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CMPT 858 Focus:  Systems 

Simulation Models for Public 

Health 
• Purpose of models 

• Model strength & 

limitations 

• Diversity of 

classes of models 

available 

• How models are 

built, refined & 

analyzed 

 

 

 

• Software & 

analytic tools for 

working with 

models 

• How models mesh 

with traditional 

techniques 

• Linkage databases 

• Real-time data 

collection (EMA) 

• Biostatistics 



Class Objectives:  To Help 

Students 
• Learn to appreciate and critique existing models 

• Understand the proper limitations and limitations of such 

models 

• Understand the mathematical foundation on which 

models are based 

• Gain familiarity with modeling software 

• Learn how to conceptualize, formulate, and analyze 

dynamic models (regardless of application area) 

• Gain experience in applying such models in the public 

health context 

• Understand some open areas of modeling research 
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Class will Be… 

• Highly interactive 

• Informal 

• Adapted to student interests 

• Aimed for accessibility to diverse 

audience 

• Some material presented in additional 

sessions for certain backgrounds 
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Anticipated Class Coverage 

• Motivations 

• Basics of systems 

thinking 

• Causal loop 

diagrams 

• Stock & Flow Diag. 

• State equations 

 

 

• Focused 

discussion of 

particular areas 

• Chronic 

• Infectious 

• C&I Interactions 

• Individual-based 

vs. aggregate 

• Tradeoffs 

• Network models 
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Class Coverage Cont’d 

• Modeling process 

• Scoping 

• Formulation 

• Parameterization 

• Calibration 

• Validation & Confidence building 

• Model analysis tools & techniques 

• Possible: Uncertainty & Stochastics 
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Class Diversity 

• Our class is expected to be diverse in many 

ways 

• Students/Faculty observers 

• Student backgrounds in 

CH&E/MPH/Biostats/Computer 

Science/Economics 

• Participant interests 

• Participant background in particular subject 

• The instructor will make efforts to address 

diverse backgrounds & interests 

• Please be respectful of those from all 

backgrounds 
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Extra Resources for Students 

• Office hours 

• Focused Tutorials 

• Providing extra background & context 

• Providing more advanced material (upon 

student interest) 

• Likely topics 

• Software basics/Epi terminology/Calculus 

intuitions/Elements of of differential 

equations/Analysis techniques 
Department of Computer Science 



What is Expected of You 

• Attendance & Participation 

• Reading papers before class 

• 2 modeling exercises 

• Project (with instructor guidance) 

• End-of-Term Presentation 
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Classroom Exercises 

• Interactive modeling exercises on laptops 

will be a key component of the course 

• We will have (pre-installed) laptops 

delivered to the classroom for students who 

need them 

• Please speak with the instructor if you’d like 

a laptop 
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Administrative Info 

• Good Reference: Sterman, J. 

Business Dynamics. Boston: 

McGraw-Hill Higher Education. 2000.  

• Office Hours:  Friday 3-4:30pm 

(Thorv 280.6) & by appointment 

• Especially important b/c of diversity of 

backgrounds & limited time 

• Course website at webct6.usask.ca 
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Project Information 

• Multi-person projects 

• Project can be  

• Modeling application (in area for which 

data is readily available) 

• Paper review & critique 

• Methodological study 

• Instructor can help facilitate 

• Talk with instructor about any ideas 

of strong personal interest 

• Meet early with the instructor to 

discuss possibilities 
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Resources 

• Vensim Download 

• http://www.vensim.com/freedownload.html 

• Vensim is also installed on lab 

computers & laptops provided by dept 

• WebCT 

• http://www.webct6.usask.ca 
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Motivation:  Assisting Management of 

Complex Situations 

• Serve as “what if” tool for 

• Counterfactuals:Identifying desirable policies 

• Cost-effective 

• High-leverage 

• Robust 

• Prioritizing research/data collection 

• Help make sense of interaction of diverse 

information, processes 

• Understanding drivers for trends 

• Communication (e.g. “learning labs” for 

stakeholders) 



Complexities & Regularities 
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Measles & Mumps in SK 
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Public Health as “Redirecting the 

Course of Change” 

 

•Adapted from Tom Wong, 2007  
•Data for 2005 and 2006 are preliminary and are anticipated to change 
•Source:  Surveillance and Epidemiology Unit, Community Acquired Infections Division, PHAC 



Public Health as “Redirecting the 

Course of Change” 

 

•Tom Wong, 2007  
•Data for 2005 and 2006 are preliminary and are anticipated to change 
•Source:  Surveillance and Epidemiology Unit, Community Acquired Infections Division, PHAC 



Complexities 
• Delays 

• Presentation of symptoms/Contact 
tracing/Identification of asymptomatic 

• Interactions (e.g. STIs & HIV, HCV&HIV, 
Chronic & Infectious illness) 

• Feedbacks 
• Intergenerational/social network mediated  

• Immune system 

• With healthcare system 

• Behavior change after knowledge of health status 

• Risk perceptions 

• Nonlinear: Risk, cost, intervention synergies 

• Heterogeneity in progression, behaviour 

 

 



Complexities Matter for  

Intervention Selection 

• Blowback, multiplier effects 

• Presence of “tipping points” 

• Tradeoffs of prevention vs. screening vs. 
contact tracing & treatment 

• Interaction between infections, with chronic d. 

• Evaluation of focused intervention on  
• Presenting Individuals? (Risk perception) 

• Youth (Risk attitudes & social network effects) 

• Sex workers? (Social network effects) 

• Centrality in social network (peer effects?) 

• Immuno compromised   

• Evaluation of intervention portfolios 
 



Common Phenomena In Complex Systems 

• Snowballing: When things go bad, they 

often go very bad very quickly 

• “Vicious cycles” lead to “cascading” of 

problems 

• “Path dependence”:  Different starting 

points can lead to divergence in project 

progress 

• Lock-in, Policy resistance:  Situation 

can be unexpectedly difficult to change 
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A Metaphor for Scientific Exploration 
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Pieces of the Elephant: T2DM/ESRD 
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Pieces of the Elephant: TB 

Saskatchewan’s War on “White Plague” 

 



Level of Progression of Cases 

 



Cases and Contact Tracing 
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Contact Tracing Effort per Case 

 



Pieces of the Elephant: STI 
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Regularities Arise from Underlying Processes 
• The time series shown are tightly 

interrelated, not independent 

• Many of the features of the time series 

are driven by the same underlying 

processes 

• Natural history of infection/ 

• Demographic change of the population 

• Mechanisms of infection transmission 

• Risk behaviour & risk perception 

• Health system response 

• Simulation seeks insight from 

characterizing causal structure of those 

processes 
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Systems Simulation Models 

• Simulation models can be viewed as 

dynamic hypotheses concerning the causal 

structure underlying observed patterns  

• We need to understand causal structure to 

understand counterfactuals – how patterns 

would change if we were to change X 

• All simulation models are computational 

realizations of a mathematical process 

• There are many dynamic mathematical 

frameworks for defining simulation models 

• All of these frameworks characterize processes 
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The Pieces of the Elephant 

Example Model of Underlying Process 

& Time Series It Must Match 
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Single Model Matches Many Data Sources 

 

one of  



Tuberculosis 
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Aggregate Simulation Models (TB) 
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Pieces of the Elephant: STI 

 

Department of Computer Science 



Department of Computer Science 

An Example STI Model 

S I T
New infections New Recovery

Newly Susceptible

Immunity loss

Delay

Per infected contact

infection rate

Mean Contacts

Per Capita

Total Population
Mean Infectious

Contacts Per
Susceptible

Per Susceptible

Incidence Rate

Cumulative

Illnesses
New Illness

Prevalence
Recovery Delay

Initial Population



Individual-Based Modeling 

Simulation Models 
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State Transitions (Agent-Based IBM) 
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Aggregate Simulation Models 

(T2DM/ESRD) 
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Individual-Based Simulation 

Models (T2DM/ESRD) 
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Deleterious Feedbacks 

• Cutting cigarette tar levels reduces cessation 

• Cutting cigarette nicotine levels leads to 
compensatory smoking 

• Targeted anti-tobacco interventions lead to equally 
targeted coupon programs by tobacco industry 

• Charging for supplies for diabetics leads to higher 
overall costs by increases costs due to reduced self-
management, faster disease progression 

• ARVs prolong lives of HIV carriers, but lead to 
resurgent HIV epidemic due to lower risk perception 

• “Saving money” by understaffing STI clinics, leads to 
long treatment wait, greater risk of transmission by 
infectives & bigger epidemics 

• Antibiotic overuse worsens pathogen resistance 

• Antilock breaks lead to more risky driving 

• Natural feedback: Intergenerational “Vicious Cycles”  
 



Examples of High-Profile 

Simulation Modeling Projects 

• CDC Diabetes Model 

• Influenced health goals 

• Adapted to 7+ States 

• SimSmoke 

• US National tobacco policy  

• ~15 Countries 
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Outline 

• Motivation for systems modeling 

concepts 

• Model Vignettes 

• Aggregate 

• Type 2 & Gestational Diabetes Mellitus 

Models 

• Individual-Based 

• HIV Spread in Papua New Guinea 

• Multi-scale immune/viral transmission model 

• Concluding Remarks 
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Common Misconceptions about 

Causality 
• Focus on single events 

• Focus on proximal causes (close in time 
and space) 

• Focus on one-way chains of cause and 
effect 

• Assume unchanging strength of cause-
effect links     

 

 
Richmond B, Peterson S, High Performance Systems Inc. An introduction to systems thinking. Hanover NH: High Performance 

Systems, 1997. 

Such narrow framing of issues overlooks the importance of 

cumulative effects, delays, feedback loops, and nonlinearities 

Adapted from Homer & Milstein 



Complex System Characteristics 

• Feedbacks 

• Nonlinearities 

• Delays 

• Path dependence & Lock-in 

• Behavior a result of internal structure 

(“The enemy is us”) 

• Result: Emergent behavior (“Whole 

greater than the sum of its parts”) 
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Common Phenomena In Complex Systems 

• Snowballing: When things go bad, they 

often go very bad very quickly 

• “Vicious cycles” lead to “cascading” of 

problems 

• “Path dependence”:  Different starting 

points can lead to divergence in project 

progress 

• Lock-in, Policy resistance:  Situation 

can be unexpectedly difficult to change 
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Deleterious Feedbacks 

• Cutting cigarette tar levels reduces cessation 

• Cutting cigarette nicotine levels leads to 
compensatory smoking 

• Targeted anti-tobacco interventions lead to equally 
targeted coupon programs by tobacco industry 

• Charging for supplies for diabetics leads to higher 
overall costs by increases costs due to reduced self-
management, faster disease progression 

• ARVs prolong lives of HIV carriers, but lead to 
resurgent HIV epidemic due to lower risk perception 

• “Saving money” by understaffing STI clinics, leads to 
long treatment wait, greater risk of transmission by 
infectives & bigger epidemics 

• Antibiotic overuse worsens pathogen resistance 

• Antilock breaks lead to more risky driving 

• Natural feedback: Intergenerational “Vicious Cycles”  
 



COMPLEXITY of SYSTEMS 
 

• Dynamics: Dynamic problems are harder than static problems. There are time delays 
involved between causes and effects; between actions and reactions.  
 

• Feedback: The problem is further complicated when dynamics are created by 
operation of feedback loops. It means that which way the system will move is not 
easily predictable; the evolution path unfolds gradually and continuously determines 
its own path into the future. (Path-dependent dynamics).   
 

• Non-linearity: Most system dynamics problems are non-linear. This means that the 
cause-effect relations between variables are not proportional. Non-linear effects are 
subtle, because a certain effect observed in a one range may not be valid at all in 
another range. Non-linearity furthermore often means that there are “interaction 
effects” between variables.  
 

• Cause and effect separated in time and space: In a non-linear dynamic feedback  
model with several variables, the cause-effect relations become detached in time 
and space.  
 

• Scale: As the number of variables increases, the complexity of the problem 
increases nonlinearly. Even “small size” policy problems involve tens of variables. 
At this scale, a non-linear feedback problem immediately becomes impossibly hard 
to track –analytically and intuitively.   
 

• Human dimension: Typical system dynamics problems involve human actors. So we 
must model not only the physics of the system (including information flows), but 
also how people react to situations, make decisions, set goals, make plans, etc.  

Adapted from Barlas, 2007 



PRINCIPLES/LAWS  of SYSTEMS 
 

• Principle: Meaningful macro behavior emerging from the interactions of micro 
components. The macro dynamics is not built into the behavior of individual 
components nor is it obviously predictable from the action rules of these agents.  

• Dividing an elephant in two does not produce two small elephants 
 

• Principle: Counter-intuitive nature of systems. We human beings are naturally 
equipped only to deal with cause-effect relation close in time and space. The baby 
touches the stove with his index finger; his index finger burns and it burns now and 
he learns. Our intuitive ability is further impeded by delays, errors, omissions and 
bias in data/information that we use in real life. 

• Systems may exhibit better-before-worse dynamics (or vice versa) 
 

• Principle: Systemic misperceptions, biases and omissions are typical in decision 
making in a dynamic feedback environment. Experiments show that we are poor 
decision-makers in dynamic, non-linear feedback environments. Our intuitive time 
and space-constrained notion of causality cannot cope with systemic complexities. 
We ignore, distort or misperceive feedbacks, time delays and non-linearities in 
making decisions.  

• Yesterday’s “solutions” can be today’s problems 
 

• Principle: Learning by experience is difficult and flawed in complex systems. 
Perhaps the most critical of all, learning is not natural/intuitive in complex dynamic 
environments. Experimental evidence shows that, with our reductionist intuition of 
causality, we make incomplete or plain wrong causal inferences about effectiveness 
of actions/decisions 

• There is no “enemy out there” 

• Faster is slower 

Barlas, 2007 
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Linked Communities of Scholars 

& Research 

• Biomathematics 

• Complex systems 

• System Dynamics 

• Operations research 

• Public health informatics 
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Outline 

Motivation 

• Model Vignettes 

• Aggregate 

• Infectious Disease models: Broadening 

classic compartment model formulations 

• Emerging Type 2 & Gestational Diabetes 

Mellitus Model 

• Individual-Based 

• HIV Spread in Papua New Guinea 

• Multi-scale  

• Immune/viral transmission model 

 



Feedbacks 
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Infectives

New Infections

Susceptibles
-

Contacts of
Susceptibles with

Infectives

+

+

+
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Simple SIT Model 

S I T
New infections New Recovery

Newly Susceptible

Immunity loss

Delay

Per infected contact

infection rate

Mean Contacts

Per Capita

Total Population
Mean Infectious

Contacts Per
Susceptible

Per Susceptible

Incidence Rate

Cumulative

Illnesses
New Illness

Prevalence
Recovery Delay

Initial Population



Stocks? 
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State variables over time

200,000 Person

20,000 Person

100,000 Person

150,000 Person

15,000 Person

75,000 Person

100,000 Person

10,000 Person

50,000 Person

50,000 Person

5,000 Person

25,000 Person

0 Person

0 Person

0 Person

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Time (months)

S : Alternative 30 HC Workers Exogenous Recovery Delay Person

I : Alternative 30 HC Workers Exogenous Recovery Delay Person

T : Alternative 30 HC Workers Exogenous Recovery Delay Person
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Broadening the Model Boundaries:  

Endogenous Recovery Delay 

Infectives

New Infections

People Presenting

for Treatment

Waiting Times

+

+

Health Care Staff

-

Susceptibles
-

Contacts of
Susceptibles with

Infectives

+
+

+
+



Broadening the Model Boundaries:  

Endogenous Recovery Delay 
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S I T
New infections New Recovery

Newly Susceptible

Immunity loss

Delay

Per infected contact

infection rate

Mean Contacts

Per Capita

Total Population
Mean Infectious

Contacts Per
Susceptible

Per Susceptible

Incidence Rate

Cumulative

Illnesses
New Illness

Prevalence
Time Until Seek

Treatment
Recovery Delay

Healthcare

Workers

Staff Time per

Patient

Initial Population

Long-Term

Healthcare Workers

<Time>



Prevalence Implications? 
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Prevalence

1
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How Does Count of Health Care 

Workers Affect Treatment Delay? 
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Recovery Delay

4,000

3,000

2,000

1,000

0

0 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 2500

Time (Day)

Recovery Delay : Baseline 30 HC Workers Day

Recovery Delay : Alternative 40 HC Workers Day

Recovery Delay : Alternative 50 HC Workers Day

Recovery Delay : Alternative 60 HC Workers Day

Recovery Delay : Alternative 70 HC Workers Day



Oops!  

Late Hiring of 70 HC Workers? 
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Prevalence

1

0.75

0.5

0.25

0

0 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875 2000 2125 2250 2375 2500

Time (Day)

Prevalence : Baseline 30 HC Workers 1

Prevalence : Alternative HC Workers Late 50 1

Prevalence : Alternative HC Workers Late 100 1

Prevalence : Alternative HC Workers Late 200 1

Prevalence : Alternative HC Workers Late 250 1

Prevalence : Alternative HC Workers Late 300 1



Lock-In Effect 

 (Path Dependence) 

• Investing Early in HC workers 

Small Prevalence  Fewer HC 

workers needed to maintain low 

prevalence 

• Limited # of HC workers  High 

Prevalence  More HC workers 

needed to achieve low prevalence 
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SEIR Model vs. Data, Taiwan 
Cumulative Cases, No Behavioral Response 
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Expanding the Boundary: 

Behavioral Feedbacks 
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Model vs. Data with Behavioral Feedback 
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Overall Model Structure 
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Outline 

Motivation 

• Model Vignettes 

Aggregate 

Infectious Disease models: Broadening 

classic compartment model formulations 

Emerging Type 2 & Gestational Diabetes 

Mellitus Model 

• Individual-Based 

• HIV Spread in Papua New Guinea 

• Multi-scale  

• Immune/viral transmission model 

 



Complicating Factors 

• Co-morbidities 

• Influences of parents, peers on risks 

• Heterogeneity 
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Contrasting Model Granularity 
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Inevitable Tradeoffs 

Aggregation 

Scope  

(Breadth of 

Boundary) 

High Low 

Low 

High 

Limited 

value  

Practical 

constraints: 

- Data 

- Time 

- Cost 

- Transparency 
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Contrasting Benefits 

• Easier 
• Construction 

• Calibration 

• Parameterization 

• Analysis & Understanding 

• Performance 
• Lower baseline cost 

• Population size invariance 

• Less pronounced 
stochastics 
• Less frequent need for Monte 

Carlo ensembles 

• Quicker construction, 
runtime More time for 
understanding,refining 
 

• Examining finer-grained 

consequences 

• Network spread 

• e.g. transfer effects w/i pop. 

• Learning, bounded ration. 

• Fidelity to some dynamics 

• Support for highly 

targeted policy planning 

• Better heterogeneity 

flexibility 

• Simpler description of 

some causal mechanisms 

• Better understanding by 

some clients 

 

Aggregate Models Individual-Based Models 
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Areas of Advantage  of Individual-

Based Modeling 
• Examining finer-grained consequences 

• Network spread 

• Transfer effects within population 

• Detailed spatial dynamics 

• Effects of population heterogeneity 

• Effects of highly targeted policies 

• Local risk perception 

• Effects of individual-level synergies (e.g. multiple 

risk factors) 

• Simple individual-based description of causality 

• Sufficient individual-level (distributional) data are 

available for policy modeling beyond exploratory 

models 



Agent State Chart 

 



 



 



Outline 

Motivation 

• Model Vignettes 

Aggregate 

Infectious Disease models: Broadening 

classic compartment model formulations 

Emerging Type 2 & Gestational Diabetes 

Mellitus Model 

Individual-Based 

• HIV Spread in Papua New Guinea 

• Multi-scale  

• Immune/viral transmission model 
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Multi-scale Model 

• Conceptual model 

• Network structure, dynamics 

• Continuous condition (state) 

• Model presently being generalized, 

parameterized for specific disease (w/ B. 

Sahai) 
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Individual Model Structure 
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Governing Equations for 

Individual 
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Individual Model Parameters 

 



Network Embedded Individuals 

 



Outline 

Motivation & basic systems modeling 

concepts 

• Model Vignettes 

Aggregate 

• Emerging Type 2 & Gestational Diabetes 

Mellitus Model 

• Individual-Based 

HIV Spread in Papua New Guinea 

Multi-scale immune/viral transmission model 

• Concluding Remarks 

 



Concluding Remarks 
• Simulation modeling complements 

existing methodologies for insight 

into health issues 

• Different simulation modeling 

approaches offer insight into 

different aspects of obesity 

challenge 

• Model design is specific to questions 

& context 

• Models require significant 

investment to build, provide ongoing 

insight 
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