Tutorial:
Functions and Functional Abstraction

Nathaniel Osgood
CMPT 858
2-8-2011

Building the Model Right:
Some Principles of Software Engineering

Technical guidelines Process guidelines

Try to avoid needless complexity — ° Usecpjer reviews to review

Use abstraction & encapsulation to - Dce)si?gn

simplify reasoning & development _ Tests

Name things carefully Perform simple tests to verify
Design & code for transparency & functionality

modifiability » Keep careful track of experiments
Document & create self- e Use tools for version control &

documenting results where possible ~ documentation & referent.integrity
Consider designing for flexibility ~ ° Do regular builds & system-wide

_ _ “smoke” tests
Use defensive programming * Integrate with others’ work

Use type-checking to advantage frequently & in small steps
— Subtyping (and sometimes e Use discovery of bugs to find
subclassing) to capture commonality weaknesses in the Q & A process

— For unit checking (where possible)

The Challenges of Complexity

 Complexity of software development is a
major barrier to effective delivery of value

 Complexity leads to systems that are late, over
budget, and of substandard quality

 Complexity has extensive impact in both
human & technical spheres

Why Modularity?

* As a way of managing complexity: Allows
decoupling of pieces of the system

— “Separation of Concerns” in comprehension &
reasoning

— Example areas of benefit
* Code creation
* Modification
* Testing
* Review
* Staff specialization

— Modularity allows “divide and conquer’ strategies to
work

* As a means to reuse

Abstraction: Key to Modularity

* Abstraction is the process of forgetting certain
details in order to treat many particular
circumstances as the same

* We can distinguish two key types of abstraction

— Abstraction by parameterization. We seek generality by
allowing the same mechanism to be adapted to many
different contexts by providing it with information on
that context

— Abstraction by specification. We ignore the
implementation details, and agree to treat as acceptable
any implementation that adheres to the specification

— [Liskov&Guttag 2001]

A Key Motivator for Abstraction:
Risk of Change

e Abstraction by specification helps lessen the

work required when we need to modify the
program

* By choosing our abstractions carefully, we can
gracefully handle anticipated changes

— e.g. Choose abstracts that will hide the details of
things that we anticipate changing frequently

— When the changes occur, we only need to modify
the implementations of those abstractions

Abstraction by Parameterization

 Major benefit: Reuse
— Common needs identified

— Elimination of need to separately
* Develop
* Test
* Review
* Debug

* Diverse forms
— Functions: Formal parameters
— Generics/Parameterized types
— Cross cutting: Aspects (parameterized by pointcuts)

Types of Abstraction in Java
* Functional abstraction: Action performed on data

— We use functions (in OO, methods) to provide some
functionality while hiding the implementation details

We are concentrating on this today

* Interface/Class-based abstraction: State & behaviour

— We create “interfaces”/“classes” to capture behavioural
similarity between sets of objects (e.g. agents)

— The class provides a contract regarding

* Nouns & adjectives: The characteristics (properties) of the
objects, including state that changes over time

* Verbs: How the objects do things (methods) or have things
done to them

Functional Abstraction

* Functional abstraction provides methods to do some
work (what) while hiding details of how this is done

A method might
— Compute a value (hiding the algorithm)

— Test some condition (hiding all the details of exactly what
is considered and how): e.g. ask if a person is susceptible

— Perform some update on e.g. a person (e.g. infect a
person, simulate the change of state resulting from a
complex procedure, transmit infection to anther)

— Return some representation (e.g. a string) of or
information about a nerson in the model

Why Use Functional Abstraction?

Easier modifiability: Only one place to update
Transparency : What the code does is clearer

— Reduced clutter throughout code: Don’t have to look at
all the gory details every time want to undertake this
task

— Can communicate intention from clear name
Easier later reuse

Reduced complexity lowers risk of programming
error

Using Functional Abstraction in AnyLogic

ile Edit View Model Window Help
@ E2HB Y| AREEX BmOv| Y TS -t |) @ 0 [% ;98 GetSupport

E:Projectﬁ@l = B8 w = B || @ Palette &2

&) TBRiskFactors (< ‘ % Model
€ Main
€3 Person = Parameter
Parameters E=—=0% Flow Aux Variable
@5 Plain Variables z i T C Stock Variable
S5 Dynamic Variables o S Al b i Event

23 Statecharts

@5 Functions
(& AgeCoefficientForSmokinglnitiatio
{# CirclePerimeterColorFromState
{# CirclePerimeterWidthFromState
@ CountContacts
{# CountSmokingContacts

Dynamic Event
Plain Variable
Collection Variable
Functicn

Table Function

m
B, rO0 I EROPOSESWDOGR

@ FractionOfContactsThatSmoke Port
@ IsCurrentSmoker Connector
{# ReactivationRateCoefficientForCKI @ e Entry Point
{# ReactivationRateCoefficientForSm Sate
{7 ReactivationRateForSmokingStatus
MasOwa Tl s arirase 1+
@ SmokinglnitistionHazardCoefficier R S Transition
@ SmokinglntiationHazard ° T " Initial State Pointer
@ getDegree {800 0 O Branch
B Plﬁ:enta‘llﬂl_‘i g:’:""m:‘““m" 1 History State
€ Simulation: Main)
Final State
(et A Tobacco Use
g:‘::x:“:"""“’? . Environment
> Ve e eI
@ 2 e A
g:::zz‘::-;::ﬂrfmrfﬁmwh
([mEemmmmieng o
g:::::;a-mﬂq:mm; E ‘ % Action
maﬂlﬂ'
—— ‘ ila Analysis
£ o
‘ Ba Presentation
. = = ‘ B Connectivity

El Properties 2 - = E] ‘ ¥ Enterprise Library

Methods

e Methods are “functions” associated with a class
e Methods can do either or both of

— Computing values

— Performing actions
* Printing items
* Displaying things
* Changing the state of items

* Consist of two pieces

— Header: Says what “types” the method expects as arguments
and returns as values, and exceptions that can be thrown

— Body: Describes the algorithm (code) to do the work (the
“implementation”)

Method Bodies

e Method bodies consist of
— Variable Declarations
— Statements

e Statements are “commands” that do
something (effect some change), for example

— Change the value of a variable or a field

— Return a value from the function

— Call a method

— Perform another set of statements a set of times

— Based on some condition, perform one or another
set of statements

Using Functional Abstraction in AnylLogic:
Example Functions

‘%3 Functions
& AgeCoefficientForSmokinglnitiation
7 CirclePerimeterColorFromState
{7 CirclePerimeterWidthFromState
{7 CountContacts
(@ CountSmokingContacts
7 FractionOfContactsThatSmoke
=CurrentSmoker
{# ReactivationRateCoefficientForCKDStage
{# ReactivationRateCoefficientForSmokingStatus
{# ReactivationRateForSmokingStatusAndCKDStage
(# SmokinglnitiationHazardCoefficientAsAFunctionOfFractionCfContactsThatSmoke
(@ SmaokinglntiationHazard

(@ getDegree

A Function’s Definition

I[q; CEIIDD% jC{H |'EI| Tﬁ @ % qﬁ J%Getﬁuppurt

Code

| e SR 0
J ﬂ' rn I\MLFI_F’LFLILII e
MonPregnank
- () FertilityRateAgeSexEthnicity
@Perfurmﬁirth
ﬁ EstablishioffspringConnectionsBasedOntMathersConnections
Pregnant e — - i
= Properties &2 = =0
1|l @ PerformBirth - Function
| -
General Marme: |F'erF|:|rmBirI:h | show Mame [Ignore [Public Show Ak Runkime

ok

Descripkion Access: |default - [static

Return Type: @ void O bodlean Oint O double O String Q) Other: | roid

| =]

Function arguments:

Marne I Tvpe I

[S,
F Y
—

Selection

Another Example

#73 Anylogic Advanced [EDUCATIONAL USE ONLY]

File Edit View Model Window Help

F-SEHG | YD

ol

G o O ~| 4 0 % |100% - O HE | ThCh 08 T G 28 GetSupport

.2 Project 2 =8

[TBRiskFactors
[g] MultiplefgentClassesinMe|
@ ABMModelWithBirthDeath
& Main
& Person
€9 Simulation: Main
B Presentation

@ Person 23] @ Main | =8
o s
(® islnitiallylnfected (# sex (® InitialAge
(* ethnicity {7} CurrentAge

PregnancyStatus

() FinalizeDeath

MNeonPregnant

() FertilityRateAgeSexEthnicity
PerformBirth
stablis! springConnectionsbasedUnhMothersConnections
EstablishOffspringC ionsBased OnMothersC i

Pregnant . .] .
G EstablishOffspringlocationBased OnMothersLocation

(7} RandomSex

{3} RandomEthnicity

{3 RandomAge

(3 islnReproductiveYears

]

() Elnfected
] [l 3
| Properties &2 l = Conso|e| = =08
(@ PerformBirth - Function
General Function body:
Code Person mother = this;
Description Person offspring = get Main().add Population((double) 0, ethnicity, RandomSex(), this

traceln ("A baby has been born! Baby's id is " + offspring + " while the mother is "
f establish connections of infant

E=ztablishOffepringConnectionsBasedCnMothersConnections (offspring, mother)

// mow position the baby to be close to the mother (otherwise leads to stretching of

FistablishOffspringLr:ncatir:nnBasedOIﬂ{athersLucationmffspring, mother) ;

L F

_ -1 &l

2| | =

A Closer Look at the Code...

VALFLID F Al L

() FertilityRateAgeSexEthnicity
(@)performBirth

{3 EstablishOffspringConnectionsBased OnMothersConnections
L] [(1] [

=l Properties 22 | & Console o
@ PerformBirth - Function
General Function body:
Code Ferson mother = this;
Description " Person offspring = get Main().add Population((doumble) 0, ethnicity, RandomSex(), this.IsInfected()}:
traceln ("4 baby has been born! Baby's id 1= " + off=pring + " while the mother i= " + thi=s):
estaklish connection=s of infant
I EstablishOffspringConnectionsBasedOnMothersConnections (offspring, mother):
now position the baby To be close fo the mother [oftherwise leads to stretching of mother's connectior

EstablishOffszpringlocationBasedOnMotherslocation (offspring, mother) ;

4 I

What is called a “function” in AnylLogic
is classically called a “Method”

Parameterization

* We can parameterize functions, so that the values
that they yield depends on the values passed to
them as “arguments” by callers

— This allows flexibly: A function can be used somewhat
differently in different contexts

— While parameters may differ, the behavior of the
function will typically be the same

Examples of Parameterization

 We may build a function that identifies all people
who have been smokers for more than n years

— n here is a parameter! Different contexts, we might be
interested in different n.

 We may wish to count the number of people of a
certain sex

— Rather than independently creating separate methods
for Males and Females, we may create a method that is
called CountPopulationOfSex that takes a parameter that
specifies the sex of interest

A Hierarchy of Functional Abstractions
* We build up higher-level functional abstractions

out of lower level ones

— For example

* The implementation of FractionOfContactsThatSmoke() might
make use of CountSmokingContacts() and CountContacts()

* We might define CountMen() and CountWomen() with
implementation of both calling CountPopulationOfSex()

e Particularly powerful functional abstractions are
those which are parameterized by functions

— In object-oriented programming, we generally do this
by using polymorphism — passing objects that match
some interface, but whose implementation of that
interface can differ

