
Tutorial:
Functions and Functional Abstraction

Nathaniel Osgood

CMPT 858

2-8-2011

Building the Model Right:
Some Principles of Software Engineering

Technical guidelines
• Try to avoid needless complexity

• Use abstraction & encapsulation to
simplify reasoning & development

• Name things carefully

• Design & code for transparency &
modifiability

• Document & create self-
documenting results where possible

• Consider designing for flexibility

• Use defensive programming

• Use type-checking to advantage
– Subtyping (and sometimes

subclassing) to capture commonality

– For unit checking (where possible)

Process guidelines
• Use peer reviews to review

– Code
– Design
– Tests

• Perform simple tests to verify
functionality

• Keep careful track of experiments
• Use tools for version control &

documentation & referent.integrity
• Do regular builds & system-wide

“smoke” tests
• Integrate with others’ work

frequently & in small steps
• Use discovery of bugs to find

weaknesses in the Q & A process

The Challenges of Complexity

• Complexity of software development is a
major barrier to effective delivery of value

• Complexity leads to systems that are late, over
budget, and of substandard quality

• Complexity has extensive impact in both
human & technical spheres

Why Modularity?
• As a way of managing complexity: Allows

decoupling of pieces of the system
– “Separation of Concerns” in comprehension &

reasoning

– Example areas of benefit
• Code creation

• Modification

• Testing

• Review

• Staff specialization

– Modularity allows ‘divide and conquer’ strategies to
work

• As a means to reuse

Abstraction: Key to Modularity
• Abstraction is the process of forgetting certain

details in order to treat many particular
circumstances as the same

• We can distinguish two key types of abstraction
– Abstraction by parameterization. We seek generality by

allowing the same mechanism to be adapted to many
different contexts by providing it with information on
that context

– Abstraction by specification. We ignore the
implementation details, and agree to treat as acceptable
any implementation that adheres to the specification

– [Liskov&Guttag 2001]

A Key Motivator for Abstraction:
Risk of Change

• Abstraction by specification helps lessen the
work required when we need to modify the
program

• By choosing our abstractions carefully, we can
gracefully handle anticipated changes

– e.g. Choose abstracts that will hide the details of
things that we anticipate changing frequently

– When the changes occur, we only need to modify
the implementations of those abstractions

Abstraction by Parameterization

• Major benefit: Reuse
– Common needs identified

– Elimination of need to separately
• Develop

• Test

• Review

• Debug

• Diverse forms
– Functions: Formal parameters

– Generics/Parameterized types

– Cross cutting: Aspects (parameterized by pointcuts)

Types of Abstraction in Java
• Functional abstraction: Action performed on data

– We use functions (in OO, methods) to provide some
functionality while hiding the implementation details

 We are concentrating on this today

• Interface/Class-based abstraction: State & behaviour

– We create “interfaces”/“classes” to capture behavioural
similarity between sets of objects (e.g. agents)

– The class provides a contract regarding

• Nouns & adjectives: The characteristics (properties) of the
objects, including state that changes over time

• Verbs: How the objects do things (methods) or have things
done to them

Functional Abstraction

• Functional abstraction provides methods to do some
work (what) while hiding details of how this is done

• A method might

– Compute a value (hiding the algorithm)

– Test some condition (hiding all the details of exactly what
is considered and how): e.g. ask if a person is susceptible

– Perform some update on e.g. a person (e.g. infect a
person, simulate the change of state resulting from a
complex procedure, transmit infection to anther)

– Return some representation (e.g. a string) of or
information about a person in the model

Why Use Functional Abstraction?

• Easier modifiability: Only one place to update

• Transparency : What the code does is clearer

– Reduced clutter throughout code: Don’t have to look at
all the gory details every time want to undertake this
task

– Can communicate intention from clear name

• Easier later reuse

• Reduced complexity lowers risk of programming
error

Using Functional Abstraction in AnyLogic

Methods
• Methods are “functions” associated with a class

• Methods can do either or both of

– Computing values

– Performing actions

• Printing items

• Displaying things

• Changing the state of items

• Consist of two pieces

– Header: Says what “types” the method expects as arguments
and returns as values, and exceptions that can be thrown

– Body: Describes the algorithm (code) to do the work (the
“implementation”)

Method Bodies
• Method bodies consist of

– Variable Declarations

– Statements

• Statements are “commands” that do
something (effect some change), for example
– Change the value of a variable or a field

– Return a value from the function

– Call a method

– Perform another set of statements a set of times

– Based on some condition, perform one or another
set of statements

Using Functional Abstraction in AnyLogic:
Example Functions

A Function’s Definition

Another Example

A Closer Look at the Code…

What is called a “function” in AnyLogic
is classically called a “Method”

Parameterization

• We can parameterize functions, so that the values
that they yield depends on the values passed to
them as “arguments” by callers

– This allows flexibly: A function can be used somewhat
differently in different contexts

– While parameters may differ, the behavior of the
function will typically be the same

Examples of Parameterization

• We may build a function that identifies all people
who have been smokers for more than n years

– n here is a parameter! Different contexts, we might be
interested in different n.

• We may wish to count the number of people of a
certain sex

– Rather than independently creating separate methods
for Males and Females, we may create a method that is
called CountPopulationOfSex that takes a parameter that
specifies the sex of interest

A Hierarchy of Functional Abstractions
• We build up higher-level functional abstractions

out of lower level ones

– For example

• The implementation of FractionOfContactsThatSmoke() might
make use of CountSmokingContacts() and CountContacts()

• We might define CountMen() and CountWomen() with
implementation of both calling CountPopulationOfSex()

• Particularly powerful functional abstractions are
those which are parameterized by functions

– In object-oriented programming, we generally do this
by using polymorphism – passing objects that match
some interface, but whose implementation of that
interface can differ

