
Addressing Model Defects in
AnyLogic

Nathaniel Osgood

Using Modeling to Prepare for
Changing Healthcare Needs

Duke-NUS

April 16, 2014

Model Appropriateness Consideration
• Have we built the right model?

• Have we built the model right?

Have We Built the Right Model?
–This is the province of “validation”

–We can rarely validate the model – only
seek to
•Build confidence

•Disconfirm it

–This is specific to model purpose

–Here, a lapse is either
• an oversimplification of the situation

•An inaccurate “dynamic hypothesis” as to
how things work

Have We Built the Model Right?
• Did we implement our planned model logic as we

had intended?

– Did we want one thing and put in place mechanisms that
entailed another thing

– This is the province of classic testing & quality assurance

• Peer reviews

• Testing (e.g. Junit)

• Here, a lapse is typically a model “defect” (build
error or bug)

– In this lecture, we will be dealing with identifying this
sort of defect

Build Errors
• Build errors can be recognized in the “Problems”

window

• These can be filtered by the selected component in
the hierarchy

• Continuous Integration: While builds occur
automatically as needed when running the model,
try to build very frequently (for each small change)

– This helps you to quickly identify the source of the
problem

– This speeds resolution, since the change is fresh in your
mind

– This may alert you to the need for a different approach

Debugging: Faults, Failures

• A “fault” is an underlying defect

• A failure is a visible problem, e.g.

– Model “crashes”

– Model will not run

– Model is reporting values that are patently
impossible given the implications of our intensions

• Carcasses arising and walking

• People recovering form a lifelong illness

• People moving on a surface that should be impassable
(e.g. a river)

Surprises & Failures

• Often complex models (including ABMs) exhibit
surprising emergent properties

– There may be things we consider very implausible that
are jointly implied of various pieces of our model
specification

– There may even be things we consider “impossible”
given our intended model structure that are in fact
implied by it – we just didn’t realize this!

Some Model “Surprises” Reflect…
• Mistakes in our implementation (divergence of “what

we told the model to do” from “what we intended to
tell the model to do”)
– Typing “a/a+b” rather than “a/(a+b)”

– Misunderstanding of how a type of model building block (e.g.
a guard in a rate transition) “works”

• Unrealistic aspects of our plan (“what we intended to
tell the model to do” had hidden inconsistences with
how the world works)

• Discoveries about what could happen in the world

• We are focusing here on the first of these issues, but
need to realize that it often takes time to figure out in
which category a given surprise lies!

What is Debugging?

• Debugging is the process of finding and
removing the defects (faults) in our program,
based on observations of “failures” or
“aberrant behaviour”

Best Debugging Strategy: Avoiding It!

• Defensive Programming

• Offensive Programming

We will talk about best practices for these
approaches in a separate lecture

Offensive Programming: Try to Get Broken
Program to Fail Early, Hard

• Asserts: Proactively scan for and flag incorrect
assumptions, aborting the program as a result

• Fill memory allocated with illegal values

• Fill object w/illegal data just before deletion

• Set buffers at end of heap, so that overwrites
likely trigger page fault

• Setting default values to be illegal in enums

• We will talk about Assertions & Error Handling
later this week

Assertion Goal: Fail Early!

• Alert programmer to misplaced assumptions as
early as possible

• Benefits

– Documents assumptions

– Reduces likelihood that error will slip through

• Helps discourage “lazy” handling of only common case

• Forces developer to deal explicitly with bug before
continuing

– Reduces debugging time

– Helps improve thoroughness of tests

Avoid Side Effects in Assertions

• Because assertions may be completely
removed from the program, it is unsafe to rely
on side effects occuring in them

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Enabling Assertions in Java

• 2 ways

– Usual: Via java runtime command line

• e.g.

– Less common: via reflection (ClassLoader)

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Enabling Assertions in AnyLogic

Assertions in Later AnyLogic Versions

• In some later AnyLogic versions, should enable
assertions only in the model itself

• This is simple to do

– Uses the package name

• More details on this are available on request

AspectJ and Eclipse

• AspectJ is a language that allows for succinctly
describing “cross cutting” functionality in
programs – such as tracing or logging requests

• AspectJ can automatically insert tracing
instrumentation into our code

– This gives us many of the benefits of manual tracing
program execution without the need for the markup
& mark-down work

• If time permits, we will present this method on
Friday

A Powerful Debugging Approach
• Save a copy of your model just for debugging
• Simplify error occurrence as much as possible
• Locate fault source

– Gather data or context that reproduces problem
• Rip out whole areas of model to see simplest condition that

(sometimes just seeing what eliminates error immediately clues in to
what it might be)

– Record what have done
do

• Analyze data & form hypothesis about defect
• Determine how to prove/disprove hypothesis
• Prove or disprove hypothesis
• Think about defect

Until can fix defect
– Look for similar errors that may not yet be found
– Figure out what about process left vulnerable to this error

Important Elements
• “Localizing” problem (Simplifying model & input until

discover minimum required mechanism)
– Save away original model (so don’t modify!)
– Comparing good & bad versions: What is different?
– Note down what does & does not work
– Seeing path of execution (particularly around fault location)

• Alternate between thinking & experimenting
• Observing model state (“situation”) at points preceding

error
• Compare with previous versions that were working
• Read error messages given by AnyLogic
• Confirming certain assumptions are true prior to error
• Talk with someone about issue/perform a peer review
• Specify and investigate top hypotheses

Debugging AnyLogic

• AnyLogic’s researcher & professional versions
now contains a debugger

• Alternatively, you can attach to AnyLogic from
debuggers such as Eclipse

– The key thing is to set anylogic to use a port

Debugging Options

• Debugging is the process of locating and fixing the
faults behind observed failures

• Using output for manual tracing & reporting
– A valuable option here is to use this interactively

• Using model navigation mechanisms to inspect
information about the model

• Using AspectJ for tracing/logging

• Using tools like log4j for customizable logging

• Using an external debugger (e.g. via eclipse)

• Using AnyLogic Professional/Research debugger

Using output for manual tracing &
reporting

• Pros
– Minimal learning curve

– Flexible

– Easily targeted

• Cons
– Requires time-consuming manual

• “markup”

• de-markup

– Can require many build/simulation iterations to
localize problem

– Limited capacity of console

Output to the Console: How To

• System.err.println(String)

– System.err.println("Sent cure message to person ["
+ associatedPerson + "]");

– This will appear in red

• traceln(String)

• System.out.println(String)

Use in AnyLogic

Interactive reporting

• AnyLogic’s support of interactive mechanisms allows
us to custom-trigger reporting through user interface
actions

– Button push

– Mouse click

• We can also use elements like sliders to change things in a
way that hints as to the nature of a problem

• This reporting may be

– Custom-built for debugging

– Built in, but not typically used here

Hands on Model Use Ahead

Load Provided Shared Model:
ABMModelWithBirthDeath

Population View

Person-Level View

Examining Contents of Collection

Examining Contents of Collection

Pause model execution
Click here

Custom Reporting

Logging

• Logging is the process of recording a record
(trace) of events during program execution

– Recording can be made to a database, files, text
console, etc.

• Logging can be performed at a variety of levels
of detail

• Log4j is one logging framework

Logging with Log4j

• Use of config files to configure

• Different levels of logger

– TRACE, DEBUG, INFO, WARN, ERROR and FATAL

• A given logger can be associated with Multiple
output streams

• Doing error uploads to a server

• Sending email (?)

public class Logger {

 // Creation & retrieval methods:
 public static Logger getRootLogger();
 public static Logger getLogger(String name);

 // printing methods:
 public void trace(Object message);
 public void debug(Object message);
 public void info(Object message);
 public void warn(Object message);
 public void error(Object message);
 public void fatal(Object message);

 // generic printing method:
 public void log(Level l, Object message);
}

Example use of Log4j

 // get a logger instance named "com.foo"
Logger logger = Logger.getLogger("com.foo");

logger.warn("Low fuel level.");

 logger.info(“general information");
 // This request is disabled, because DEBUG < INFO.
logger.debug("Starting search for nearest gas
station.");

Config File

Here are example configuration files
Set root logger level to DEBUG and its only appender to
A1.
log4j.rootLogger=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p
%c %x - %m%n

Config File: Suppressing Selective Information

log4j.rootLogger=DEBUG, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout

Print the date in ISO 8601 format
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p
%c - %m%n

Print only messages of level WARN or above in the
package com.foo.
log4j.logger.com.foo=WARN

Multiple Outputs
• log4j.rootLogger=debug, stdout, R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

• # Pattern to output the caller's file name and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) -
%m%n

• log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=example.log
log4j.appender.R.MaxFileSize=100KB

• # Keep one backup file log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n

Using the External Eclipse
Debugger with AnyLogic

External Debugging in Eclipse

• The “Eclipse” editor is one of the most
popular extant software development tools

• Eclipse offers plug-ins of many sorts

– Debuggers

– Profilers

– Visualization tools

– Version control of models

• Eclipse can be used to debug AnyLogic models
at the Java source-code level

Overview: Setting up External Eclipse
Debugging in AnyLogic

• In anylogic, Set the jvm options for socket based
debugging (e.g. eclipse)
– go to "Properties" on the "Simulation" to run for the anylogic

model

– Set the "Java Machine Arguments" as follows:
-Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8321

• in eclipse, create a debug configuration
– use "Remote Java Application”

• no project

• for "Connection Type", select "Standard (Socket Attach)”

• for "Connection properties”, Use
– Host: localhost

– Port 8321

Steps Required for Eclipse Debugging

• One time set-up for a particular model

– Set up AnyLogic to allow debugging connections

– Set up Eclipse to know

• How to connect to AnyLogic

• Where to look for source code files

• Every time want to debug

– Go to Eclipse

– Tell debugger to connect to AnyLogic process

– Interrupt process

– Set breakpoints, etc.

One-Time Setup In AnyLogic

• -Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,server=y,suspe
nd=n,address=8321

• These go under the "Advanced" tab of the
simulation run to use

Setting up Debug Configurations

Set up: Creating a Debugging
Configuration in Eclipse

Setting Up Source Code Folders

Add Source Folder

The AnyLogic
Workspace is
Located under the
Usesr Folder

Once Set up, Can…

• Set breakpoints

• See the variables, with symbolic information

• Suggestions

– Set a breakpoint on a thrown runtime exception
(regardless of whether caught)

– Throw a caught runtime exception from model
startup code

– When catch this in Eclipse, can then use to set
breakpoints (including in other files)

Start AnyLogic Model (Experiment
with Extra Debugging JVM Arguments)

Leave on Opening Screen for Now
(So We can Set up Eclipse)

In Eclipse, Open “Debug” Perspective

Start Debugger

Following Connection

Open Up Java Files from the
Workspace Folder for this Project to

Inspect Source & Set Breakpoints

Now Can Set Breakpoints in Main.java
or Elsewhere (Here: Person.java)

Double-click in dappled/stippled area on line
Where want to stop execution

Return to AnyLogic & Start Simulation
via Button Push

When Breakpoint is Hit, Will See Reach
Point

Can Single Step, Explore & Modify
Variable Contents, etc.

Warning: Breakpoints are Not
Shown in Source Window – Just in

“Breakpoints” area

Press “Resume” to Continue –
Awaiting a Breakpoint

Example Breakpoint in Main

Example Breakpoint in Person

Once at Breakpoint, Can Look at
Variables, Single Step, etc.

Variables Displayed

Terminating Execution from AnyLogic Console

Eclipse is Now Detached

Remembering Breakpoints

• Note Eclipse does remember breakpoints from
session to session

• So breakpoints that set earlier in an anylogic
session will work again even after close eclipse
and restart it again

• Suggestions
– Consider creating a common breakpoints (e.g. at

Main.start)

– Disable and enable breakpoints rather than deleting
them

Example of Debugging Session

Another Route: Catching Exceptions
at Defined Places of Interest

Example Setup: Set up Function to
Trigger the Debugger

In Startup Code for Model, Call Function

Request Creation of Exception Breakpoint

Request as Breakpoint Regardless of
Handling

Should Now be in List of Enabled Breakpoints

Back in Eclipse, the Debugger Should
have been Triggered & at Exception Handler

(If not, close “Main.java” and double-click on topmost “stack frame” (Where Exception is triggered))

Using the
AnyLogic Built-in Debugger

Running the Debugger

Running the Models

Setting a Breakpoint

When we Hit the Breakpoint…

Components to Direct Execution

Visible (“In-Scope”) Variables

Exploring Composite Variable Values in
the Debugger

Inspecting Composite Variables

Changing Variable Values During
Debugging

Stepping into Auto-Generated Code

Seeing Result of Expression Evaluation

Note that this doesn’t update immediate – may
need to switch stack frames in the “Debug” method
To see the update

