
On comparing deterministic finite automata and
the shuffle of words ? ??

Franziska Biegler1 and Ian McQuillan2

1 Machine Learning Group, TU Berlin
Germany

franziska.biegler@tu-berlin.de
2 Department of Computer Science, University of Saskatchewan

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. We continue the study of the shuffle of individual words, and
the problem of decomposing a finite automaton into the shuffle on words.
There is a known polynomial time algorithm to decide whether the shuffle
of two words is a subset of the language accepted by a deterministic
finite automaton [5]. In this paper, we consider the converse problem
of determining whether or not the language accepted by a deterministic
finite automaton is a subset of the shuffle of two words. We provide a
polynomial time algorithm to decide whether the language accepted by a
deterministic finite automaton is a subset of the shuffle of two words, for
the special case when the skeletons of the two words are of fixed length.
Therefore, for this special case, we can decide equality in polynomial time
as well. However, we then show that this problem is coNP-Complete in
general, as conjectured in [2].

1 Introduction

The shuffle operation (denoted by here) on words describes the set of all
words that can be obtained by interleaving the letters of the operands in all
possible ways, such that the order of the letters of each operand is preserved
(the operation can then be extended to languages). There have been a number
of theoretical results and algorithms involving shuffle such as [10] which showed
that the so-called shuffle languages obtained from finite languages via union,
concatenation, Kleene star, shuffle and shuffle closure, are in P. In [12], it is
shown that given a word w, and n other words, it is NP-Complete to decide if
w is in the shuffle of the n words.

Despite the length of time since the operator was introduced [7], there re-
mains a number of standard formal language theoretic questions involving shuf-
fle that are unsolved. For example, there is a long-standing open problem as to

? Research supported, in part, by the Natural Sciences and Engineering Research
Council of Canada.

?? Published in Proceedings of CIAA 2014. The final authenticated version is available
online at https://doi.org/10.1007/978-3-319-08846-4_7.

https://doi.org/10.1007/978-3-319-08846-4_7

whether it is decidable to decompose an arbitrary regular language into the shuf-
fle of two languages. Certain special cases are known to be decidable however,
such as for commutative regular languages and locally testable languages, while
it is undecidable for context-free languages [6].

Indeed, even the special case of the shuffle of individual words, rather than
sets of words, has received considerable attention but there remains a number
of yet unsolved problems. In [1], it is shown that the shuffle of individual words
(with at least two letters) has a unique shuffle decomposition over words. That
result was extended in [3] to show that the shuffle of two words (each with at
least two letters) has a unique shuffle decomposition over arbitrary sets.

However, the complexity of taking a language as input, and determining if
it has a decomposition into the shuffle of two words, remains an open question
(which also depends on the method that the language uses as input). Despite
this, in [5], it is shown that if a language accepted by a deterministic finite
automaton (DFA) M has a decomposition into words, there is an algorithm
that finds the unique decomposition into words in time linear in the lengths
of the words (sublinear in the size of the automaton). However, if the input
automaton is not decomposable, the algorithm cannot always determine that it
is not decomposable, but will instead in those cases output two strings u and
v, despite L(M) not having any shuffle decomposition. As the algorithm does
not have knowledge regarding whether L(M) has a decomposition, one could
take the output strings u and v, and test if their shuffle is equal to L(M), thus
testing whether L(M) was itself decomposable. One way to do this would be to
construct a DFA accepting u v, and test equality with L(M), however it was
shown in [4] that the size of minimal DFAs accepting the shuffle of two strings
can grow exponentially in the length of the strings. Therefore, it still remains an
open problem as to whether there is a polynomial time algorithm to test if the
language accepted by a DFA has a decomposition into the shuffle of words.

Here, we are interested in testing inclusion between the language accepted
by a DFA and the shuffle of two words. One direction of this problem, testing
whether the shuffle of two strings is contained in the language accepted by a
DFA has a known polynomial time algorithm [5,2]. In this paper, we investigate
the complexity of the converse of this problem. It is shown that given a DFA M
and words u, v ∈ Σ+, the problem of deciding whether or not L(M) ⊆ u v
is coNP-Complete, as conjectured in [2]. However, for the special case of the
problem on words u, v with fixed-length skeletons (the length of a skeleton is
the number of “lettered sections”), we provide a polynomial time algorithm.
This also gives a polynomial time algorithm to decide if L(M) = u v for this
special case. However, the exact complexity of deciding whether L(M) = u v
in general remains open despite the fact that we know it takes polynomial time
to check u v ⊆ L(M) and it is coNP-Complete to check L(M) ⊆ u v.

2 Preliminaries

Let N0 be the set of non-negative integers. An alphabet Σ is a finite, non-empty
set of letters. The set of all words over Σ is denoted by Σ∗, and this set contains
the empty word, λ. The set of all non-empty words over Σ is denoted by Σ+.
For n ∈ N0, let Σn be all words of length n over Σ.

Let Σ be an alphabet. For a word w ∈ Σ∗, the length of w is denoted by
|w|. Let w(i) be the i-th letter of w, let w[i] be the word which is the first i
characters of w, and let w[i, j] be the subword between characters i and j where
these are undefined if i or j are not in {1, . . . , |w|}, or if j < i. The skeleton of
w is λ if w = λ, and is a1a2 · · · an where w = aα1

1 aα2
2 · · · aαn

n , n ≥ 1, αi > 0, ai ∈
Σ, 1 ≤ i ≤ n, aj 6= aj+1, 1 ≤ j < n. For example, the skeleton of aaaaabbbabbbb
is abab.

Let u, v ∈ Σ∗. The shuffle of u and v is defined as u v = {u1v1 · · ·unvn |
u = u1 · · ·un, v = v1 · · · vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n}. For example, aab ba =
{aabba, aabab, ababa, abaab, baaba, baaab}. We say u is a prefix of v, written u ≤p

v, if v = ux, for some x ∈ Σ∗. Let w, x ∈ Σ∗. The left quotient of x by w, written
w−1x = x1 if x = wx1, and undefined otherwise.

We assume the reader to be familiar with deterministic finite automata
(DFAs), nondeterministic finite automata (NFAs), the subset construction com-
monly used to convert an NFA into an equivalent DFA, and minimal DFAs. See
[13,9] for an introduction and more details on finite automata.

3 Fixed-Length Skeleton Polynomial Algorithm

The purpose of this section is to give special cases on an input DFA M and
u, v ∈ Σ+ whereby there is a polynomial algorithm to decide whether or not
L(M) ⊆ u v. In particular, the main result is that when u and v have fixed-
length skeletons, there is a polynomial time algorithm. We will see in the next
section that in general, this problem is coNP-Complete and therefore there likely
is not a polynomial time algorithm (unless P = coNP).

We will start by examining the complement of the problem. That is, the
problem of whether there exists some w ∈ L(M) such that w /∈ u v (or
whether L(M) 6⊆ u v). If we can provide a polynomial time algorithm to
solve this problem for some special cases, then we can solve the problem of
L(M) ⊆ u v for those cases.

Given two words u, v ∈ Σ+, there is an “obvious” NFA accepting u v with
(|u| + 1) · (|v| + 1) states, where each state is an ordered pair representing the
position within both u and v. This NFA is called the naive NFA and is defined
formally in [4].

First notice, that if we could construct a DFA accepting u v in polynomial
time, then we could build a DFA accepting (u v)c (the complement) in poly-
nomial time, using the standard algorithm to take the complement of a DFA
(Theorem 3.2, [9]). Similarly, we could build a DFA accepting L(M) ∩ (u v)c

in polynomial time, using the standard algorithm for taking the intersection of

two DFAs (Theorem 3.3, [9]). Moreover we could test whether this set is empty
in polynomial time (Theorem 3.7, [9]).

Proposition 1. Let M be any DFA. Let F be a subset of Σ+ × Σ+ such that
there exists a polynomial f from N0 × N0 to N0 and an algorithm A converting
any pair (u, v) ∈ F to a DFA accepting u v in time less than or equal to
f(|u|, |v|). Then we can test whether or not L(M) ⊆ u v in polynomial time,
for any (u, v) ∈ F . Similarly for testing whether L(M) = u v.

The ability to test for equality follows from the existing polynomial time algo-
rithm to determine if u v ⊆ L(M) [5].

In particular, the algorithm A from this proposition could simply be to con-
struct the naive NFA for u v and then to use the standard subset construction
algorithm applied to the naive NFA accepting u v for (u, v) ∈ F , which could
produce DFAs that are polynomial in size for certain sets F . Therefore, if there
is a subset F of Σ+×Σ+ such that the subset construction applied to the naive
NFAs create DFAs that are polynomial in size, then we have a polynomial time
algorithm to decide if L(M) ⊆ u v, for all (u, v) ∈ F .

Before establishing the main result of this section, we first need the following
definition and three lemmas.

Let u, v, w ∈ Σ+, where w = aα1
1 aα2

2 · · · aαn
n , ai 6= ai+1, 1 ≤ i < n, αl > 0, ai ∈

Σ, 1 ≤ l ≤ n. For each l, 0 ≤ l ≤ n, let

g(w, u, v, l) = {(i, j) | aα1
1 aα2

2 · · · aαl

l ∈ u[i] v[j] and either u(i+ 1) = al+1 or
v(j + 1) = al+1 or (i = |u| and j = |v|)}.

Note that if i = |u| then u(i+ 1) is undefined forcing u(i+ 1) = al+1 to not be
true, as with the case where j = |v|.

For example, if u = aabbaabb, v = aabbaaa and w = aabbaabbaabbaaa, then
g(w, u, v, 3) = {(6, 0), (4, 2), (2, 4)}.

The definition of g can be rewritten recursively as follows:

Lemma 1. For all l, 1 ≤ l ≤ n,

g(w, u, v, l) = {(h,m) | (i, j) ∈ g(w, u, v, l − 1), u[i+ 1, h] = aγl , v[j + 1,m] = aδl
for some γ, δ ≥ 0, either (h,m) = (|u|, |v|) or
u(h+ 1) = al+1 or v(m+ 1) = al+1}.

Next, we will show the following three conditions are equivalent, and then
use condition 1 within the decision procedure below.

Lemma 2. The following conditions are equivalent:

1. g(w, u, v, l) 6= ∅ for all l, 0 ≤ l ≤ n, and (|u|, |v|) ∈ g(w, u, v, n),
2. (|u|, |v|) ∈ g(w, u, v, n),
3. w ∈ u v.

This can be seen as conditions 2 and 3 are equivalent from the definition of g.
Further, condition 1 implies 2 directly. And condition 3 implies 1 as w ∈ u v
implies that for all l, 0 ≤ l < n, aα1

1 · · · aαl

l al+1 ∈ u[i] v[j] for some i, j.
Next, we see that as long as the g function is of size bounded by a constant

for each w ∈ L(M), there is a polynomial algorithm.

Lemma 3. Let k be a constant, M a DFA and u, v ∈ Σ+. If, for every w ∈
L(M) where w = aα1

1 · · · aαn
n , ai 6= ai+1, 1 ≤ i < n, αj > 0, aj ∈ Σ, 1 ≤ j ≤ n,

and for every l, 0 ≤ l ≤ n, the inequality |g(w, u, v, l)| ≤ k is true, then there is
a polynomial time algorithm for deciding whether or not L(M) ⊆ u v, and for
deciding whether L(M) = u v.

Proof. We will construct a logspace bounded nondeterministic Turing machine
for the algorithm, and use the fact that NLOGSPACE is a subset of P (Corollary
to Theorem 7.4 in [11]). It will decide if L(M) 6⊆ u v; that is, if there exists
w such that w ∈ L(M) but w /∈ u v. We will use condition 1 of Lemma 2
combined with Lemma 1. The Turing Machine will guess a word w ∈ L(M),
where w = aα1

1 · · · aαn
n , ai 6= ai+1, 1 ≤ i < n, αl > 0, al ∈ Σ, 1 ≤ l ≤ n, and

for every l from 0 to n, writes out the list of all (i, j) such that aα1
1 · · · aαl

l ∈
u[i] v[j], where either (i, j) = (|u|, |v|), or u(i+ 1) = al+1, or v(j + 1) = al+1,
which must be of size at most k. Indeed this can be done by at first writing out
the elements of g(w, u, v, 0) ((0, 0) if either u(1) or v(1) is equal to a1, and ∅
otherwise). Then, if after writing out the list {(i1, j1), . . . , (iq, jq)} after reading
aα1
1 · · · aαl

l , l < n, then for a
αl+1

l+1 , the new list is obtained as follows: by taking
each (ip, jp), 1 ≤ p ≤ q, removing it from the list and adding (ip+γ, jp+δ), where
γ+δ = αl+1, such that the subword of u starting at position ip+1 is aγp+1, and the

subword of v starting at position jp+1 is aδp+1 and either (ip+γ, jp+δ) = (|u|, |v|),
or aγp+1ap+2 is a subword of u starting at position ip+1, or aδp+1ap+2 is a subword
of v starting at position vp+1. This will accurately calculate each set g(w, u, v, l)
by Lemma 1. If we do this for all (ip, jp), the resulting list must be of size less
than or equal to k after each step l by the assumption and therefore we can store
the numbers in logspace. Moreover, (|u|, |v|) does not appear in the final list if
and only if w /∈ u v by Lemma 2. ut

These three lemmas allow to prove the main result of this section.

Theorem 1. Let M be a DFA, and let u, v ∈ Σ+ with fixed-length skeletons.
Then, there is a polynomial time algorithm to decide whether or not L(M) ⊆
u v, and to decide whether L(M) = u v.

Proof. Let u = bβ1

1 b
β2

2 · · · b
βp
p , bj 6= bj+1, 1 ≤ j < p, βi > 0, bi ∈ Σ, 1 ≤ i ≤ p, and

let v = cγ11 c
γ2
2 · · · c

γq
q , cj 6= cj+1, 1 ≤ j < q, γi > 0, ci ∈ Σ, 1 ≤ i ≤ q, where p and

q are fixed. Let k be the maximum of p and q. If, for all w ∈ L(M) and every l
from 1 to the length of the skeleton of w, it is true that |g(w, u, v, l)| is less than
or equal to some constant, then the result follows from Lemma 3.

Let w = aα1
1 aα2

2 · · · aαn
n , aj 6= aj+1, 1 ≤ j < n, αi > 0, ai ∈ Σ, 1 ≤ i ≤

n. Then we can build a directed acyclic graph G = (V,E) such that V =

⋃
0≤l≤n g(w, u, v, l) and

E = {(x, y) | x = (i, j) ∈ g(w, u, v, l) for some l, 0 ≤ l < n, y = (h,m) ∈
g(w, u, v, l + 1) s. t. a

αl+1

l+1 ∈ u[i+ 1, h] v[j + 1,m] and either
u(h+ 1) = al+2 or v(m+ 1) = al+2 or (h = |u| and m = |v|)}.

It is clear that w ∈ u v if and only if there is a path from (0, 0) to (|u|, |v|) in
G from Lemma 1 and Lemma 2. Also, every x ∈ V is reachable from (0, 0) via
at least one path.

Let l be such that 0 ≤ l < n, and let (i, j) ∈ g(w, u, v, l). Consider a
αl+1

l+1 .
Assume al+1 6= a(i+1) and al+1 6= v(j+1). Then there is no outgoing edge from
(i, j). Assume that al+1 = u(i+1) but al+1 6= v(j+1). If u[i+1, i+αl+1] = a

αl+1

l+1

and either u(i + αl+1 + 1) = al+2 or v(j + 1) = al+2 or (i + αl+1 = |u| and
j = |v|), then (i, j) has one outgoing edge. Otherwise (i, j) has no outgoing
edges. Similarly if al+1 6= u(i + 1) and vl+1 = v(j + 1). Then the only way of
having more than one outgoing edge from (i, j) is if al+1 = u(i+ 1) = v(j + 1).
But in this situation, from (i, j), there are at most two outgoing edges since all
copies of al+1 must be consumed from either u or v by the definition of g.

Let (i0, j0) = (0, 0), (i1, j1), . . . , (ix, jx) (with x ≤ n and potentially x = n) be
a sequence of vertices such that eα connects (iα, jα) to (iα+1, jα+1) for all α, 0 ≤
α < x. Let (p0, q0), . . . , (pm, qm) be the subsequence of (i0, j0), (i1, j1), . . . , (ix, jx)
such that there are two outgoing edges in G from (pα, qα), 0 ≤ α ≤ m. This list
is of size at most 2k since each one consumes one section of the skeleton of u
or v. Further, it can be shown (omitted for reasons of space) that, if every such
path has at most 2k branching points, the number of elements in g(w, u, v, l) is
at most 22k+1 − 1 for every l, which is a constant since k is a constant. ut

4 General coNP-Completeness

The purpose of this chapter is to show that given a DFA M and words u, v ∈ Σ+,
the problem of determining whether or not L(M) ⊆ u v is coNP-Complete.

To show in general (for any u, v and M), this problem is not solvable in
polynomial time, we need to examine pairs of words u, v whereby the DFA
created from the subset construction accepting u v is not polynomial in size
by Proposition 1. Indeed, we know that such automata exist, as in [4], an infinite
subset of Σ+ × Σ+ is demonstrated such that for each (u, v) in the subset,
the minimal DFA accepting u v requires an exponential number of states.
These word pairs are quite similar to those constructed in Theorem 2 below.
The existence of minimal DFAs accepting the shuffle of two words that requires
an exponential number of states is not enough information on its own though to
show that testing L(M) ⊆ u v cannot be done in polynomial time, as there
could in principle be an algorithm that tests this fact without first constructing
the minimal DFA accepting u v (as is the case for the converse problem, which
can be tested in polynomial time).

We will examine the complement of that problem; that is, the problem of
whether there exists some w ∈ L(M) such that w /∈ u v. We will show that this

problem is NP-Complete. This implies that the problem of determining whether
or not L(M) ⊆ u v is coNP-Complete, by Proposition 10.1 of [11], which states
that the complement of an NP-Complete language is coNP-Complete.

Throughout the proof, we will refer to Example 1 for the purposes of intuition.
It is helpful to follow the example together with the proof.

Theorem 2. Let M be a DFA and let u, v ∈ Σ+ where Σ has at least two
letters. The problem of determining whether there exists w ∈ L(M) such that
w /∈ u v is NP-Complete.

Proof. It is clear that this problem is in NP since we can construct a nonde-
terministic Turing Machine that guesses a word in L(M) and then verifies that
w /∈ u v (we can test membership in the naive NFA accepting u v, and NFA
membership testing can be done in polynomial time [8]).

Thus, we need to show that the problem is NP-hard. Let F be an instance
of the satisfiability problem with X = {x1, . . . , xp} the set of Boolean variables,
and C = {c1, . . . cq} the set of clauses over X where each clause in C has three
literals. This problem is known as 3SAT and it is NP-Complete (Proposition 9.2
of [11]). We will also assume without loss of generality that q ≥ 2. For a variable
x, let x+ be the literal obtained from the variable x as true (simply the variable
x), and x− be the literal obtained from the variable as false (the negation of
x). If d is a truth assignment, then d is a function from X to {+,−} (true or
false). We extend d to a function on clauses, where d(c) = + if c contains at
least one literal that matches the sign of d applied to its variable, and d(c) = −
if all literals have differing signs than its variables on d.

We will first provide the construction. Although technical, we will refer
throughout the proof to Example 1, located after the proof, for intuition. Next,
we construct the two words u, v, and the DFA accepting the language L. The
words u and v depend only on the number of variables and clauses. The lan-
guage L accepts a different string for every possible truth assignment to the
variables X. Each such string contains a substring for each variable consecu-
tively, and within each such substring, another sequence of substrings for each
clause consecutively.

Let f(ci, xj , α) be a function from C ×X × {+,−} such that

f(ci, xj , α) =

{
bbbabaaa if ci does not contain literal xαj ,

bbbbaaaa otherwise (if ci does contain literal xαj).

Then, let

u = (aabb)q−1(aabababb(aabb)q−2)p(aabb),

v = (aabb)q−1(aabbaabb(aabb)q−2)p(aabb),

g(xj , α) = f(c1, xj , α)f(c2, xj , α) · · · f(cq, xj , α), xj ∈ X,α ∈ {+,−},
y(d) = g(x1, d(x1)) · · · g(xp, d(xp)), d a function from X to {+,−},
Y = {y(d) | d a function from X to {+,−}},
L = a(aabb)q−1aaa · Y · bbbb(aabb)q−1.

Below, we will show that F is satisfiable if and only if there exists a word
in L that is not in u v. First, notice that we can build u and v in polynomial
time, and they depend only on the number of variables and clauses in F .

We will build a DFA accepting L in polynomial time in several steps. First,
we can build a DFA accepting each f(ci, xj , α) which only has 9 states since each
accepts only one word of length 8. We can also build all f(ci, xj , α) in O(pq) time.
Then, we can accept each g(xj , α) in polynomial time. We can then build a DFA
accepting {g(xj ,+), g(xj ,−)} for every j. Indeed, if xj is a variable, and l is
the length of the longest common prefix of g(xj ,+) and g(xj ,−), then we can
build a DFA that reads this common prefix and then switches to one of two states
based on whether the next letter is from g(xj ,+) or g(xj ,−). Then, from the two
different states, it reads what remains of either g(xj ,+) or g(xj ,−). Upon reading
the last symbol of either, the DFA switches to a common final state. Thus, we can
build a DFA accepting {g(xj ,+), g(xj ,−)} in polynomial time. Next, note that
Y = {g(x1,+), g(x1,−)} · {g(x2,+), g(x2,−)} · · · {g(xp,+), g(xp,−)}. Hence, we
can also build an automaton accepting Y in polynomial time by concatenating
the DFA for {g(x1,+), g(x1,−)} to that of {g(x2,+), g(x2,−)}, and so on, for all
p variables. Then we can transform the DFA accepting Y into one accepting L in
polynomial time. In Example 1, we provide an instance of the 3SAT problem and
show its DFA (accepting Y) created by this construction in Figure 1. Intuitively,
notice that every path through the automaton corresponds to a different truth
assignment. For each variable, consecutively, taking the upper path corresponds
to setting that variable to be true, and the lower path corresponds to setting
that variable to be false.

For a prefix w of a word in L, we let

h(w) = {(i, j) | w ∈ u[i] v[j]}.

We will show next that d is a satisfying truth assignment if and only if
h(a(aabb)q−1aaa · y(d)) = ∅.

Each word of Y is composed of y(d) where d is any assignment of the variables.
That is, each word is of the form g(x1, α1) · · · g(xp, αp) where α1, . . . , αp can be
any assignment of each variable to + (true) or − (false). Each g(xj , α) is a
string where we concatenate for each clause bbbabaaa when xαj is not in the
clause (either the variable is not in the clause at all, or only the negation of xαj
is in the clause), and bbbbaaaa when the literal is in the clause.

Every word in L starts with a(aabb)q−1, and indeed, for any q ≥ 2,

h(a(aabb)q−1) = {(4q − 4l, 4l − 3), (4q − 4l − 3, 4l) | 1 ≤ l < q},

(proof omitted due to space constraints). This part is essentially identical to a
claim in Theorem 13 of [4]. Intuitively, in Figure 2, this can be seen visually
as the set of points at the bottom diagonal of the “duplication section”, where
l = 1 occurs for the first two points, followed by l = 2 for the next two points,
etc. Then,

h(a(aabb)q−1aaa) = {(4q − 4l + 2, 4l − 2) | 1 ≤ l ≤ q}

(this is diagonal below the previous diagonal marked on the diagram as β0),
as the point (4q − 4l, 4l − 3) gives one point two rows down and one column
to the right, (4q − 4l + 2, 4l − 2), while the point (4q − 4l − 3, 4l) gives one
point one row down and two columns to the right, (4q − 4l − 3 + 1, 4l + 2) =
(4q − 4(l + 1) + 2, 4(l + 1)− 2).

This paragraph will first explain the intuition regarding the rest of the proof
before the formal proof (again, while referencing Example 1 and its figures).
Looking at Figure 2, at the diagonal marked β0, there is a dot for each clause,
spaced evenly apart. Then, a sequence of words will be read that are each either
bbbabaaa or bbbbaaaa between consecutive diagonal lines marked as βk, for some
k. At first, if bbbabaaa is read, then the first “clause” can pass the horizontal line
marked “prune x1”, as it does in the diagram, and end with a single point four
rows down and four columns to the right on the next diagonal. If bbbbaaaa is read,
then the “clause” gets cut off instead (as the second clause does in the figure when
reaching the “prune x1” line). Then, as some word of (bbbabaaa+ bbbbaaaa)q is
read, each clause is being “cut off”, one at a time if and only if the literal x−1 is
in the clause (by having the word bbbbaaaa). Any clause not at the “prune” line
(either before or after the line) leads to an identical point on the next diagonal
four rows down and four columns to the right when reading either bbbabaaa
or bbbbaaaa. Thus, it is only the prune line that affects whether the clause
continues, and each clause reaches the “‘prune x1” line consecutively as each
f(ci, x1, d(x1)) is read, for each i, 1 ≤ i ≤ q. Moreover, since M consecutively
reads an entire word, either g(x1,+) = f(c1, x1,+) · · · f(cq, x1,+) or g(x1,−) =
f(c1, x1,−) · · · f(cq, x1,−), this enforces that x1 is set to true or false identically
for each clause. This process then continues for each variable from x2, . . . , xp
using the consecutive prune lines. Should a “clause” continue past all prune
lines, that means that all three literals in the clause were the opposite sign
as the function d applied to those variables, implying that it corresponds to a
non-satisfiable truth assignment. Therefore, if every word in L(M) has at least
one path continue past every prune line, then no possible truth assignment is
satisfying. Conversely, if a clause does get cut off, that means that one of the
variables in the clause has the same value as d. Therefore, if every clause has
some variable set as in d (F is satisfiable), then every clause gets cut off by some
prune line and wd /∈ u v. This is the case in Example 1 and Figure 2.

Formally, it can be shown that (proof omitted due to space constraints)

h(a(aabb)q−1aaa ·y(d)) = {(4q−4l+2+4pq, 4l−2+4pq) | 1 ≤ l ≤ q, d(cl) = −}.

This means that after reading y(d), if all of the clauses are satisfied by d,
then h(a(aabb)q−1aaa · y(d)) = ∅. Therefore, if we add any suffix to the end
of a(aabb)q−1aaa · y(d), it cannot be in u v. Hence, a(aabb)q−1aaa · y(d) ·
bbbb(aabb)q−1 /∈ u v.

Conversely, if after reading y(d), at least one of the clauses is not satisfied by
d. Then, h(a(aabb)q−1aaa ·y(d)) 6= ∅, and there must exist some l, 1 ≤ l ≤ q such
that d(cl) = − and (4q − 4l + 2 + 4pq, 4l − 2 + 4pq) ∈ h(a(aabb)q−1aaa · y(d)).
Notice that |u| = |v| = 4q + 4pq, and so for each l between 1 and q, there are

4l− 2 letters left from u and 2 + 4(q− l) letters left from v. Then what remains
of u is bb(aabb)l−1 and what remains of v is bb(aabb)q−l. But every point in this
set can reach point (|u|, |v|) on input bbbb(aabb)q−1 since (l−1)+(q− l) = q−1.

Hence, there exists a word in L that is not in u v if and only F is satisfiable.
ut

Example 1. Consider the following instance of 3SAT with clauses c1 = (x+1 ∨
x+2 ∨x+3), c2 = (x−1 ∨x+2 ∨x−3), c3 = (x+1 ∨x−2 ∨x−3). From this, we can construct
each g(xj , α) as follows:

g(x1,+) =

f(c1,x1,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x1,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x1,+)︷ ︸︸ ︷
bbbbaaaa

g(x1,−) =

f(c1,x1,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x1,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x1,−)︷ ︸︸ ︷
bbbabaaa

g(x2,+) =

f(c1,x2,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x2,+)︷ ︸︸ ︷
bbbbaaaa

f(c3,x2,+)︷ ︸︸ ︷
bbbabaaa

g(x2,−) =

f(c1,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c3,x2,−)︷ ︸︸ ︷
bbbbaaaa

g(x3,+) =

f(c1,x3,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x3,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x3,+)︷ ︸︸ ︷
bbbabaaa

g(x3,−) =

f(c1,x3,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x3,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x3,−)︷ ︸︸ ︷
bbbbaaaa

From this, we can construct the set Y . In Figure 1, we draw the automa-
ton accepting the set Y (and therefore, a(aabb)q−1aaa must be prepended and
bbbb(aabb)q−1 must be appended to transform it into a DFA accepting L).

This instance has a solution d : x1 → −, x2 → −, x3 → +. Then consider the
word wd = a(aabb)2aaa · y(d) · bbbb(aabb)2, where y(d) is equal to

f(c1,x1,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x1,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x1,−)︷ ︸︸ ︷
bbbabaaa︸ ︷︷ ︸

g(x1,−)

f(c1,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c3,x2,−)︷ ︸︸ ︷
bbbbaaaa︸ ︷︷ ︸

g(x2,−)

f(c1,x3,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x3,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x3,+)︷ ︸︸ ︷
bbbabaaa︸ ︷︷ ︸

g(x3,+)

.

This word is in L(M) as seen in Figure 1 by taking the lower path, then the next
lower path, then the upper path. But this word is not in u v as demonstrated
in Figure 2. The dots are placed at indices (i, j) where each prefix of wd is in
u[i] v[j]. The additional annotation in the diagram is referred to in the proof
of Theorem 2.

If instead we tried the assignment d′ : x1 → +, x2 → −, x3 → + (which is
not a satisfying truth assignment), then first “clause 1” gets cut off by the x1
prune line since x+1 ∈ c1, then “clause 2” can go through the line since x+1 /∈ c2,
then “clause 3” gets cut off since x+1 ∈ c3. Then “clause 1” is already cut off
and doesn’t reach the x2 prune line, then “clause 2” can continue as x−2 /∈ c2.

Then when “clause 2” reaches the x3 prune line, it can continue since x+3 /∈ c2.
So, at least one clause passes all prune lines and reading the remaining portion
of wd gives a word in u v, and thus d′ is not satisfiable. But if there is at least
one word in L that is not in u v, then this corresponds to a satisfying truth
assignment. Hence, at least one word in L is not in u v if and only if there is
some satisfying truth assignment.

x
bbb

b

a

(bbbb)−1g(x1,+)

(bbba)−1g(x1,−)

bbb
b

a

(bbbb)−1g(x2,+)

(bbba)−1g(x2,−)

bbb
b

a

(bbbb)−1g(x3,+)

(bbba)−1g(x3,−)

x

Fig. 1. The DFA accepting Y obtained from the instance of 3SAT from Example 1.
We use a word on a transition as a compressed notation to represent a sequence of
non-branching transitions.

As mentioned earlier, because testing L(M) 6⊆ u v is an NP-Complete
problem, this implies that testing whether L(M) ⊆ u v is a coNP-Complete
problem.

Corollary 1. Let M be a DFA and let u, v ∈ Σ+, where Σ has at least two
letters. The problem of determining whether L(M) ⊆ u v is coNP-Complete.

Despite the now known complexity of both deciding whether L(M) ⊆ u v
and u v ⊆ L(M), the exact complexity of deciding whether or not L(M) =
u v is not immediate. In the proof of Theorem 2, had we started with u, v,M
under the assumption that u v ⊆ L(M), and shown coNP-Completeness as to
whether L(M) ⊆ u v, then that would imply that testing whether L(M) =
u v would also be coNP-Complete. However, in the proof of Theorem 2, there
are many words in u v that are not in L(M) and it is not clear how one could
alter M to solve the problem while still creating it in polynomial time. Hence, the
problem of calculating the exact complexity of testing whether L(M) = u v
remains an open problem.

References

1. Berstel, J., Boasson, L.: Shuffle factorization is unique. Theoretical Computer Sci-
ence 273, 47–67 (2002)

2. Biegler, F.: Decomposition and Descriptional Complexity of Shuffle on Words and
Finite Languages. Ph.D. thesis, University of Western Ontario, London, Canada
(2009)

3. Biegler, F., Daley, M., Holzer, M., McQuillan, I.: On the uniqueness of shuffle on
words and finite languages. Theoretical Computer Science 410, 3711–3724 (2009)

top

lowerright

Duplication

Prune x1

Prune x2

Prune x3

c1

c2

c3

β0

β1

β2

β3

β4 β5 β6

Since
x−
1 ∈ c2

Since
x−
2 ∈ c3

Since
x3 ∈ c1

Thus, wd /∈ u v

a a b b a a b b a a b b a a b b a a b b a a b b a a b b a a b b a a b b
a
a
b
b
a
a
b
b
a
a
b
a
b
a
b
b
a
a
b
b
a
a
b
a
b
a
b
b
a
a
b
b
a
a
b
a
b
a
b
b

Fig. 2. The word u is labelling the vertical axis and v is labelling the horizontal axis.
Considering the word wd from Example 1, a dot is placed at (i, j) if wd has a prefix
in u[i] shuffled with v[j]. Only a portion of the diagram is shown, and u and v con-
tinue along the axes, although there are no dots in the rest of the diagram. The lines
connecting the dots demonstrates the change of states by reading individual characters.

4. Biegler, F., Daley, M., McQuillan, I.: On the shuffle automaton size for words.
Journal of Automata, Languages and Combinatorics 15, 53–70 (2010)

5. Biegler, F., Daley, M., McQuillan, I.: Algorithmic decomposition of shuffle on
words. Theoretical Computer Science 454, 38–50 (2012)

6. Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle quotient and decompositions.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) Proceedings DLT 5. pp. 186–196.
No. 2295 in LNCS, Springer, Wien, Austria (Jul 2001)

7. Ginsburg, S., Spanier, E.: Mappings of languages by two-tape devices. Journal of
the ACM 12(3), 423–434 (1965)

8. Holub, J., Melichar, B.: Implementation of nondeterministic finite automata for ap-
proximate pattern matching. In: Champarnaud, J.M., Maurel, D., Ziadi, D. (eds.)
WIA ’98, Lecture Notes in Computer Science, vol. 1660, pp. 92–99. Springer-Verlag
(1999)

9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA (1979)

10. Jȩdrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoretical Com-
puter Science 250, 31–53 (2001)

11. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts (1994)

12. Warmuth, M., Haussler, D.: On the complexity of iterated shuffle. Journal of Com-
puter and System Sciences 28(3), 345–358 (1984)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Berlin Heidelberg (1997)

	On comparing deterministic finite automata and the shuffle of words

