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Building the Model Right:
Some Principles of Software Engineering

Technical guidelines Process guidelines

Try to avoid needless complexity — ° Usecpjer reviews to review

Use abstraction & encapsulation to - Dce)si?gn

simplify reasoning & development _ Tests

Name things carefully  Perform simple tests to verify
Design & code for transparency & functionality

modifiability » Keep careful track of experiments
Document & create self- e Use tools for version control &

documenting results where possible ~ documentation & referent.integrity
Consider designing for flexibility ~ ° Do regular builds & system-wide

_ _ “smoke” tests
Use defensive programming * Integrate with others’ work

Use type-checking to advantage frequently & in small steps
— Subtyping (and sometimes e Use discovery of bugs to find
subclassing) to capture commonality weaknesses in the Q & A process

— For unit checking (where possible)



The Challenges of Complexity

 Complexity of software development is a
major barrier to effective delivery of value

 Complexity leads to systems that are late, over
budget, and of substandard quality

 Complexity has extensive impact in both
human & technical spheres



Why Modularity?

* As a way of managing complexity: Allows
decoupling of pieces of the system

— “Separation of Concerns” in comprehension &
reasoning

— Example areas of benefit
* Code creation
* Modification
* Testing
* Review
* Staff specialization

— Modularity allows “divide and conquer’ strategies to
work

* As a means to reuse



Abstraction: Key to Modularity

* Abstraction is the process of forgetting certain
details in order to treat many particular
circumstances as the same

* We can distinguish two key types of abstraction

— Abstraction by parameterization. We seek generality by
allowing the same mechanism to be adapted to many
different contexts by providing it with information on
that context

— Abstraction by specification. We ignore the
implementation details, and agree to treat as acceptable
any implementation that adheres to the specification

— [Liskov&Guttag 2001]



A Key Motivator for Abstraction:
Risk of Change

e Abstraction by specification helps lessen the

work required when we need to modify the
program

* By choosing our abstractions carefully, we can
gracefully handle anticipated changes

— e.g. Choose abstracts that will hide the details of
things that we anticipate changing frequently

— When the changes occur, we only need to modify
the implementations of those abstractions



Abstraction by Parameterization

 Major benefit: Reuse
— Common needs identified

— Elimination of need to separately
* Develop
* Test
* Review
* Debug

* Diverse forms
— Functions: Formal parameters
— Generics/Parameterized types
— Cross cutting: Aspects (parameterized by pointcuts)



Types of Abstraction in Java
* Functional abstraction: Action performed on data

— We use functions (in OO, methods) to provide some
functionality while hiding the implementation details

We are concentrating on this today

* Interface/Class-based abstraction: State & behaviour

— We create “interfaces”/“classes” to capture behavioural
similarity between sets of objects (e.g. agents)

— The class provides a contract regarding

* Nouns & adjectives: The characteristics (properties) of the
objects, including state that changes over time

* Verbs: How the objects do things (methods) or have things
done to them



Functional Abstraction

* Functional abstraction provides methods to do some
work (what) while hiding details of how this is done

A method might
— Compute a value (hiding the algorithm)

— Test some condition (hiding all the details of exactly what
is considered and how): e.g. ask if a person is susceptible

— Perform some update on e.g. a person (e.g. infect a
person, simulate the change of state resulting from a
complex procedure, transmit infection to anther)

— Return some representation (e.g. a string) of or
information about a nerson in the model



Why Use Functional Abstraction?

Easier modifiability: Only one place to update
Transparency : What the code does is clearer

— Reduced clutter throughout code: Don’t have to look at
all the gory details every time want to undertake this
task

— Can communicate intention from clear name
Easier later reuse

Reduced complexity lowers risk of programming
error



Using Functional Abstraction in AnyLogic
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Methods

e Methods are “functions” associated with a class
e Methods can do either or both of

— Computing values

— Performing actions
* Printing items
* Displaying things
* Changing the state of items

* Consist of two pieces

— Header: Says what “types” the method expects as arguments
and returns as values, and exceptions that can be thrown

— Body: Describes the algorithm (code) to do the work (the
“implementation”)



Method Bodies

e Method bodies consist of
— Variable Declarations
— Statements

e Statements are “commands” that do
something (effect some change), for example

— Change the value of a variable or a field

— Return a value from the function

— Call a method

— Perform another set of statements a set of times

— Based on some condition, perform one or another
set of statements



Using Functional Abstraction in AnylLogic:
Example Functions
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A Function’s Definition
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Another Example

#73 Anylogic Advanced [EDUCATIONAL USE ONLY]
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A Closer Look at the Code...
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What is called a “function” in AnylLogic
is classically called a “Method”



Parameterization

* We can parameterize functions, so that the values
that they yield depends on the values passed to
them as “arguments” by callers

— This allows flexibly: A function can be used somewhat
differently in different contexts

— While parameters may differ, the behavior of the
function will typically be the same



Examples of Parameterization

 We may build a function that identifies all people
who have been smokers for more than n years

— n here is a parameter! Different contexts, we might be
interested in different n.

 We may wish to count the number of people of a
certain sex

— Rather than independently creating separate methods
for Males and Females, we may create a method that is
called CountPopulationOfSex that takes a parameter that
specifies the sex of interest



A Hierarchy of Functional Abstractions
* We build up higher-level functional abstractions

out of lower level ones

— For example

* The implementation of FractionOfContactsThatSmoke() might
make use of CountSmokingContacts() and CountContacts()

* We might define CountMen() and CountWomen() with
implementation of both calling CountPopulationOfSex()

e Particularly powerful functional abstractions are
those which are parameterized by functions

— In object-oriented programming, we generally do this
by using polymorphism — passing objects that match
some interface, but whose implementation of that
interface can differ



