
Basics of Java:
 Expressions & Statements

Nathaniel Osgood

CMPT 858

February 15, 2011

Java as a Formal Language

• Java supports many “constructs” that serve
different functions

– Class & Interface declarations

– Importing references to classes from other code
libraries

– Defining methods

Methods
• Methods are “functions” associated with a class

• Methods can do either or both of

– Computing values

– Performing actions

• Printing items

• Displaying things

• Changing the state of items

• Consist of two pieces

– Header: Says what “types” the method expects as arguments
and returns as values, and exceptions that can be thrown

– Body: Describes the algorithm (code) to do the work (the
“implementation”)

Method Bodies
• Method bodies consist of

– Variable Declarations

– Statements

• Statements are “commands” that do
something (effect some change), for example
– Change the value of a variable or a field

– Return a value from the function

– Call a method

– Perform another set of statements a set of times

– Based on some condition, perform one or another
set of statements

Variable Declarations
• Variables in Java are associated with “types” and

can contain values

– The types describe the sort of values that a variable can
contain (the set of possible values)

– E.g.

• double: Double precision floating point numbers

• int: (positive & negative): Integer values within some range

• String: A (reference to a) text sequence

• boolean: A dichotomous value, holding “true”, or “false”

• When we “declare” a variable, we indicate its name
& type – and possibly an initial value

Example Variable Declarations

Declares a variable “m” that initially contains
a reference to the “Main” object

Finding location
in continuous space
(x,y) & in terms of
Discrete vegetation
Space (c,r).
Poor style -- Should be In
separate function

Declares double-precision
variables x & y

Declares integer values
c & r, and sets equal to the
column & row for this elephant
In the vegetation array

Common Java Statements

• if

• for

• while / do-while

• Try-Catch-Finally

• Throw (Trigger) exception

• An expression (typically side-effecting)
– Assignment

– Call to a function

• Composite statement block (multiple
statements enclosed in a “{}”)

Common Java Expressions

• Literal (3.5, 1, “my string”, null)
• Causes changes Side effecting)

– Assignment (a=b) Left hand side is some location
(variable, field, etc.)

• Comparison (a>b,a==b)
• Mathematical Operators (+,-,/,*) Can be

“overloaded” to mean other things (e.g. + as
concatenation)

• Method call (function call): this.get_Main()
• “Dereferencing”: Looking up field or value b in an

object expression a: (a.b)
• Ternary operator: (predicate ? a : b)

Comments

• Comments in Java are indicated in two
different ways

– Arbitrarily long: Begun with /* and ended with */

• These can span many lines

– Within a line: after a //

• Use comments to describe your intentions!

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

For statements

• “For” statements “iterate”, repeatedly
executing some inner statement many times

• Several variants are available

 for (int i = 0; i < 100; i++)

 statement

 for (int i : collection)

 statement

Heading Towards Resource

Determining current position &
Searching for quickest way to find
water from that position.
(should be in separate function!)

If Statements

• With an if statement, one tests a condition
(“predicate”), and – based on the result – either
executes one statement or another (possibly
empty) statement

 if (condition) if (condition)

 true-statement or true-statement

 else

 false-statement “falls through” to later code if condition is false

Handling of Movement Logic

Handling the case of reaching water
 when thirsty

Finding location
in continuous space
(x,y) & in terms of
Discrete vegetation
Space (c,r).
Poor style -- Should be In
separate function

Distinguishing the case
of many & few trees

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

A more complex condition (should
really place condition in 1-2 functions
that returns a boolean, and just call
the functions! – can reuse elsewhere)

New Direction Change Function Info

New Direction Change: Function “Body”

Setting Agent Speed (set so as to reach target in
 fixed time until next target shift)

Initiates movement towards (randomly chosen)
destination

“While”/”Do while” loop

• Executes a statement as long as some
condition is true

• The classic “While” loop has the test at the
beginning

• The “do while” has the test at the end of the
loop

While loops

Compound Statements
(Delineated by “{ }”)

Innermost is not actually needed, because
Only one statement – could remove “{ }”
and the statement inside would still be within
The “if” “consequent”

Expression Statements

Assignment expressions as
an expression statements
(including “count++”, which is equivalent
to “count=count+1”)

Method call
Expression as
an expression
 statement

