
Agent Spatial Embedding in
2D Landscapes

Nathaniel Osgood

Using Modeling to Prepare for Changing

Healthcare Needs

Duke-NUS

April 16, 2014

Lecture Outline

•AnyLogic’s Spatial embedding types
–Overview

–Reminder of continuous space

–A glimpse of a discrete space & discrete time
model

•Agent Mobility

Agent Spatial Embedding

•Spatial embedding of agents is key to
–Expressing essential dynamics for problems
Locality of influence/Transmission

–Insight into certain phenomena (spatial
concentration, percolation, spatial reference modes)

•Spatial embedding can permit GIS integration

2D Spatial Embedding: Two Options
•Continuous embedding (e.g. Wandering
elephants, our built-up model)

–No physical exclusion: Agents are assumed to be
small compared to landscape scale, and exhibit
arbitrary spatial density without interfering

–We have seen this much with distributing agents
initially around the space, adding agents in

•Discrete cells (e.g. The Game of Life, Agent-based
predator prey, Schelling Segregation)

–Divided into “Columns” and “Rows”

–Physical exclusion: Only one agent in a cell at a time

The Locus of Control: Environment

•The Anylogic Environment sets the parameters
for the nature of the 2D landscape

–Width

–Breadth

–Continuous vs. Discrete

–Character of discrete neighbourhoods (cardinal
directions vs. Euclidian { N,NE,E,SE,S,SW,W,NW}

Lecture Outline

•AnyLogic’s Spatial embedding types
Overview

–Reminder of continuous space

–A glimpse of a discrete space & discrete time
model

•Agent Mobility

Continuous Environment

Continuous Environment: Your Model

•We’ve already seen the continuous embedding
in our built up model.

Lecture Outline

•AnyLogic’s Spatial embedding types
Overview

Reminder of continuous space

–A glimpse of a discrete space & discrete time
model

•Agent Mobility

By Comparison: Discrete Environment

Note extra presence of
“Columns” and “Rows”

Hands on Model Use Ahead

Load AnyLogic Sample Model: The

Game of Life

The “Game” of Life: Background
•Invented in 1970 by Mathematician Conway
(modifying ideas from Von Neumann)
•Inspiration: Lifecourse of cells

–Key dichotomy: A space contains a living element or not
–Stylized rules for birth, death

•Cellular automaton: Uses Discrete Time (Steps) &
Discrete Space (Cells) with evolving cell state

•Deterministic rules
•Illustrates the emergence of tremendous complexity
from very simple rules

–Computationally universal

The Behavioral Rules of the Game of
Life •Cells are viewed as surrounded by 4 neighbors (in

cardinal directions)
•Living cells require some neighboring empty space,
but also some proximity to nearby living cells
•Birth: An empty cell becomes occupied if it has an
“ideal” nurturing environment around it (3 surrounding
cells)
•An existing cell dies if

–Too isolated: It has too few neighbors (1 or 0)
–Too crowded: It is surrounded by other cells (4 surrounding
cells)

•No mobility: Cells are born, live and die in same
location

Open “Main” Class
Scroll Left to See Population &

Environ.

Imposing the Regular 2D Structure

100x100

grid defined

here

Indicated that cells
should be laid out in
a regular grid in space

Environment: Enabling Discrete Space (Cells)

Discrete2D

selected

Defines logical neighborhood
(here, each cell has 4
neighbors)

Neigbourhood Models
•Moore: Cardinal directions

–NORTH,SOUTH,EAST, WEST

•Euclidean
–NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

Set Neighbourhood Type
Of Environment here

Population: One Cell Agent per Grid
Point

10,000 (= 100*100) agents

View the “Cell” Class

This class represents each cell
in the entire space – whether
it is alive or not

Cell Variables: “alive”

Boolean (true/false) variable

Name would be
clearer as “isAlive”

10% initial likelihood of being
occupied

Cell Variables: “neighbors”

This will reference a
Collection (“Array”) that
Contains references to
each neighbor of the
current cell

Reference to the collection has an

“Array” type

Cell Variables: “nAliveAround”

This will count the number
Of neighbors around this
cell that are alive at the
current time (i.e. during
the current step)

The “type” of this variable is an
“integer”

Visual Representation of Cell
(Click on Cell Icon at Origin)

Select this item

Selects appearance
depending on
whether alive or not

Cell Update Logic
(“Agent” Properties of “Cell”)

Two Key Models of Time in
Anylogic:

Continuous (Asynchronous) Time
•This is what we have dealt with to this point
•Here, every agent is updated at a different
time, according to events
•No two agents are typically likely to be updated
at exactly the same time during most of model
execution, so when considering the state of
other agents they “see” the last situation where
the other agent has been updated

Two Key Models of Time in Anylogic:
Discrete (Synchronous) Time

•Here, agents all change in lockstep, separated by
fixed “time steps”

•When computing agent behavior (to determine
agent state in the next timestep), our enquiries about
agent state (e.g. using getAgentAtCell or
getAgentNextToMe) need to ask about the situation
in the current timestep

–We gather needed information regarding current state in
“On Before Step”, and changes are performed in “On
Step”.

•This is similar to what we saw in System Dynamics –
the changes over the next small interval of time (Δt)
depend on the current value of the stocks

–These changes are then applied at once, and all stocks
are updated

Enabling Discrete (Synchronous) Time

•When enable the steps, the various handlers for
synchronized time (e.g. “On before step”, “On
step”, “On after step”) etc.) are executed

–Both environment and agents have “On before step”
and “On after step” handlers
–“On before step” for environments is executed before
the corresponding method for agents
–“On after step” for environments is executed after
the corresponding method for agents

•Synchronous time can be enabled via the class's
“General” page

–Click checkbox “Enable steps”

Environment: Enabling Discrete Time

Notice checkmark to enable
discrete time (steps)

Cell Update Logic
(“Agent” Properties of “Cell”)

2) On Step (Acts on

Collected Information)

1) On Before Step
(collects information)

On Before Step: Collecting the
Information

2) Loops through each of the neighbors. Every time we see a
live neighbor, increment the count of alive neighbors

This records a running
count of # seen so far
(initially 0)

On Step: Performing the Update
based on Observed Information

Reminder: This is the information collected in “On
Before Step”

Here, we are updating our aliveness status (represented by
the “alive” variable) based on our current status &
characteristics of the local environment.

Obtaining the List of Neighboring
Cells at Startup

For performance reasons, this
obtains a reference to a set of
neighboring cells, and stores it in

the variable “neighbors”

Running the Model

