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Agent-Based Models

* One or more composed of
individual agents, each associated with

* Parameters - discrete (e.g., Gender, Ethnicity)
or continuous (e.g., birthweight, income)

* State (continuous or discrete) e.g., age,
smoking status, networks, preferences

* Rules for evolving state

* Means of interaction with other agents via one
or more environments (e.g. spatial & topologlcal :




Contrasting Organization In
Agdgregate Stock-Flow & ABM

Aggregate Stock & flow models Agent-based modeling

*Within unit (e.g. city)
Subdivided according to state
and characteristics (e.g. SES)

*Within unit (e.g. city)
Subdivided according to
constitutive smaller actors

Each stock counts # people in (e.g., individual people)
associated population group Each unit maintains its own
*State for different levels and state, attributes
other actors are found In *The nested or networked
stocks & flows at same relations among actors

“level” of the model mirror thatinworld
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Model Specification

Stock & Flow Models

Small modeling vocabulary

Power lies in combination
of a few elements (stocks &
flows)

Analysis conducted
predominantly in terms of
elements of model
vocabulary (values of
stocks & flows)

Directly maps onto crisp
mathematical description
(Ordinary Differential
Equations)

Agent-Based Modeling

* Large modeling

vocabulary

* Different subsets of

vocabulary used for
different models

Power in flexibility &
combination of elements &
algorithmic specification

Variety in analysis focus

Mathematical
underpinnings differ

In most cases, lacks
transparent mapping to
mathematical formulation



ABMs: Larger Model Vocabulary &

Needs
* Subtyping

Events
Multiple mechanisms for
describing dynamics

— State transition diagrams
Multiple types of transitions

- Stock and flow
- Custom update code

Inter-Agent
communication (sending
& receiving)

Diverse types of agents
Data output mechanisms
Statistics

Mobility & movement
Graphical interfaces

Stochastics complicated

— Scenario result
Interpretation

— Calibration
- Sensitivity analysis
Synchronous &

asynchronous distinction,
concurrency

Spatial & topological
connectivity & patterning
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 Origins
 Theoretical bases

« Computer Science/Applied Mathematics: Von
Neumann's and Ulam's theory of automata

* Interacting finite state automata
e Cellular automata
* Reproduction
« Economics: Microsimulation
 Statistical formulation of transitions

 Sometimes framed as challenge to neoclassical
economics and rational actor theory

e Often less central focus on direct agent interactions

 These contributions are each associated with distinct
underlving theories. traditions



Agent-Based Models: Skill Sets

* Construction of ABMs have traditionally
required significant software engineering

* In recent years, ABM platforms have

Included increasing support for declarative
specification

Such features greatly lower the
programming requirements

Maintaining on-call computational

ala (Y a anlaYa




Model Population
In Modd....

ln Simulation....R




Agent-Based Models

* One or more populations composed of
individual agents, each associated with

* State (continuous or discrete) e.g., age,
smoking status, networks, preferences

* Rules for evolving state

* Means of interaction with other agents via one
or more environments (e.g. spatial & topologlcal
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Agent-Based Models

* One or more populations composed of
individual agents, each associated with

* Parameters - discrete (e.g., Gender, Ethnicity)
or continuous (e.g., birthweight, income)

* Means of interaction with other agents via one
or more environments (e.g. spatial & topologlcal




Example of Discrete States &
Assoclated Transitions

I infectionstatechart




Contrast to Agg. Stock & Flow Models: Adding
Heterogeneity Yields No Combinatorial
Explosion in Structure
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Agent-Based Models

* One or more populations composed of
individual agents, each associated with

* Parameters - discrete (e.g., Gender, Ethnicity)
or continuous (e.g., birthweight, income)

* State (continuous or discrete) e.g., age,
smoking status, networks, preferences

* Rules for evolving state
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Recall: Emergent Behavior

* “Whole is greater than the sum of the
parts”, “Surprise behavior”

* Frequently observed in stock and flow
models as interaction between stocks &
flows

° In , We see this phenomena not only
at level of aggregate stocks & flows, but —
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Aggregate & Spatial Emergence
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Emergent Aggregate & Spatial
Dynamics
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Stochastics

* In contrast to most system dynamics
models, ABMs are typically stochastic

* To ensure model results are not merely
flukes, a model must be run many times

* This adds substantially to the cost associated
with such models

* This is easily parallelizable

* Stochastics as assets: Observing varlablllty
end insights into the variabili an i




Single Run
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Matters of Scale

* It is straightforward to build ABMs featuring
multiple (optionally nested) levels of context

* Individual person [ neighborhood / school |
municipality / country

* Individual deer | herd | ecoregion / population

* Emergent behavior frequently differs
strikingly over different scales
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Capturepc\:g)n insliolﬂgiapslcergyﬁgl%mgeneity
* Targeted interventions

* Transfer effects (vs. implicit value judgments)

Representing network, spatial context,
multi-level nesting

Capturing situated decision making,learning
Longitudinal info:intervention, calibration,...

More precise, endogenous characterization
of intervention effects, implementation
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