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Abstract. Synchronized context-free grammars are special context-free
grammars together with a relation which must be satisfied between every
pair of paths from root to leaf in a derivation tree, in order to contribute
towards the generated language. In the past, only the equality relation
and the prefix relation have been studied, with both methods generating
exactly the ET0L languages. In this paper, we study arbitrary relations,
and in particular, those defined by a transducer. We show that if we
use arbitrary a-transducers, we can generate all recursively enumerable
languages, and moreover, there exists a single fixed transducer, even over
a two letter alphabet, which allows to generate all recursively enumerable
languages. We also study the problem over unary transducers. Although
it is left open whether or not we can generate all recursively enumerable
languages with unary transducers, we are able to demonstrate that we
can generate all ET0L languages as well as a language that is not an
indexed language. Only by varying the transducer used to define the
relation, this generalization is natural, and can give each of the following
language families: context-free languages, a family between the E0L and
ET0L languages, ET0L languages, and recursively enumerable languages.

1 Introduction

The study of synchronization in formal language theory was originally initiated
by Hromkovič in order to study communication between parallel computations
of Turing machines and alternating Turing machines [5,6]. Then, in [12], Salo-
maa introduced synchronized tree automata, which allowed for limited commu-
nication between different paths of the trees. Synchronized context-free (SCF)
grammars were created [7] to study the yields of synchronized tree automata,
as string languages. This model consists of context-free grammars, where the
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nonterminals are ordered pairs, and the second component is an optional syn-
chronization symbol used to communicate with other branches of the tree. For
every pair of paths between root and leaf, the sequences of synchronization sym-
bols from the top towards the bottom of the tree must be related to each other,
according to some given relation, in order to contribute towards the generated
language. The language generated by an SCF grammar depends on the rela-
tion used. In the past, only two relations have been studied. The first is the
equality relation, where the sequence of synchronization symbols must be equal
for every pair of paths from root to leaves. The second is the prefix relation,
where between every two paths, one must be a prefix of the other. It has been
shown that both language families are identical [7], and equal to the family of
ET0L languages [9]. Moreover, if only one synchronization symbol is allowed, in
a model called counter synchronized context-free grammars, a language family
strictly between E0L and ET0L is obtained [2]. No other relations have been
studied, although the definition of SCF grammars is general enough that any
binary relation on words can be used.

In this paper, we use a common computational model, a transducer, to vary
the relation. We can obtain standard equality and prefix synchronization with
specific transducers, as well as the counter SCF languages. We show that one
can in fact generate all recursively enumerable languages by varying the trans-
ducer. Moreover, there is a single fixed transducer, over a two letter alphabet,
which gives all recursively enumerable languages. We also examine transducers
over a one letter alphabet. In contrast to normal SCF languages with equality
synchronization over a one letter alphabet, we are able to generate all ET0L lan-
guages. Therefore, we can simulate equality synchronization over any alphabet
with a transducer over a unary alphabet. Further, we are able to generate a non-
ET0L language, and indeed, non-indexed language, with a one letter transducer.
However, the exact capacity with unary transducers is left open.

The paper is organized as follows. In the next section we introduce the nec-
essary notations on a-transducers and SCF grammars, leading to the notion of
M -synchronized context-free grammars and languages. Then in Section 3 we
first give some examples on M -SCF grammars to become familiar with this
new concept and its basic mechanisms. The main result of this section is the
characterization of the family of recursively enumerable languages by M -SCF
grammars, even by a single fixed transducer. Moreover, this single fixed trans-
ducer can be chosen to be over a two letter alphabet. Finally, in Section 4 we
study the generative capacity of M -SCF for unary a-transducers. Finally, we
state some open problems related to SCF and M -SCF grammars and languages.

2 Preliminaries

In this section, we will define the necessary preliminaries, as well as define syn-
chronized context-free grammars and languages as they have been defined pre-
viously in the literature.
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Let N and N+ be the set of non-negative and positive integers, respectively.
An alphabet A is a finite, non-empty set of symbols. The set of all words over A
is denoted by A∗, which contains the empty word λ. A language L over A is any
subset of A∗. For a word x ∈ A∗, let |x| denote the length of x. We say x is a
prefix of y, denoted x ≤p y, if y = xu for some word u ∈ A∗. Also, w1'pw2 if
and only if either w1 ≤p w2 or w2 ≤p w1. We also say w1'ew2 if and only if
w1 = w2.

We will next define an a-transducer. Intuitively, it is a nondeterministic gsm
that allows output on a λ input. They are also referred to as rational transducers.
An a-transducer is a 6-tuple M = (Q,A1, A2, δ, q0, F ), where Q is the finite state
set, A1 is the input alphabet, A2 is the output alphabet, δ is a finite subset of
Q×A∗1 ×A∗2 ×Q, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
Let ` be the relation on Q × A∗1 × A∗2 defined by letting (q, xw, z1) ` (p, w, z2)
for each w ∈ A∗1 if (q, x, y, p) ∈ δ and z2 = z1y. An intermediate stage of a
computation of M , or a configuration of M , is represented by a triple (q, w, z)
where M is in state q, with w the input still to be read, and z the accumulated
output. Let `∗ be the reflexive, transitive closure of `. For such an a-transducer,
and for each word w ∈ A∗1, let

M(w) = { z | (q0, w, λ) `∗ (q, λ, z) for some q ∈ F }.

For every set L ⊆ Σ∗1 , let M(L) =
⋃

w∈LM(w). The mapping M is called an
a-transducer mapping or a-transduction.

A context-free grammar is denoted by G = (N,T, P, I), where N and T
are disjoint alphabets of nonterminals and terminals respectively, I ∈ N is the
starting nonterminal, and P is a finite set of productions of the form X → w
where X ∈ N and w ∈ (N ∪ T )∗. Derivations of context-free grammars can be
represented as trees. A tree domain D is a nonempty finite subset of N∗+ such
that

1. if µ ∈ D, then every prefix of µ belongs to D and
2. for every µ ∈ D there exists i ≥ 0 such that µj ∈ D if and only if 1 ≤ j ≤ i.

Let A be a set. An A-labelled tree is a mapping t : D → A, where D is a tree
domain. Elements of D are called nodes of t and D is said to be the domain
of t, dom(t). A node µ ∈ dom(t) is labelled by t(µ). A node λ ∈ dom(t), denoted
by root(t), is called the root of t. The set of leaves of t is denoted leaf(t). The
subtree of t at node µ is t/µ. When there is no confusion, we refer to a node
simply by its label.

Nodes of a tree t that are not leaves are called inner nodes of t. The inner
tree of t, inner(t) is the tree obtained from t by cutting off all the leaves. For
element µ ∈ dom(t), let patht(µ) be the sequence of symbols of A occurring on
the path from the root of t to the node µ.

Let G = (N,T, P, I) be a CF grammar. A (N ∪ T ∪ {λ})-labelled tree t is a
derivation tree of G if it satisfies the following conditions:

1. The root of t is labelled by the initial nonterminal, that is, t(λ) = I.
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2. The leaves of t are labelled by terminals or by the symbol λ.
3. Let µ ∈ dom(t) have k immediate successors µ1, µ2, . . . , µk, for k ≥ 1. Then
t(µ)→ t(µ1)t(µ1) · · · t(µk) ∈ P .

The set of derivation trees of G is denoted T (G). The yield of a derivation
tree t, yd(t), is the word obtained by concatenating the labels of the leaves of t
from left to right; the leaves are ordered by the lexicographic ordering of N∗+.
The derivation trees of G are in one-to-one correspondence with the equivalence
classes of derivations of G producing terminal words, and thus

L(G) = { yd(t) | t ∈ T (G) }.

In the following, for simplicity we also write yd(T (G)) instead.
The family of context-free languages [4,11] is denoted as usual by L(CF), and

with L(E0L) and L(ET0L) we refer to the family of E0L (extended Lindenmayer
systems without interaction) and ET0L (extended tabled Lindenmayer systems
without interaction) languages, respectively—see [10].

Definition 1. A synchronized context-free grammar (SCF) is a five-tuple

G = (V, S, T, P, I)

such that G′ = (V × (S ∪ {λ}), T, P, I) is a context-free grammar and V , S
and T are the alphabets of base nonterminals, situation symbols and terminals,
respectively. The alphabet of nonterminals is V × (S ∪ {λ}), where elements
of V × S are called synchronized nonterminals and elements of V × {λ} are
called non-synchronized nonterminals which are usually denoted by their base
nonterminals only. We define the morphism hG : (V × (S ∪ {λ}))∗ −→ S∗ by
the condition hG((v, x)) = x for all v ∈ V and x ∈ S ∪ {λ}.

This morphism follows the definition of an important concept, namely the
synchronizing sequence of a path on the derivation tree.

Definition 2. Let G be a SCF grammar. For a derivation tree t of G, t1 =
inner(t) and a node µ ∈ leaf(t1), the synchronizing sequence (sync-sequence)
corresponding to µ is seqt1(µ) = hG(patht1(µ)).

Next, we will restrict the trees that will be used to generate SCF languages.

Definition 3. Let G = (V, S, T, P, I) be an SCF grammar and z ∈ {p, e}. A
derivation tree t of G is said to be z-acceptable if seqinner(t)(µ) 'z seqinner(t)(ν),

for each µ, ν ∈ leaf(inner(t)). The set of z-acceptable derivation trees of G is
denoted by Tz(G).

The z-acceptable SCF language families are defined as follows:

Definition 4. For z ∈ {p, e}, the z-synchronized language of G is Lz(G) =
yd(Tz(G)). The families of z-SCF languages, for z ∈ {p, e}, and SCF languages
are denoted Lz(SCF) and L(SCF) = Le(SCF) ∪ Lp(SCF).
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It was proven in [7] that p- and e-synchronization generate the same family
of languages, i.e., Le(SCF) = Lp(SCF) = L(SCF). In [9] it was shown that SCF
grammars generate the family of ET0L languages, i.e., L(SCF) = L(ET0L), and
given an SCF grammar and a derivation mode one can effectively construct an
equivalent ET0L system and vice versa. Furthermore, equality synchronization
with only a single situation symbol or prefix synchronization with a single situa-
tion symbol plus an endmarker generates the counter synchronized-context free
languages, a language family strictly between the L(E0L) and L(ET0L) language
families [2,8].

3 Transducer synchronization

Next, we generalize the equality and prefix relation to arbitrary relations defined
by a transducer.

Definition 5. Let G = (V, S, T, P, I) be an SCF grammar together with an a-
transducer M = (Q,S, S, δ, q0, F ). Then, w1 'M w2 if and only if at least one
of w1 ∈M(w2) or w2 ∈M(w1) is true.

Now we can define the derivation tree we are interested in, as follows:

Definition 6. A derivation tree t of G is said to be M -acceptable if

seqinner(t)(µ) 'M seqinner(t)(ν),

for each µ, ν ∈ leaf(inner(t)). The set of M -acceptable derivation trees of G is
denoted by TM (G).

Finally, we define the accepted language and the notation for the language
family in question.

Definition 7. The M -synchronized language of G is LM (G) = yd(TM (G)).
The families of M -SCF languages are denoted LM (SCF). Moreover, the set of
languages generated by all such transducers is denoted by L∗(SCF).

As an example, consider the fixed transducer Me on a two letter alphabet S
that reads a word w and outputs w. This produces the same relation as the
equality relation on two letters. And because it is known [8] that two situation
symbols are sufficient to generate all languages in Le(SCF), we can conclude that
LMe

(SCF) = Le(SCF) = L(ET0L). We can also build a transducer which gives
the prefix relation over a binary alphabet. If we consider Mc that is the same
as Me except over a single letter alphabet, then we get the counter synchronized
context-free languages [2], a family of languages strictly between the L(E0L) and
L(ET0L) languages. And, the transducer that outputs λ for all inputs generates
the context-free languages. However, next we give a fixed transducer whereby
we can generate a non-ET0L language.
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Example 8. Consider the language

L = {x#φ(x) | x ∈ {0, 1}∗ with |x| = 2n, for n ≥ 0 },

where φ is a homomorphism defined by mapping 0 to a and 1 to b. In order to
show that L is a non-ET0L language we argue as follows: the family of ET0L
languages is a full-AFL and therefore closed under arbitrary homomorphisms,
and the language h(L), where h : {a, b, 0, 1,#}∗ → {a, b, 0, 1}∗ is the erasing
homomorphism defined by h(x) = x, for x ∈ {a, b, 0, 1}, and h(#) = λ, is not an
ET0L language [10, page 252, Corollary 2.11]. Hence L is not an ET0L language
either.

The grammar is defined as G = (V, S, T, P, I), where the productions are as
follows:

I → (X, l)#(Y, l′)
(X, l)→ (X, l)(X, r) | (X, 0) | (X, 1) (Y, l′)→ (Y, l′)(Y, r′) | (Y, a) | (Y, b)
(X, r)→ (X, l)(X, r) | (X, 0) | (X, 1) (Y, r′)→ (Y, l′)(Y, r′) | (Y, a) | (Y, b)
(X, 0)→ 0 (Y, a)→ a
(X, 1)→ 1 (Y, b)→ b

Let g be a homomorphism which maps 0 to a, 1 to b, l to l′ and r to r′. The
transducer M is defined, by mapping strings in S∗ as follows:

1) maps strings of the form xα to yβ, where x, y ∈ {l, r}+, |x| = |y|, and
α, β ∈ {0, 1},

2) maps strings of the form xα to yβ, where x, y ∈ {l′, r′}+, |x| = |y|, and
α, β ∈ {a, b},

3) maps strings of the form xα to g(x)g(α), where x ∈ {l, r}+, and α ∈ {0, 1},
4) maps strings of the form xα to yβ, where x ∈ {l, r}+, y ∈ {l′, r′}+, α, β ∈
{0, 1}, y 6= g(x), and |x| = |y|, and

5) maps strings of the form xα and yβ, where x ∈ {l, r}+, y ∈ {l′, r′}+, α ∈
{0, 1}, and β ∈ {a, b} to the empty word.

Every tree produced that is M -acceptable consists of two subtrees as children
of I, rooted at (X, l), and (Y, l′) as well as a third branch producing only the
marker #, as seen in Figure 1. Derivations of M of the form in 1), are used to
synchronize between every two paths of the left subtree. Indeed, every such path
must be of the same length, and the number of nonterminals in the left subtree
doubles at each height, and each path can generate either 0 or 1. Therefore, the
yield of every such left subtree is of the form x ∈ {0, 1}∗ with |x| = 2n, for n ≥ 0.
Similarly, rules of type 2) are used to synchronize the right subtree, and produce
words of the form y ∈ {a, b}∗ with |y| = 2n, for n ≥ 0. Moreover, each path from
root to leaf of the left subtree has some unique situation sequence xα, where
x ∈ {l, r}+ and α ∈ {0, 1}. For the one unique path in the right subtree with
the situation sequence of g(x)g(α), the leaf of the first subtree must be α, while
it must be g(α) in the second subtree, using rules of type 3). However, for every
other path from root to leaf whereby xα is the situation sequence of the first
tree, and yβ is the situation sequence of the second tree, then g(x) 6= y, and no
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I

(X, l)

(X, l) (X, r)

(X, l) (X, r)

(X, l) (X, r) (X, l) (X, r)

(Y, l0)

(Y, r0)

(X, l) (X, r)

(X, l) (X, r) (X, l) (X, r)

(Y, l0) (Y, r0)

(Y, l0) (Y, r0) (Y, l0) (Y, r0)

(Y, l0) (Y, r0)

(Y, l0) (Y, r0) (Y, l0) (Y, r0)

#

(Y, l0)

0 1 1 1

(X, 0) (X, 1) (X, 1) (X, 1)

0 1 0 0

(X, 0) (X, 1) (X, 0) (X, 0)

a b b b

(Y, a) (Y, b) (Y, b) (Y, b)

a b a a

(Y, a) (Y, b) (Y, a) (Y, a)

Fig. 1. An acceptable tree generating the word 01110100#abbbabaa.

conditions are placed on α and β allowing non-“matching” paths to synchronize
arbitrarily. Rules of type 5) allow to synchronize with the marker #, which has
an empty synchronization sequence. ut

Example 9. We will give another example of a non-standard simulation of the
linear languages. Linear languages are context-free languages, where there is at
most one nonterminal on the right hand side of every production (as seen on the
left diagram of Figure 2). It is known that all linear languages can be accepted
by linear grammars where each production is of the form A → bB,A → Bb, or
A→ b, where A,B are nonterminals and b is a terminal; instead of having rules
of the form A→ b in the grammar, one can require to have rules A→ λ instead.
The derivation trees for all such linear grammars consist of a single “path of
nonterminals” with terminals to the right or left at each height. It is obvious
that all such grammars can be generated without any synchronization at all.
However, in the simulation presented here, the terminals generated to the left of
the main “path of nonterminals” in the linear grammar are now generated on a
completely separate branch of the tree, and the synchronization communicates
the information about their proper placement. The intuition behind the sim-
ulation appears in Figure 2. We create labels in bijective correspondence with
the productions of the linear grammar. Then we create three branches. The first
nondeterministically generates a sequence of production symbols as situation
sequence. The second generates all terminals to the left of the main branch of
the linear grammar. The third generates all terminals to the right of the main
branch of the linear grammar. The situation symbols, and the transducer, com-
municate the production symbols between branches. This example is important
in understanding the simulation of arbitrary recursively enumerable languages
by synchronized context-free grammars by varying transducers. ut

Next we study some basic closure properties of M -SCF languages, for arbi-
trary, but fixed, a-transducers M .

Proposition 10. For every a-transducer M , LM (SCF) is a full semi-AFL.
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A1

�

...

A2

A3

An�1

An

↵ �

S

�

...

(L, pL1 )

(L, pL2 )

(L, pLn�1)

(L, pLn)
↵ �

(I, pn)

�

...
(I, p2)

(I, pn�1)

(I, p1)

�

...

(R, pR1 )

(R, pR2 )

(R, pRn�1)

(R, pRn )

Fig. 2. The tree on the left is a derivation tree of a linear grammar, using a sequence
of productions p1, p2, . . . , pn. The tree on the right is a simulation with a synchronized
context-free grammar, where the terminals derived to the left of the main branch are
now on a completely separate branch from those derived on the right.

Proof. Languages families that are full semi-AFLs are closed under homomor-
phism, inverse homomorphism, intersection with regular languages, and union.
The results for homomorphism, inverse homomorphism and intersection with
regular languages follows using exactly the same proofs as those for ET0L [10].
The proof for union can be seen by also using the standard proof for context-free
languages, where we create a new grammar with a new start symbol, that goes
to either of the two original start symbols (using non-synchronizing nontermi-
nals). ut

It is an open question whether or not there exists a transducer which gener-
ates a language family not closed under concatenation, Kleene star, or both. It is
clear however, that there are some transducers that give language families that
are also closed under concatenation and Kleene star, as the ET0L and counter
synchronized-context-free languages are closed under these as well.

This immediately implies that L∗(SCF) is also a full semi-AFL. In particular,
closure under homomorphism is important, as we prove next that this family can
generate all recursively enumerable languages, by using the well-known charac-
terization that every recursively enumerable language is equal to h(L1∩L2), for a
homomorphism h, and two linear context-free languages. Therefore, we will now
show that we can accept the intersection of two linear context-free languages.
The proof is omitted for reasons of space.

Proposition 11. Let G1 = (N1, T, P, I) and G2 = (N2, T,Q, J) be two linear
context-free grammars. Then L(G1) ∩ L(G2) is an M -SCF language, for some
a-transducer M (that depends on both G1 and G2). ut
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The simulation is similar in nature to the simulation of linear grammars in
Example 9. In that example, we created three branches to simulate the single
branch of the linear grammar. The first branch generated the sequence of pro-
ductions used in the linear grammar. The second branch generated all terminals
to the left and the third generated all to the right. Here, we adopt a similar
technique for both linear grammars to be simulated. In this case however, we
require four branches for each grammar, giving a total of eight branches.

The first four generate a word from the first linear grammar, and the second
four simulate the second linear grammar, however the second set of four branches
will only verify the same word is generated as the first grammar before outputting
the empty word across the entire second set of four branches.

Both grammarsG1 andG2 can generate the same word, but the first grammar
for example could generate the word with more letters to the right of the main
branch than the second grammar (and therefore the second would generate more
to the left than the first grammar). Therefore, it becomes non-trivial to test
equality as we cannot simply test for equality using synchronization passed from
the top towards the bottom in the tree. Then, we use the first and fifth branches
to use sequences of production labels in correspondence with the two grammars.
We use the second and sixth branches to generate those terminals that occur to
the left of both linear grammar trees. We use the fourth and eighth branches to
generate those terminals that occur to the right of both linear grammar trees. And
lastly, we use the third and seventh branch to generate those remaining terminals
which occur to the left of one grammar, and to the right of the other. This final
synchronization, between the third and seventh branch, is more complicated, as
they are generated in the opposite order (the terminals for one will be generated
from the top to the bottom in the tree, while the other will be generated bottom-
up). Then, we use a synchronization argument that uses a length argument on
the remaining sequence of one grammar in comparison to what has already been
generated in the other grammar. This combined with the fact that L∗(SCF) is
closed under homomorphism, and also with the fact that every such language
can be accepted by a Turing machine gives us:

Theorem 12. L∗(SCF) is equal to the family of recursively enumerable lan-
guages. ut

Next, we show that there exists a fixed transducer generating all recursively
enumerable languages.

Proposition 13. There exists a fixed transducer M such that LM (SCF) is equal
to the recursively enumerable languages.

Proof. Because every recursively enumerable language can be generated by a
synchronized context-free grammar with some transducer, we can start with
some universal Turing machine, which accepts the language

L = { 〈A,w〉 | w ∈ L(A) },
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where A is a Turing machine encoded over some alphabet disjoint from w ∈ Σ∗,
where Σ = {0, 1}. This language can be accepted with some synchronized
context-free grammar G using some transducer M for synchronization, by The-
orem 12. But then, given any Turing machine A over Σ, we can construct
L(A) = h(L ∩ 〈A,Σ∗〉), where h is a homomorphism which erases everything
not in Σ, but maps every letter of Σ to itself. Moreover, by Proposition 10,
every fixed transducer gives a full semi-AFL and is therefore closed under inter-
section with regular languages and homomorphism. Therefore, this language is
in LM (SCF). Therefore, we can generate all recursively enumerable languages
over Σ.

Let Γ = {a1, a2, . . . , ak} be an arbitrary alphabet. Then every recursively
enumerable language L over Γ is equal to g−1(L′), for some recursively enumer-
able L′ ⊆ Σ∗, where g maps each letter ai to 0i1, for 1 ≤ i ≤ k. And since every
full semi-AFL is closed under inverse homomorphism, we can generate every
recursively enumerable language using M for synchronization. Hence, LM (SCF)
is equal to the family of recursively enumerable languages. ut

To finish off this section, we see that we can use standard encoding techniques
in order to use only a two letter transducer alphabet. The proof is omitted.

Lemma 14. Let M be a transducer on S∗ with |S| > 2. There exists M ′ over
the alphabet {s, r} such that LM (SCF) ⊆ LM ′(SCF). ut

Then, starting with the fixed transducer from Proposition 13, we obtain:

Corollary 15. There exists a fixed transducer M over a two letter alphabet such
that LM (SCF) is equal to the recursively enumerable languages. ut

4 Unary Transducers

We know that a fixed transducer over a two letter alphabet is enough to gen-
erate all recursively enumerable languages. The question remains as to what
languages we can generate over unary transducers. We mentioned that if we ex-
amine the fixed unary transducer that outputs exactly the input, we generate
the counter synchronized context-free languages, which gives a language family
strictly between L(E0L) and L(ET0L). It remains to be seen whether or not we
can generate languages that are not in this language family. We show next that
we can.

We demonstrate an example of a more complex language that we can generate
with a unary transducer. Consider the transducer M that on input sn, nonde-
terministically outputs either sn or s2n. Consider the synchronized context-free
grammar G defined by the following productions:

(A, s)→ (A, s)(A, s) | a(B, s)

(B, s)→ (B, s)(B, s) | b
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where we use (A, s) as the initial nonterminal. Then, we can see that every tree
in LM (G) is of the form of Figure 3, and this generates the language

L = { (ab2
n

)2
n

| n ≥ 0 }.

The key to this example is that for every M -acceptable tree, there exists n > 0,
such that the situation sequence must be either sn or s2n for every path from root
to leaf. But, when using productions of the form (A, s)→ a(B, s), the terminal a
is a leaf, but (B, s) is not. Therefore every leaf on the subtree of (B, s) must
have a situation sequence that is strictly longer than the situation sequence of
the leaf a. Therefore, for every tree, every time the letter a is used, the length of
the situation sequence must be n above it, and every time b is used, the situation
sequence must be of length 2n.

(A, s)

b b b b b b b b

a a

(A, s)

(A, s) (A, s)

(B, s) (B, s)

(B, s) (B, s) (B, s)
(B, s)

(B, s) (B, s) (B, s) (B, s) (B, s) (B, s) (B, s)(B, s)

b b b b b b b

a a

(A, s)

(A, s)

(B, s) (B, s)

(B, s) (B, s) (B, s)
(B, s)

(B, s) (B, s) (B, s) (B, s) (B, s) (B, s) (B, s)(B, s)

b

Fig. 3. A tree generating (ab4)4, where the grammar accepts { (ab2
n

)2
n

| n ≥ 0 }.

The following hierarchy is known

L(E0L) ( L(cSCF) ( L(ET0L) ( L(INDEX).

Here L(INDEX) is the well-known family of indexed languages [1]. However, we
see next that the language L above with M , is not even an indexed language,
and therefore cannot be accepted with the simple unary or non-unary transducer
that outputs exactly the input. The proof is omitted for reasons of space. It uses
the shrinking lemma for indexed grammars from [3].

Proposition 16. The language L = { (ab2
n

)2
n | n ≥ 0 } /∈ L(INDEX). ut

Then, in particular, language L is not counter synchronized context-free and
could not be generated by using a transducer that outputs exactly the input.
In the next proposition we prove the following lower bound for any transducer,
which utilizes a similar idea as to how to generate the above non-indexed lan-
guage by a SCF grammar and a transducer. Again, the proof is omitted.
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Proposition 17. Let G = (V, S, T, P, I) be an SCF grammar. Then Le(G) is
an M -SCF language, for some fixed unary a-transducer M . ut

Intuitively, every time the original grammar uses a situation symbol, the
new grammar uses four copies of the only situation symbol, and splits into two
branches at either the second or third position of the four copies depending upon
which situation symbol the original grammar is using. In this way, it is able
to simulate two symbols of the original grammar with a single symbol and a
more complex transducer. Then, since synchronized context-free grammars with
equality synchronization is equal to the family of ET0L languages, we obtain:

Theorem 18. There is a fixed unary transducer M such that LM (SCF) contains
all ET0L languages. ut

The exact generative capacity when using fixed unary transducers, or all
unary transducers is left open. A related question, is to determine the power of
unit-productions A→ B and λ-productions A→ λ, for nonterminals A and B in
SCF and M -SCF grammars. For ordinary SCF grammars unit-productions seem
vital to prove the equivalence between the equality and prefix synchronization.
On the other hand, the equivalence of the family of SCF languages to the family
of ET0L languages [9] can be used to eliminate λ-productions in SCF grammars.
Whether the situation for unit- and λ-productions is similar in the case of M -
SCF grammars (general or unary) must be clarified by further research.
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