

We now look at the horizontal layer |u| − m, which contains the states (|u|,m),
(|u|− 1,m− 1), . . . , (|u|−m, 0). As m ≤ |v| is maximal, such that (|u|−m) mod n =
0, the horizontal layers (|u| − |v|) (which contains the initial state), (|u| − (|v| −
1)), . . . , (|u| − (m+ 1)) do not contain any nondeterministic states.

Furthermore, we know that all states in the horizontal layer |u| − m except for
the state (|u| −m, 0) are nondeterministic. Thus, if we let (i, j) be one of the non-
deterministic states in the horizontal layer |u| −m, then (i, j) = (|u| − p,m − p) for
some 0 ≤ p < m and there exists a ∈ Σ, such that δ((i, j), a) = {(i− 1, j), (i, j − 1)}.
This implies that {(i − 1) mod n, j mod n} = {i mod n, (j − 1) mod n}, as the out-
going transitions of both states (i − 1, j) and (i, j − 1) carry the same labels and w
is non-repeating. Also it is obvious that (i − 1) + j = i + (j − 1) and 1 ≤ i ≤ |u|,
1 ≤ i− 1 ≤ |u|, 1 ≤ j ≤ |v|, 1 ≤ j − 1 ≤ |v|. Furthermore as |u| > |v|, we have

|(i− 1)− j| = ||u| −m− 1| < ||u| −m+ 1| = |i− (j − 1)|.

Therefore by Lemma 4 we have L(i − 1, j) ( L(i, j − 1), which implies that we can
modify the transition function δ of A to δ((i, j), a) = (i, j − 1) without changing the
accepted language.

Once we have done that for all the states in the horizontal layer |u| − m all the
states in horizontal layers |u| − m + 1, . . . , |u| are no longer reachable and can be
removed. It is again easy to see that the number of states removed in this way is

m∑
i=1

i =
1

2
m · (m+ 1).

We now have |Q| = (|u|+ 1) · (|v|+ 1)− 1
2 (|v|) · (|v|+ 1)− 1

2m · (m+ 1), as claimed
in the theorem statement, however our automaton A could still be nondeterministic.
Removing remaining nondeterminism: The only horizontal layers left in A′ are
|u| −m, . . . , 0. Furthermore we have already removed all nondeterminism from the
horizontal layers |u| −m and 0. Also note that all states (i, j) ∈ Q now have i ≥ j
and the only states with i = j are those in the horizontal layer 0. Thus, all remaining
nondeterminism must occur in the horizontal layers |u|−m−1, . . . , 1. However, a state
(i, j) is nondeterministic precisely when i mod n = j mod n, which is only possible
for states in the horizontal layers |u| −m− pn where 1 ≤ p < k− l. Let (i, j) be such
a state. As (i, j) has precisely two outgoing transitions, this implies that there exists
a letter a ∈ Σ, such that δ((i, j), a) = {(i−1, j), (i, j−1)}. As no letter appears more
than once in w, we know that {(i− 1) mod n, j mod n} = {i mod n, (j − 1) mod n}.
Thus, as i > j implies that |(i − 1) − j| < |i − (j − 1)|, which implies, by Lemma
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4, L(i, j − 1) ( L(i − 1, j). We can, thus, redefine δ((i, j), a) = (i − 1, j) without
changing L(A).
Showing minimality: Now A is deterministic, but we still have to show that A is
accessible, co-accessible and minimal.

First note that all states of the naive NFA were accessible and co-accessible and
that from a state (i, j) in the naive NFA all states (i′, j′) with i′ ≤ i and j′ ≤ j could
be reached.

First assume that the initial state (|u|, |v|) was deterministic in the naive NFA. Then
all the states in the horizontal layers |u|− |v|, |u|− |v|+1, . . . , |u|−m−1 were already
deterministic in the naive NFA, and as the initial state is contained in the horizontal
layer |u| − |v|, all states in the horizontal layers |u| − |v|, |u| − |v|+ 1, . . . , |u| −m− 1
are accessible. Furthermore, as all states in the horizontal layer |u| − m − 1 were
deterministic in the naive NFA, each state in horizontal layer |u| − m is accessible
from some state in horizontal layer |u|−m−1 and, thus, all states in horizontal layer
|u| −m are accessible.

Now assume that the initial state was nondeterministic. In this case there exists
only one letter a such that δ((|u|, |v|), a) is defined and we have, by the above con-
struction, δ((|u|, |v|), a) = (|u| − 1, |v|). Then, as |w| ≥ 2, we know that all the states
in the horizontal layer |u|− |v|− 1 were already deterministic in the naive NFA. Thus
we can access all states in the horizontal layers |u| − |v| and |u| − |v|+ 1.

Let (i, j) be a state in horizontal layers r, where |u|−m ≤ r ≤ 1. Then there exists
a letter a ∈ Σ, such that δ((i, j), a) = (i− 1, j) and, thus, by induction, all remaining
states in the automaton are accessible.

All states in horizontal layers 0 and 1 are co-accessible, as for each i with 1 ≤ i ≤ |v|
there exists a letter ai ∈ Σ, such that we have δ((i, i), ai) = (i, i − 1) and for each j
with 1 ≤ j ≤ |v| there exists a letter bj ∈ Σ, such that δ((j, j− 1), bj) = (j− 1, j− 1).
Then by an inductive argument similar to the one used to show that A is accessible,
we can show that all remaining states are co-accessible.

To show that A is minimal, we first observe that state equivalence is only possible
between states in the same vertical layer. We use induction on the vertical layers to
show that no vertical layer has any equivalent states. Vertical layers 0 and 1 both
only contain one state, namely (0, 0) and (1, 0), respectively. Now assume that in the
vertical layer q, for 1 ≤ q < |u|+ |v| there are no equivalent states.

Then, in order to have two equivalent states (i′, j′) and (i′′, j′′) in vertical layer
q + 1, it is necessary (but not sufficient) that there exists a letter a ∈ Σ and a state
(i, j) in the vertical layer q, such that δ((i′, j′), a) = δ((i′′, j′′), a) = (i, j). This implies
that {(i′, j′), (i′′, j′′)} = {(i, j+ 1), (i+ 1, j)}. We have i ≥ j+ 1, as this is true for all
states in Q. If i > j + 1, then, as shown in Figure 3, there has to exist a letter b ∈ Σ
such that δ((i, j+1), b) = (i−1, j+1) as in the construction above we never removed
such transitions. But this implies that (i, j+ 1) and (i+ 1, j) cannot be equivalent as
no transition can exist between states (i + 1, j) and (i − 1, j + 1). If i = j + 1, then
this implies that the i-th and the i+ 1-st letter of u have to be equal, a contradiction
as |w| ≥ 2 and w is non-repeating. Thus, the automaton is minimal. 2

Example 4 Let u = bc(abc)2, v = abc. Then the naive NFA for u v is shown
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☛✡ ✟✠i, j + 1

☛✡ ✟✠i+ 1, j

☛✡ ✟✠i− 1, j + 1

☛✡ ✟✠i, j

b

a

a

Figure 3: If i > j + 1, then (i, j + 1) and (i + 1, j) cannot be equivalent.

on the left side of Figure 4. According to the proof of Lemma 5, we can remove all
the shaded states and transitions and we can furthermore also remove the dashed
non-shaded transitions. This then leaves the minimal DFA for u v, as shown on
the right side of Figure 4.

☛✡ ✟✠8,0

☛✡ ✟✠8,1
☛✡ ✟✠7,0

☛✡ ✟✠8,2
☛✡ ✟✠7,1

☛✡ ✟✠6,0

☛✡ ✟✠8,3wth
☛✡ ✟✠7,2

☛✡ ✟✠6,1
☛✡ ✟✠5,0

☛✡ ✟✠7,3
☛✡ ✟✠6,2

☛✡ ✟✠5,1
☛✡ ✟✠4,0

☛✡ ✟✠6,3
☛✡ ✟✠5,2

☛✡ ✟✠4,1
☛✡ ✟✠3,0

☛✡ ✟✠5,3
☛✡ ✟✠4,2

☛✡ ✟✠3,1
☛✡ ✟✠2,0

☛✡ ✟✠4,3
☛✡ ✟✠3,2

☛✡ ✟✠2,1
☛✡ ✟✠1,0

☛✡ ✟✠3,3
☛✡ ✟✠2,2

☛✡ ✟✠1,1
☛✡ ✟✠0,0
✎✍ ☞✌

☛✡ ✟✠2,3
☛✡ ✟✠1,2

☛✡ ✟✠0,1

☛✡ ✟✠1,3
☛✡ ✟✠0,2

☛✡ ✟✠0,3

b

b

b

b

c

c

c

c

a

a

a

a

b

b

b

b

c

c

c

c

a

a

a

a
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b

b
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c

c

c
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a

a

a

a
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a

a

b

b

b

b

b

b

b

b

b

c

c

c

c

c

c

c

c

c

☛✡ ✟✠8,2
☛✡ ✟✠7,1

☛✡ ✟✠6,0

☛✡ ✟✠8,3wth
☛✡ ✟✠7,2

☛✡ ✟✠6,1
☛✡ ✟✠5,0

☛✡ ✟✠7,3
☛✡ ✟✠6,2

☛✡ ✟✠5,1
☛✡ ✟✠4,0

☛✡ ✟✠6,3
☛✡ ✟✠5,2

☛✡ ✟✠4,1
☛✡ ✟✠3,0

☛✡ ✟✠5,3
☛✡ ✟✠4,2

☛✡ ✟✠3,1
☛✡ ✟✠2,0

☛✡ ✟✠4,3
☛✡ ✟✠3,2

☛✡ ✟✠2,1
☛✡ ✟✠1,0

☛✡ ✟✠3,3
☛✡ ✟✠2,2

☛✡ ✟✠1,1
☛✡ ✟✠0,0
✎✍ ☞✌

b

b

c

c

c

a
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a

a

b

b

b

b

c
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c

c

a

a

a

b

b
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a

a

b

b

b
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b
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c

c

c
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Figure 4: Naive shuffle NFA and minimal shuffle DFA for u = bc(abc)2 and v = abc.

If k = l, then there are fewer than |w| horizontal layers between the initial and
final state and the proof of Theorem 6 has to be adapted.
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Theorem 6 Let u = w1w
k and v = w2w

k where k ≥ 0 and w = a1 · · · an for some
n ≥ 2 such that ai = aj implies i = j whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n and w1, w2

are non-empty suffixes of w, such that |w1| ≥ |w2|. Then the number of states in the
minimal DFA for u v is

(|u|+ 1) · (|v|+ 1)− 1

2
|v| · (|v|+ 1)− 1

2
(|u| − |w|)(|u| − |w|+ 1).

Proof. As in the previous proof, we construct a naive NFA A = (Q,Σ, δ, s0, F ) for
u v. Obviously |Q| = (|u|+ 1)(|v|+ 1) by Definition 1. In the following we perform
several transformations with the automaton A, so that in the end A has the properties
that are mentioned in the theorem statement.

We first show that we can remove 1
2 |v|·(|v|+1) states without changing the accepted

language.
We look at the horizontal layer 0, which contains the states (|v|, |v|), (|v| − 1, |v| −

1), . . . , (1, 1) and the final state (0, 0). We know that all states in this horizontal layer
except for the state (0, 0) are nondeterministic. Let (i, i) be one of these states, then
there exists a ∈ Σ, such that δ((i, i), a) = {(i− 1, i), (i, i− 1)}. By Lemma 4 we have
L(i− 1, i) = L(i, i− 1), which implies that we can modify the transition function δ of
A to δ((i, i), a) = (i, i− 1) without changing the accepted language.

Once we have done that for all the states in the horizontal layer 0 all the states in
horizontal layers −1, . . . ,−|v| are no longer reachable and can be removed. It is easy
to see that the number of states removed in this way is

|v|∑
i=1

i =
1

2
|v| · (|v|+ 1).

We now look at the horizontal layer |w|, which contains the states (|u|, |u| −
|w|), (|u| − 1, |u| − |w| − 1), . . . , (|w|, 0). All the states in this layer except for the
state (|w|, 0) are nondeterministic, so for all i with 0 < i ≤ |u| there exists a ∈ Σ,
such that δ((i, i − |w|), a) = {(i, i − |w| − 1), (i − 1, i − |w|)}. This implies that
{i mod n, (i − |w| − 1) mod n} = {(i − 1) mod n, (i − |w|) mod n}, as the outgoing
transitions of both states (i, i− |w| − 1) and (i− 1, i− |w|) carry the same labels and
w is non-repeating. Also |i − (i − |w| − 1)| > |(i − 1) − (i − |w|)| and, therefore, we
can apply Lemma 4 to show that L(i, i − |w| − 1) ( L(i − 1, i − |w|), which implies
that we can modify the transition function δ of A to δ((i, i− |w|), a) = (i− 1, i− |w|)
without changing the accepted language. When we have done this modification of δ
for all nondeterministic states in the horizontal layer |w|, the states in the horizontal
layers |w| + 1, . . . , |u| are unreachable and can be removed from Q. It is easy to see
that the number of states removed in this way is

1

2
(|u| − |w|) · (|u| − |w|+ 1).

We now have |Q| = (|u|+ 1)(|v|+ 1)− 1
2 |v| · (|v|+ 1)− 1

2 (|u| − |w|)(|u| − |w|+ 1),
and, as there are only |w| horizontal layers left and w is non-repeating, there are no
more nondeterministic states in A.
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Now all we are left to show is that A is accessible, co-accessible and minimal. This
can be done in the same way as in the proof of Theorem 5. 2

From the proofs of Theorem 5 and 6 and it is immediate that we can construct the
minimal shuffle DFA for periodic words over a non-repeating underlying word directly
without first constructing the NFA.

Corollary 7 Let u = w1w
k and v = w2w

l, where k ≥ l ≥ 0 and w = a1 · · · an for
some n ≥ 2 such that ai = aj implies i = j whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n and
w1 is a proper suffix of w or empty. Then we can effectively construct the minimal
DFA A for u v, as mentioned in Theorems 5 and 6 in time O(|u| · |v|).

4.2. Periodic Words with one Section per Letter

We now generalize Theorem 5 to underlying words the skeletons of which are non-
repeating. That is, we still consider only words u = w1w

k and v = w2w
l, where

k ≥ l ≥ 0 and w1 and w2 are proper (possibly empty) suffixes of w. However, w no
longer has to be non-repeating, but we now have w = ap11 · · · apnn for some n ≥ 2 and
positive integers p1, . . . , pn and where a1 · · · an is non-repeating.

Theorem 8 Let Σ be a finite alphabet and let w ∈ Σ+, such that |w| = n ≥ 2 and
for all a ∈ Σ, we have |χ(w)|a ≤ 1. Let u = w1w

k and v = w2w
l where w1, w2

are suffixes of w and k, l ≥ 0. Then there exists a DFA A with L(A) = u v and
|A| ∈ O(|u| · |v|).

Proof. Let A′ = (Q′,Σ, δ′, Q′0, F
′) be the naive shuffle NFA for u and v. Obviously

|A′| = (|u|+ 1)(|v|+ 1). We show that for each nondeterministic area R ∈ Area(A′),
we can determinize R in such a way, by using Lemma 4, that no state in the DFA
contains more than one label from ex(R), and no more than O(|states(R) ∪ ex(R)|)
contain labels from states(R) ∪ ex(R).

LetR = (a, (i1, j1), (i2, j2)) ∈ Area(A′) and let (i, j) ∈ ent(R). When determinizing
R by using a subset construction it is easy to see that if both states (i′, j′) ∈ Q′ and
(i′′, j′′) ∈ Q′ can be reached from (i, j) by reading k a’s for some k ∈ N, then also all
states (i, j) with i + j = i′ + j′ and either both i′ ≤ i ≤ i′′ and j′ ≥ j ≥ j′′ or both
i′ ≥ i ≥ i′′ and j′ ≤ j ≤ j′′ can be reached from (i, j) by reading k a’s. Furthermore
if some state (i′, j′) can be reached from (i, j) by reading k a’s, then also some state
(i′′′, j′′′) ∈ ent(R) ∪ ex(R) can be reached from (i, j) by reading k a’s. This implies
that at most 2|states(R) ∪ ex(R)| states can result from a subset construction on R,
assuming that we are starting with states that contain only individual entrance state
labels.

It is also obvious that each state q obtained by performing a subset construction
on R contains at most 2 exit state labels (as there are only two exit states of R per
vertical layer). If there is at most one exit state of R in q, then q does not induce
any states with multiple labels outside of the states in states(R) ∪ ex(R) and we
are done. If q contains distinct exit states (i′, j′) and (i′′, j′′) then there exists an
n ∈ N, with 1 ≤ n ≤ (i1 − i2) such that (i′, j′) = (i2 − 1, j2 + n) and (i′′, j′′) =
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(i2 + n, j2 − 1) (or vice versa). But then, as i2 mod n = j2 mod n, we know that
{i′ mod n, j′ mod n} = {i′′ mod n, j′′ mod n}. Furthermore we know that i′ + j′ =
i′′ + j′′ and either |i′ − j′| ≥ |i′′ − j′′| or |i′ − j′| < |i′′ − j′′|. Thus by Lemma 4 we
have either LA(i′, j′) ⊆ LA(i′′, j′′) (if |i′ − j′| ≥ |i′′ − j′′|) or LA′(i

′′, j′′) ⊂ LA′(i
′, j′)

(if |i′′ − j′′| > |i′ − j′|) and, hence, we can remove one of (i′, j′) and (i′′, j′′) from q
without changing the accepted language.

Thus, the nondeterministic areas do not induce any states with multiple layers
outside of the nondeterministic areas, which implies that |A| ∈ O(|u| · |v|). 2

5. Exponential Shuffle Automata

Theorem 9 Let Σ be an alphabet of size at least 2. Then there exist words u, v ∈ Σ+,

|u| = |v|, such that the size of the minimal DFA accepting u v, is Ω( 8
√

2
|u|

).

Note that, in the proof below, the numbering of the layers is different from the
numbering used thus far.

Proof. For n > 1, let

un = (aabb)naabbaabb(aabb)naaaaa, vn = (aabb)naabababb(aabb)nbbbbb,

Xn = a(aabb)naaa(bbbbaaaa+ bbbabaaa)n+1bbbb(aabb)naaaaabbbbb.

Let An = (Q,Σ, q0, F, δ) be the naive shuffle NFA for un and vn. We have A2

pictured in Figure 5.
Let m = |vn| = |un| = 8n + 13, and there are 2(8n + 13) + 1 = 16n + 27 vertical

layers. For each layer i, let Qi be the set of states in that layer. Let qi,j be the jth
state (along the diagonal) in the ith layer. There are i states in the ith layer for
i ≤ 8n+ 14 and (8n+ 14)− (i− (8n+ 14)) = 16n+ 28− i for 8n+ 14 < i. For each
w which is a prefix of some word in un vn, let Qw be the set of states δ(q0, w). We
will only consider input words in Xn. In Figure 5, we have the set of states Qw, with
each state denoted by bullet points.

We show by induction that for each i, 1 ≤ i ≤ n,Qa(aabb)i = {q4i+2,j , q4i+2,j+3 |
j = 2 + 4l, 0 ≤ l < i}. This is the “duplication stage”, consisting of the states in the
shaded top left corner of Figure 5.

One can see from Figure 5 that after reading aaabb, we are in either state q6,2 or
q6,5 and thus Qa(aabb) = {q6,2, q6,5} which is equal to {q4+2,j , q4+2,j+3 | j = 2} and
thus the base case holds.

Assume this holds for some i < n. For 0 ≤ l < i, q4i+2,2+4l must have read
2 + 4l− 1 = 4l+ 1 letters from un and 4(i− l) from v. Similarly, q4i+2,5+4l must have
read 4l + 4 letters from un and 4(i− l)− 3 letters from v. Thus, from q4i+2,2+4l, the
next three letters to be read from u are abb and the next four from vn are aabb, and
from q4i+2,5+4l, the next four from un are aabb whilst the next three from vn are abb.
Then consider Qa(aabb)i+1 . From q4i+2,2+4l, after reading aabb, we could be either in
state q4i+2+4,2+4l = q4(i+1)+2,2+4l or q4i+2+4,5+4l = q4(i+1)+2,5+4l. From q4i+2,5+4l

after reading aabb, we could be either in state q4(i+1)+2,6+4l = q4(i+1)+2,2+4(l+1) or
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top

Duplication

Prune

l = 0

l = 1

l = 2

π1 = 1

π2 = 0

π3 = 1

a a b b a a b b a a b b a a b b a a b b a a b b a a a a a
a
a
b
b
a
a
b
b
a
a
b
a
b
a
b
b
a
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b
a
a
b
b
b
b
b
b
b

Figure 5: The diagram is the naive NFA A2, with the top left corner as
the initial state, the bottom right corner being the final state, and the
lines of the grid being transitions on the letter labelling the axis, with u2
along the horizontal and v2 along the vertical axis. The input to A2 is
a(aabb)2aaa(bbbbaaaa)(bbbabaaa)(bbbbaaaa)bbbb(aabb)2aaaaabbbbb, with active states
marked with bullet points.

q4(i+1)+2,5+4l+4 = q4(i+1)+2,5+4(l+1). Thus, for each l, we have Qa(aabb)i+1 =

{q4(i+1)+2,2+4l, q4(i+1)+2,4l+5, q4(i+1)+2,2+4(l+1), q4(i+1)+2,5+4(l+1) | 0 ≤ l < i}
= {q4(i+1)+2,2+4l, q4(i+1)+2,5+4l | 0 ≤ l < i+ 1}.

and thus the induction holds.
Thus, after reading a(aabb)n, we are in one of the states in Qa(aabb)n =

{q4n+2,j , q4n+2,j+3 | j = 2 + 4l, 0 ≤ l < n}. This occurs at the bottom diagonal of the
“duplication” section in Figure 5. Then Qa(aabb)naaa = {q4n+5,j | j = 3 + 4l, 0 ≤ l ≤
n} which is of size n+ 1. The next set of input letters is in (bbbbaaaa+ bbbabaaa)n+1.
This is the so called “filtering stage”, marked in white in Figure 5. Intuitively, each
element of Qa(aabb)naaa, as determined by l, will continue roughly along a diagonal
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(we get a diagonal for l being 0, 1, 2 in the figure) until each reaches baba along v
marked by the “prune” line of the figure. If the input is then bbbbaaaa, this diagonal
gets “cut off”, while all other states in the vertical layer are able to continue along its
diagonal. However, if the input is bbbabaaa, then every diagonal in the vertical layer
is able to continue. Since each diagonal reaches the “prune” line at a different time,
we can selectively keep or remove each diagonal one at a time.

More formally, assume that x1 · · ·xn+1 is the input, xi ∈ (bbbbaaaa + bbbabaaa).
Let πi = 0 if xi = bbbabaaa, and πi = 1 if xi = bbbbaaaa. The sections of A2 when
reading x1, x2, x3 are separated by lines in Figure 5 where π1 = 1, π2 = 0, π3 = 1. We
can then show by induction that for each i, 1 ≤ i ≤ n+ 1,

Qa(aabb)naaax1···xi
= {q4n+5+8i,j | j = 3 + 4l + 4i, 0 ≤ l ≤ n, (l < i⇒ πl = 1)}.

For the base case with i = 1, we can see that if l > 0, then the next four letters
to be read from both u and v at state q4n+5,3+4l are bbaa. Thus, if π1 = 1 then
q4n+5+8,j ∈ Qa(aabb)nx1

, where j = 3 + 4l + 4, (this is shown in the figure where l
is 1 or 2) but δ(q4n+5+8,3+4, bbbb) is undefined since the next two letters to be read
from v are ba and bba from u and thus bbbb is too many b’s. However, if π1 = 0, then
q4n+5+8,j ∈ Qa(aabb)iaaax1

, j = 3 + 4l + 4, l > 0, but also δ(q4n+5+8,3+4, x1) is defined
since bbb can read two letters from u, one from v, then aba from v and aa from u (this
is similar to the pattern where the l = 1 diagonal passes the “prune” line as π2 = 0).
Hence,

Qa(aabb)naaax1
= {q4n+5+8,j | j = 3 + 4l + 4, 0 ≤ l ≤ n, (l = 0⇒ π1 = 0)}

and the base case holds.
Assume by way of induction that i < n+ 1 and

Qa(aabb)naaax1···xi
= {q4n+5+8i,j | j = 3 + 4l + 4i, 0 ≤ l ≤ n, (l < i⇒ πl = 0)}.

Assume first that l > i. Then the next four letters to be read from u and v
are both bbaa. Then if either πl = 1 or πl = 0, δ(q4n+5+8i,3+4l+4i, xi+1) =
{q4n+5+8(i+1),3+4l+4(i+1)} (this occurs when either i = 1, l = 2 or i = 2, l = 3 in
the figure). Assume l < i. Then q4n+5+8i,3+4l+4i ∈ Qa(aabb)naaax1···xi

if and only
if πl = 0 by the inductive hypothesis. Assume that πl = 0. Then the next four
letters to be read from both u and v are bbaa (for example, when l = 2, i = 3
in the figure) and after reading xi+1, and either πi+1 = 0 or πi+1 = 1, then
δ(q4n+5+8i,3+4l+4i, xi+1) = {q4n+5+8(i+1),3+4l+4(i+1)}. Lastly assume l = i. Then
the next four letters to be read from u are bbaa and from v are baba. Then, if the
next four input letters are b’s (πi+1 = 1), then δ(q4n+5+8i,3+4l+4i, bbbb) is undefined
(as when l = 0 or l = 2 in the figure). Otherwise, if πi+1 = 0 (when l = 1 in the
figure), then δ(q4n+5+8i,3+4l+4i, xi+1) = {q4n+5+8(i+1),3+4l+4(i+1)} and the induction
holds.

Hence, Qa(aabb)naaax1···xn+1
= {q4n+5+8(n+1),j | j = 3 + 4l + 4(n + 1), πl = 0}. No

matter the contents of this set, which depends on x1, · · · , xn+1, every state can reach
a final state on bbbb(aabb)naaaaabbbbb since the rest of u is of the form bb(aabb)∗aaaaa
and the rest of v is of the form bb(aabb)∗bbbbb. Therefore, if we use the subset



17

construction [5] on An, there is only one set of states we can be in after reading each
prefix of a(aabb)naaa. As we read each prefix w of x1 · · ·xn+1, w = x1 · · ·xiy, |y| <
8, xj ∈ (bbbbaaaa + bbbabaaa), j ≤ i, then q4n+5+8i,3+4l+4i ∈ Qa(aabb)nx1···xi

if and
only if l ≥ i or πl = 0. There are 2i such subsets. And indeed, if |y| ≥ 4, then
δ(q4n+5+8i,3+4l+4i, y) is undefined if and only if πi+1 = 1. Hence, after reading each
prefix of length 1 to |x1 · · ·xn+1|, there are

3 + 8 · 21 + 8 · 22 + · · ·+ 8 · 2n + 5 · 2n+1 = 3 + 5 · 2n+1 + 8(21 + · · ·+ 2n)

= 3 + 5 · 2n+1 + 8(2n+1 − 2) = 13(2n+1)− 13 = 13(2n+1 − 1)

sets of states created in the subset construction. Thus, when reading every prefix of
a(aabb)naaax1 · · ·xn+1, 4(n + 1) + 13(2n+1 − 1) sets of states are created and thus
the subset construction requires at least this many states, and the remaining input
is of length 4(n + 1) + 10, the automaton from the subset construction has at least
8(n+ 1) + 13(2n+1 − 1) + 10 states.

We can now show that each of the states created in the subset construction from
each prefix of a(aabb)naaax1 · · ·xn+1 are distinguishable from each other. First, if
two states were not distinguishable from each other, then they must be created from
the same vertical layer as otherwise, there would be different lengths to reach the
end of un and vn. As there was only one state created in the subset construction
automaton for each prefix of a(aabb)naaa, each such state is distinguishable from all
other such states. Let Y1, Y2 be two different states created in the subset construction
from reading some prefix of a(aabb)naaax1 · · ·xn+1. Assume without loss of generality
that there exists q ∈ Y1 \ Y2. Then, there exists some path from state q to a state p
on the remaining input of a(aabb)naaax1 · · ·xn+1bbbb. Then p cannot be reached on
this input from any state in Y2 (as is the path where l = 1 until it hits the bottom
grey section and then reads bbbb). Moreover, there exists some word

w = (aaaabbbb)+(aaaaa)(aabb)∗(bbbbb) + (aaaabbbb)+(bbbbb)(aabb)∗(aaaaa)

such that δ(p, w) ∈ F (with state sets marked by the dashed lines in Figure 5, followed
by aaaaabbbbb. In general, the path always marked by the states can move diagonally
until it hits either the end of u or v with aaaaa or bbbbb, then finishing one word
followed by the other) and no word in Y2 can reach any final state with this word.
Hence, Y1 and Y2 are distinguishable. There is at least one state in each of the
remaining vertical layers. From [5], this implies the minimal automaton accepting
un vn has at least 8(n+1)+13(2n+1−1)+10 states. As m = |un| = |vn| = 8n+13,
this implies n = m−13

8 . Hence, the automaton has

8(
m− 13

8
+ 1) + 13(2

m−13
8 +1 − 1) + 10

= m− 13 + 8 + 13(2 · 2m−13
8 − 1) + 10

= m− 8 +
26

8
√

2
13 ·

8
√

2
m

≥ m− 8 + 8.42 · 8
√

2
m ≥ m− 8 + 8.42 · 1.09m.

Hence, we get Ω( 8
√

2
m

) where |un| = |vn| = m. 2
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Theorem 9 is especially interesting in light of Theorem 8, which showed that the
minimal DFA for the shuffle of u = (aabb)2n+2 and v = (aabb)2n+2 is in O(n2). It is
easy to see that adding 5 a’a and 5 b’s to the ends of these words does not change
this bound. The words used in the proof of Theorem 9 differ from these u and v only
by switching two letters in one of the words, and yet this subtle change is enough to
cause an exponential blow-up in size.
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