
AnyLogic and Java

Nathaniel Osgood

Advantages of AnyLogic
(as compared to other Agent-Based Modeling Software)

• Primarily declarative specification

• Less code

• Great flexibility

• Access to Java libraries

• Support for multiple modeling types

• Support for mixture of modeling types

Painful Sides of AnyLogic Education/Advanced

• Export of model results: Lack of trajectory files

• Lack of a built-in debugger

• Need for bits of Java code

• Many pieces of system

Internals of AnyLogic files: XML

Java Code: When & How Much?
• “Java” is a popular cross-platform “object oriented”

programming language introduced by Sun
Microsystems

• Anylogic is written in Java and turns models into Java

• AnyLogic offers lots of ways to insert snippets (“hooks”)
of Java code

• You will need these if you want to e.g.
– Push AnyLogic outside the envelop of its typical support

• e.g. Enabling a network with diverse Agent types

– Exchange messages between Agents

– Put into place particular initialization mechanisms

– Collect custom statistics over the population

Stages of the Anylogic Build

Person.class

Java Code
JVM
Byte
Code

Modification Not Possible Modification
Possible

Inspecting the Java code

• As a step towards creating an executable
representation of the code, AnyLogic creates a Java
representation

– If you want to see the Java code for a model, you will
need to do a “build”

• Sometimes it can be helpful to look at this Java code

– To find errors about which AnyLogic may be complaining

– Advanced: To see how things are being accomplished or
“work”

Requesting Viewing of Java Code

Examples of Where to Insert Code
Object Properties

• “Advanced”

Examples of Where to Insert Code
Object Properties

 • “General”

Example of Where to Insert Code
Presentations Properties

• “Dynamic”
properties of
presentation
elements
(especially
of Agents)

Tips to Bear in Mind While Writing Code
• Click on the “light bulb” next to fields to get

contextual advice (e.g. on the variables that are
available from context

• While typing code, can hold down the Control key
and press the “Space” key to request
autocompletion
– This can help know what parameters are required for a

method, etc.

• Java is case sensitive!

• Can press “Control-J” to go to the point in Java
code associated with the current code snippet

• Can press “build” button after writing snippet to
increase confidence that code is understood

Example of Contextual Information

Autocompletion Info (via Control-Space)

Finding the Enclosing “Main” class
from an Embedded Agent

• From within an embedded Agent, one can find
the enclosing “Main” class by calling get_Main()

– This will give a reference to the single instance
(object) of the Main class in which the agent is
embedded

– An alternative approach is to call ((Main) getOwner)

Presentation Properties

• Both key customizable classes (“Main”, various
Agent classes) can be associated with
“Presentation” elements

• These elements are assembled during execution
into animations & presentations of the agents

• Many of these presentation elements have
properties that can be set to Java expressions

Enabling Programmatic Control

Getting to the AnyLogic Help

• Choose “Help”/”Help Contents”

• AnyLogic help includes many components

– Tutorials

– User references

– AnyLogic “library” information

Getting Information on the Anylogic (Java)
Libraries

The Notion of a Code “Library”

• A “library” lets third parties (e.g. xjtek) share
compiled code they have developed with others

• The classes built into our AnyLogic projects (e.g.
Agent, ActiveObject, NetworkResourcePool, etc.)
are contained in the library

• The available libraries that come with AnyLogic &
Java have many additional components that can
offer tremendous additional functionality

– By tapping into this functionality, we can avoid having to
write code ourselves

• To use a library, you need to know what is in it!

Finding out Information
Interfaces for Library Elements 1

Finding out Information
Interfaces for Library Elements 2

Using Libraries

• There are two major libraries that are “built
in” and can be used without additional
reference: Java libraries & AnyLogic libraries

• To use an object in the Java libraries, you will
use an “import” statement

Using External Libraries

• There are tremendous numbers of 3rd party
libraries available for Java

• The functionality associated with these libraries
is incredibly diverse

• Many of these libraries are available for free;
others are sold

• It is very easy to make use of the functionality of
3rd party libraries from AnyLogic

– In order to do this, AnyLogic needs to “know about”
the external library.

Adding External Libraries 1

Adding External Libraries 2

Common Contextual Variables that are
Used by Code Snippets

• In statistics: “item” indicates current agent

• In “On Message Received” handler for agent:
“msg” indicates received message

• In Dynamic properties of an Agent’s replicated
line property: “index” indicates current
person’s index

• In “Parameters” properties of Agent
populations (used to set properties of agents
within population): “index” indicates the
index of the current agent in the population

Example code to Export Dataset

FileOutputStream fos = new
FileOutputStream(“Filename”);

PrintStream p = new PrintStream(fos);

p.println(datasetName.toString()); // outputs
comma delimited values

Useful Bits of Java Code

• get_Main() gets reference to Main object

• ActiveObject.trace(str) outputs string to log

• Engine.getTime() gets the current time

• agents.size() gets number of objects in collection
agents

• agents.item(i) gets item i from agent collection

• uniform() generates a random number from 0..1

Useful Bits of Java Code : General
Expressions

• ActiveObject.traceln(Stringstr) outputs string to log

• time() gets the current internal model time (different
from the time in the external world)

• Members of com.xj.anylogic.engine.Utilities
– uniform() generates a random number from 0..1

– uniform(x) gen. a random number in range 0 to x

– lognormal(double meanNormal, double sigmaStdDevNormal,
double minNormal) draws from a lognormal distribution

– normal(double meanNormal, double sigmaStdDevNormal)
draws from a normal distribution

– Many other probability distributions

http://127.0.0.1:58087/help/topic/com.xj.anylogic.help/html/javadoc/com/xj/anylogic/engine/Utilities.html

Methods on Populations of Agents (in
Main class)

• population.size() gets number of objects in
collection population

• population.statName() retrieves the current value of
the population statistic statName, as computed for
population population.

• population.item(int i) gets item i from population
collection

• add_populationname() Adds agent to that
population

• remove_populationname() Removes agent from that
population

Useful Java Code: Methods to Call on
(or from within, using “this”) an Agent
• a.getConnectionsNumber() returns number of

connections between this agent and others

• get_Main() gets reference to Main object

• toString() gets string rendition of agent

• a.getConnections() gets a collection (linked) list of agents
to which this agent is connected (& over which we can
iterate)

• a.connectTo(Agent b) connects a to b

• a.disconnectFrom(Agent b) disconnects b from a

• a.disconnectFromAll() disconnects all agents from a

• a.getConnectedAgent(int i) gets the ith agent connected
to a

• a.isConnectedTo(Agent b) indicates if a is connected to b

Methods on Statecharts
(Called from within Agent code)

• isStateActive(intstatename) indicates whether
agent is in a given state (composite or simple)

• getActiveSimpleState() Get number of simple
state. Can then compare to different state
names, e.g. in switch statement.

Methods on Process Flow Diagrams

• source.inject(int count) injects a count of
entities into the source object (i.e. into an
object of type Source)

Gotchas

• Changing rates for leaving a state do not get
updated until leave & reenter state (including
by a self-transition)

Example Use of getActiveSimpleState

switch (TBProgressionStatechart.getActiveSimpleState())

{

 case LTBI:

 return Color.YELLOW;

 case UnDiagnosedActiveTB:

 return Color.RED;

 case DiagnosedActiveTB:

 return Color.ORANGE;

 case TBSusceptible:

 default:

 return Color.BLACK;

}

Useful Snippets: Handling Messages

• Sending
– sender.deliver(msg, receiver) immediately deliver a

message from sender to receiver
– sender.send(msg, receiver) deliver a message from sender

to receiver
– environment.deliverToRandom(msg) [within Main]

immediately deliver a message to a random agent in the
environment

– send("Infection", RANDOM_CONNECTED) [within an agent]
send a message to a randomly selected agent connected to
this one (where those agents are selected w/uniform prob)

• Receive message
– TBProgressionStatechart.receiveMessage(msg) to forward

message received by agent to statechart

Useful Snippets

• Fields of dynamic properties of line object for
Agent Presentation (Under “Dynamic” tab of line’s
properties)
– Replication: getConnectionsNumber()

– dX: getConnectedAgent(index).getX() - getX()

– dY: getConnectedAgent(index).getY() - getY()

– These basically allow for appropriate initiation of visual
properties of the inter-agent connections

• In Agent’s “On Message Received” Handler (Under “Agent”
tab of Person)
• statechartname.receiveMessage(msg)

• This forwards a message received by this agent to statechart; note
that if there are different messages, destined for different
statecharts, they can be dispatched here to different targets

