Infectious Disease Models 5 –
Basic Epidemiological Quantities
and Vaccination

Nathaniel Osgood
CMPT 858
March 25, 2010
Shorthand for Key Quantities for Infectious Disease Models: Stocks

- I (or Y): Total number of infectives in population
 - This could be just one stock, or the sum of many stocks in the model (e.g. the sum of separate stocks for asymptomatic infectives and symptomatic infectives)

- N: Total size of population
 - This will typically be the sum of all the stocks of people

- S (or X): Number of susceptible individuals
Intuition Behind Common Terms

• I/N: The Fraction of population members (or, by assumption, contacts!) that are infective
 – Important: Simplest models assume that this is also the fraction of a given susceptible’s contacts that are infective! Many sophisticated models relax this assumption

• c(I/N): Number of infectives that come into contact with a susceptible in a given unit time

• c(I/N)\(\beta\): “Force of infection”: Likelihood a given susceptible will be infected per unit time
 – The idea is that if a given susceptible comes into contact with \(c(I/N)\) infectives per unit time, and if each such contact gives \(\beta\) likelihood of transmission of infection, then that susceptible has roughly a total likelihood of \(c(I/N) \beta\) of getting infected per unit time (e.g. month)
A Critical Throttle on Infection Spread: Fraction Susceptible (f)

- The fraction susceptible (here, S/N) is a key quantity limiting the spread of infection in a population
 - Recognizing its importance, we give this name f to the fraction of the population that is susceptible
Key Term: Flow Rate of New Infections

• This is the key form of the equation in many infectious disease models

• Total # of susceptibles infected per unit time

 # of Susceptibles * “Likelihood” a given susceptible will be infected per unit time = $S^*\left(\text{"Force of Infection"}\right)$

 = $S(c(I/N)\beta)$

 – Note that this is a term that multiplies both S and I!
 • This is much different than the purely linear terms on which we have previously focused

 – “Likelihood” is actually a likelihood per unit time (e.g. can be >1 – indicating that mean time to infection is <1)
Another Useful View of this Flow

• Recall: Total # of susceptibles infected per unit time = # of Susceptibles * “Likelihood” a given susceptible will be infected per unit time = $S^*\left(\text{“Force of Infection”}\right) = S(c(I/N)\beta)$

• The above can also be phrased as the following:

 $S(c(I/N)\beta)=I(c(S/N)\beta)=I(c*f*\beta)=#\ of\ Infectives\ *\ Mean\ #\ susceptibles\ infected\ per\ unit\ time\ by\ each\ infective$

• This implies that as # of susceptibles falls=># of susceptibles surrounding each infective falls=>the rate of new infections falls (“Less fuel for the fire” leads to a smaller burning rate...
Recall: The Importance of Susceptible Fraction

• Recall: Total # of susceptibles infected per unit time = # of Susceptibles * “Likelihood” a given susceptible will be infected per unit time = \(S(\text{"Force of Infection"}) = S(c(I/N)\beta) \)

• The above can also be phrased as the following:
 \[S(c(I/N)\beta) = I(c(S/N)\beta) = \# \text{ of Infectives} \]
 \[\times \text{Average # susceptibles infected per unit time by each infective} \]

• This implies that as Fraction of susceptibles falls=>Fraction of susceptibles surrounding each infective falls=>the rate of new infections falls
 (“Less fuel for the fire” leads to a smaller burning rate)
Slides Adapted from External Source
Redacted from Public PDF for Copyright Reasons
Critical Notions

• Contact rates & transmission probabilities
• Equilibria
 – Endemic
 – Disease-free
• R_0, R^*
• Herd Immunity
Recall: Flow Rate of New Infections

• This is the key form of the equation in many infectious disease models

• Total # of susceptibles infected per unit time

 \[\text{# of Susceptibles} \times \text{“Likelihood” a given susceptible will be infected per unit time} = S \times (\text{“Force of Infection”}) = S(c(I/N)\beta) \]

 – Note that this is a term that multiplies both S and I!
 • This is much different than the purely linear terms on which we have previously focused

 – “Likelihood” is actually a likelihood density, i.e.
 “likelihood per unit time” (e.g. can be >1 – indicating that mean time to infection is <1)
Recall: Another Useful View of this Flow

• Recall: Total # of susceptibles infected per unit time = # of Susceptibles * “Likelihood” a given susceptible will be infected per unit time = \(S \times \left(\frac{“Force of Infection”}{N} \right) = S \left(\frac{c(I/N) \beta}{N} \right) \)

• The above can also be phrased as the following: \(S \left(\frac{c(I/N) \beta}{N} \right) = I \left(\frac{c(S/N) \beta}{N} \right) \) = # of Infectives * Average # susceptibles infected per unit time by each infective

• This implies that as # of susceptibles falls => # of susceptibles surrounding each infective falls => the rate of new infections falls (“Less fuel for the fire” leads to a smaller burning rate
Infection

• Recall: For this model, a given infective infects $c(S/N)\beta$ others per time unit
 – This goes up as the number of susceptibles rises

• Questions
 – If the mean time a person is infective is μ, how many people does that infective infect before recovering?
 – With the same assumption, how many people would that infective infect if everyone else is susceptible?
 – Under what conditions would there be more infections after their recovery than before?
Fundamental Quantities

• We have just discovered the values of 2 famous epidemiological quantities for our model
 – Effective Reproductive Number: R_*
 – Basic Reproductive Number: R_0
Effective Reproductive Number: R^*

- Number of individuals infected by an ‘index’ infective in the current epidemiological context
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
 - # (Fraction) of Susceptibles
- Affects
 - Whether infection spreads
 - If $R^* > 1$, # of cases will rise, If $R^* < 1$, # of cases will fall
 - Alternative formulation: Largest real eigenvalue $<> 0$
 - Endemic Rate
Basic Reproduction Number: R_0

- Number of individuals infected by an ‘index’ infective *in an otherwise disease-free equilibrium*
 - This is just R_* at disease-free equilibrium all (other) people in the population are susceptible other than the index infective

- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected

- Affects
 - Whether infection spreads
 - If $R_0 > 1$, Epidemic Takes off, If $R_0 < 1$, Epidemic dies out
 - Alternative formulation: Largest real eigenvalue $\neq 0$
 - Initial infection rise $\propto \exp(t\times(R_0-1)/D)$
 - Endemic Rate
Basic Reproductive Number R_0

- If contact patterns & infection duration remain unchanged and if fraction f of the population is susceptible, then mean # of individuals infected by an infective over the course of their infection is $f \times R_0$

- In endemic equilibrium: Inflow=Outflow $\Rightarrow (S/N) \times R_0 = 1$
 - Every infective infects a “replacement” infective to keep equilibrium
 - Just enough of the population is susceptible to allow this replacement
 - The higher the R_0, the lower the fraction of susceptibles in equilibrium!
 - Generally some susceptibles remain: At some point in epidemic, susceptibles will get so low that can’t spread
Our model

• Set
 – \(c = 10 \) (people/month)
 – \(\beta = 0.04 \) (4% chance of transmission per S-I contact)
 – \(\mu = 10 \)
 – Birth and death rate = 0
 – Initial infectives = 1, other 1000 susceptible

• What is \(R_0 \)?

• What should we expect to see?
Thresholds

• R_*
 – Too low # susceptibles $\Rightarrow R^* < 1$: # of infectives declining
 – Too high # susceptibles $\Rightarrow R^* > 1$: # of infectives rising

• R_0
 – $R_0 > 1$: Infection is introduced from outside will cause outbreak
 – $R_0 < 1$: “Herd immunity”: infection is introduced from outside will die out (may spread to small number before disappearing, but in unsustainable way)
 • This is what we try to achieve by control programs, vaccination, etc.

• Outflow from susceptibles (infections) is determined by the # of Infectives
Equilibrium Behaviour

- With Births & Deaths, the system can approach an “endemic equilibrium” where the infection stays circulating in the population – but in balance

- The balance is such that (simultaneously)
 - The rate of new infections = The rate of immigration
 - Otherwise # of susceptibles would be changing!
 - The rate of new infections = the rate of recovery
 - Otherwise # of infectives would be changing!
Equilibria

• Disease free
 – No infectives in population
 – Entire population is susceptible

• Endemic
 – Steady-state equilibrium produced by spread of illness
 – Assumption is often that children get exposed when young

• The stability of the these equilibria (whether the system departs from them when perturbed) depends on the parameter values
 – For the disease-free equilibrium on R_0
Vaccination
Equilibrium Behaviour

• With Births & Deaths, the system can approach an “endemic equilibrium” where the infection stays circulating in the population – but in balance

• The balance is such that (simultaneously)
 – The rate of new infections = The rate of immigration
 • Otherwise # of susceptibles would be changing!
 – The rate of new infections = the rate of recovery
 • Otherwise # of infectives would be changing!
Equilibria

• Disease free
 – No infectives in population
 – Entire population is susceptible

• Endemic
 – Steady-state equilibrium produced by spread of illness
 – Assumption is often that children get exposed when young

• The stability of the these equilibria (whether the system departs from them when perturbed) depends on the parameter values
 – For the disease-free equilibrium on R_0
Adding Vaccination Stock

• Add a
 – “Vaccinated” stock
 – A constant called “Monthly Likelihood of Vaccination”
 – “Vaccination” flow between the “Susceptible” and “Vaccinated” stocks
 • The rate is the stock times the constant above

• Set initial population to be divided between 2 stocks
 – Susceptible
 – Vaccinated

• Incorporate “Vaccinated” in population calculation
Additional Settings

- $c = 10$
- Beta = 0.04
- Duration of infection = 10
- Birth & Death Rate = 0
Adding Stock
Experiment with Different Initial Vaccinated Fractions

- Fractions = 0.25, 0.50, 0.6, 0.7, 0.8
Recall: Thresholds

- R^*
 - Too low # susceptibles $\Rightarrow R^* < 1$: # of infectives declining
 - Too high # susceptibles $\Rightarrow R^* > 1$: # of infectives rising

- Outflow from susceptibles (infections) is determined by the # of Infectives

- Delays:
 - For a while after infectives start declining, they still deplete susceptibles sufficiently for susceptibles to decline
 - For a while after infectives start rising, the # of infections is insufficient for susceptibles to decline
Effective Reproductive Number: R^*

- Number of individuals infected by an ‘index’ infective in the current epidemiological context

- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
 - # (Fraction) of Susceptibles

- Affects
 - Whether infection spreads
 - If $R^* > 1$, # of cases will rise, If $R^* < 1$, # of cases will fall
 - Alternative formulation: Largest real eigenvalue $\neq 0$
 - Endemic Rate
Basic Reproduction Number: \(R_0 \)

- Number of individuals infected by an ‘index’ infective \textit{in an otherwise disease-free equilibrium}
 - This is just \(R_* \) at disease-free equilibrium all (other) people in the population are susceptible other than the index infective

- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected

- Affects
 - Whether infection spreads
 - If \(R_0 > 1 \), Epidemic Takes off, If \(R_0 < 1 \), Epidemic dies out
 - Alternative formulation: Largest real eigenvalue \(<> 0 \)
 - Initial infection rise \(\propto \exp(t^{\frac{R_0-1}{D}}) \)
 - Endemic Rate
Recall: A Critical Throttle on Infection Spread: Fraction Susceptible \((f)\)

• The fraction susceptible (here, \(S/N\)) is a key quantity limiting the spread of infection in a population
 – Recognizing its importance, we give this name \(f\) to the fraction of the population that is susceptible

• If contact patterns & infection duration remain unchanged and, then mean # of individuals infected by an infective over the course of their infection is \(f \times R_0\)
Recall: Endemic Equilibrium

- Inflow=Outflow $\Rightarrow (S/N) \cdot R_0 = f \cdot R_0 = 1$
 - Every infective infects a “replacement” infective to keep equilibrium
 - Just enough of the population is susceptible to allow this replacement
- The higher the R_0, the lower the fraction of susceptibles in equilibrium!
 - Generally some susceptibles remain: At some point in epidemic, susceptibles will get so low that can’t spread
Critical Immunization Threshold

• Consider an index infective arriving in a “worst case” scenario when no one else in the population is infective or recovered from the illness
 – In this case, that infective is most “efficient” in spreading

• The goal of vaccination is keep the fraction susceptible low enough that infection cannot establish itself even in this worst case
 – We do this by administering vaccines that makes a person (often temporarily) immune to infection

• We say that a population whose f is low enough that it is resistant to establishment of infection exhibits “herd immunity”
Critical Immunization Threshold

• Vaccination seeks to lower f such that $f*R_0<1$
• Worst case: Suppose we have a population that is divided into immunized (vaccinated) and susceptible
 – Let q_c be the critical fraction immunized to stop infection
 – Then $f=1-q_c$, $f*R_0<1 \Rightarrow (1-q_c)*R_0<1 \Rightarrow q_c>1-(1/R_0)$
• So if $R_0 = 4$ (as in our example), $q_c=0.75$ (i.e. 75% of population must be immunized – just as we saw!)