
Agent Mobility in
2D Landscapes

(Bonus: Some UI Customization)

Nathaniel Osgood

Using Modeling to Prepare for Changing
Healthcare Needs

Duke-NUS

April 16, 2014

Reminder: Agent Spatial Embedding

• Spatial embedding of agents is key to

– Expressing essential dynamics for problems
Locality of influence/Transmission

– Insight into certain phenomena (spatial
concentration, percolation, spatial reference
modes)

• Spatial embedding can permit GIS integration

2D Spatial Embedding: Two Options
• Continuous embedding (e.g. Wandering

elephants, our built-up model)

– No physical exclusion: Agents are assumed to be
small compared to landscape scale, and exhibit
arbitrary spatial density without interfering

– We have seen this much with distributing agents
initially around the space, adding agents in

• Discrete cells (e.g. The Game of Life, Agent-based
predator prey, Schelling Segregation)

– Divided into “Columns” and “Rows”

– Physical exclusion: Only one agent in a cell at a time

The Locus of Control: Environment

• The Anylogic Environment sets the parameters
for the nature of the 2D landscape

– Width

– Breadth

– Continuous vs. Discrete

– Character of discrete neighbourhoods (cardinal
directions vs. Euclidian { N,NE,E,SE,S,SW,W,NW}

Reminder: Common Division
• Endogenous

– Things whose dynamics are calculated as part of the
model

• Exogenous

– Things that are included in model consideration, but
are specified externally

• Time series

• Constants

• Ignored/Excluded

– Things outside the boundary of the model

Motivations for Including
Endogenous Factors

• Maintaining factors as endogenous (rather than
pre-specified as exogenous) lends

– Extra flexibility for more accurately capturing effects of

• Interventions

• Alternative exogenous scenarios

– Greater robustness in the context of changes

– Support for translations to other contexts

• Keeping greater detail requires more data &
implementation work, but allows our models to be
translated to other contexts & times

Example

• Mixing Matrix (specifies fraction of population A’s
contact that occur with populations B & C

• Preference matrix
– Scales to capture fluctuating population captures

relative preference

– can’t specify where to test

• Mobility-based methods with mobility patterns
hard-coded
– this is challenged for interventions which change e.g.

mixing opportunities and mobility

• Mobility-based methods with preference-based
mobility model

11 12 11 12

21 22 21 22

31 32 31 32

1

1

1

x x x x

x x x x

x x x x

Agent Mobility

• Thus far, we have looked at spatial dynamics
where each agent remains stationary

– Continuous space (static & dynamic populations)

– Discrete space (cellular automata)

2D Spatial Embedding: Mobility Implications
• Continuous embedding (e.g. Wandering elephants)

– No physical exclusion: Agents are assumed to be small
compared to landscape scale, and exhibit arbitrary spatial
density without interfering

– Agents move

• In a direction

• With some speed

• Discrete cells (e.g. Agent-based predator prey,
Schelling Segregation)

– Divided into “Columns” and “Rows”

– Physical exclusion: Only one agent in a cell at a time

– Agents move continuously or discontinuously from cell to
cell

Continuous Space: Relevant Methods
(To call on Agent)

• Controlling
– moveTo(x,y) : initiates agent movement to location

– setVelocity(v)

– setXY(x,y): initial location

– jumpTo(x,y): moves agent to location

– setRotation()

• Basic info
– getX()/getY()

– isMoving()

– getTargetX()/getTargetY()
• Where heading to?

– getRotation()

Create a New Project Called
“MovementTowardsMouse”

Add a New Active Object Class

Class Properties

Once “Person” Class is Added

Drag an Oval To the Origin

Drag “Person” Class into “Main” to
Create a Population

Name it “population”

Set Population as Replicated
(size 1 – for now)

Run Experiment

Model Appearance

In “Main” Add a Rectangle
(Origin at Same Place as Pop Origin)

Enlarge Rectangle

Set Rectangle’s Ordering to Back

Insert Code

Code: population.get(0).moveTo(clickx, clicky);

Drag a Slider from the “Controls” Area

Name it “velocitySlider”
(in “Properties”, under “General” tab)

Add a New Line of Code to
“On Click” Handler of Rectangle

Code: population.get(0).setVelocity(velocitySlider.getValue());
 population.get(0).moveTo(clickx, clicky);

On “Person” “Agent” Properties
Add code to indicate Arrival

Add Random Walks

Random Walk Models

Continuous Space: Relevant Methods
(To call on Instances of Agent)

• Already covered
– moveTo(x,y) : initiates agent movement to location

– setVelocity(v)

• Basic info
– getX()/getY()

– setXY(x,y): initial location

– jumpTo(x,y): moves agent to location

– isMoving()

– getTargetX()/getTargetY()
• Where heading to?

– setRotation()/ getRotation()

Environment Happens to Handle Process of
Maintaining Environmental Dynamics

Hands on Model Use Ahead

Load model: Schelling Segregation.alp

A Model to Examine the Emergence of
Segregation

A Discrete Spatial Environment with
Random Agent Positioning

Spatial Width & Height

Width & Height in
 Discrete Cells

Population Dependence on the
Population

Slider Input Sets Parameter Value

Sets Threshold Parameter Value

“Threshold” parameter

Person is Assigned a Randomly Picked
Color

Color is set to either red or black with
equal likelihood

Person’s Visual Representation

Core Segregation (Movement) Logic

Count neighbors
Sharing same colour
(should be in diff.
Function).

Only satisfied if fraction of
surrounding individuals
Sharing color exceeds
threshold

if dissatisfied,
30% chance of moving

Experiment: Simulation Sets
Parameter Assumptions

Add a Parameter to Main

Experiment: Add a Slider!

Setting the Slider Properties

Setting Value for Parameter from Slider

Modify Person’s Behavior to Depend
on New Parameter

Updated Code (“get_Main()” required
Because new parameter is global
And lives in Main class rather than in
Person class.)

Movement in Discrete Space
• jumpToCell(int row, int column)

– Jumps to a particular unoccupied cell
• Precondition: destination cell is unoccupied

• moveToNextCell(int direction)
– Moves agent into a neighbouring cell in a given

direction

– Directions: NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

• Precondition: destination cell is unoccupied

• jumpToRandomEmptyCell()
– Jumps to randomly selected empty cell (returning

true), returns false if no empty cell can be located

Discovery in Discrete Space

• int []findRandomEmptyCell

– Returns row & column of an unoccupied cell

• Getting agents in cell or direction

– getAgentAtCell(int row, int column)

– getAgentNextToMe(int direction)

– getNeighbors()

Important Distinction

• Suppose an agent is moving in discrete 2D
space and need to be concerned about
moving into the same cell as another agent

• We can readily prevent this agent from
moving into another cell currently occupied

• But can we prevent this agent from colliding
with another agent that wishes to move into
the same cell?

– To answer this, we need to be clear about the
model of time used by agents

Synchronization & Discrete Agent
Movement

• In Synchronous mode, it is difficult to know if two
agents will collide using data on the current timestep
– Even if we know where the other object was during the

current timestep, it’s possible it will move into the cell we
wish to occupy in the next timestep

• It is simpler to handle this asynchronously
– Here, we can have each agent update at slightly different

times, and observe the location of the other agents at the
current time – without any significant chance that they will
move to the same place at the same time.

• Issue only arises for discrete agent movement, as this is
the only case where cells are limited to contain 1 agent

Irregular Spatial Embedding

Realizing Irregular Spatial Embedding in AnyLogic

• Basic idea: people moving around follow networks of paths

• Irregular spatial embedding is supported directly by
“Network Based Modeling” (Discrete Event
Simulation)

– This approach is individual-based, but treats agents
either as flowing through and being operated on by a
process or as (often interchangeable) process resources

– We will have a brief introduction to this approach later
in the week, showing how it can be combined with ABM

• With a modest amount of custom coding, irregular
spatial embedding can be achieved within ABM by
routing the agent along a network of “polylines”

