
Best Practices:
Technically-Related

Nathaniel Osgood

Using Modeling to Prepare for
Changing Healthcare Needs

Duke-NUS

April 16, 2014

The Challenges of Complexity

• Complexity of software development is a
major barrier to effective delivery of value

• Complexity leads to systems that are late, over
budget, and of substandard quality

• Complexity has extensive impact in both
human & technical spheres

Avoiding Debugging

• Defensive Programming

• Offensive Programming

Offensive Programming: Try to Get Broken
Program to Fail Early, Hard

• Asserts: Actually quit the program

• Fill memory allocated with illegal values

• Fill object w/illegal data just before deletion

• Set buffers at end of heap, so that overwrites
likely trigger page fault

• Setting default values to be illegal in enums

• We will talk about Assertions & Error Handling
later this week

What is an “Assertion”?

• An “Assertion” is a “sanity check” during
program execution (model simulation) to
confirm that one’s assumptions hold true

• This helps identify
– Mistaken understanding (on our or others’ part)

– Logic errors

– Inconsistencies in reasoning

Assertion Goal: Fail Early!

• Alert programmer to misplaced assumptions as
early as possible

• Benefits

– Documents assumptions

– Reduces likelihood that error will slip through

• Helps discourage “lazy” handling of only common case

• Forces developer to deal explicitly with bug before
continuing

– Reduces debugging time

– Helps improve thoroughness of tests

Assertions Regarding Coordinates

Confirming that Something Has Been
Computed Before it is Used

Checking Assumption Regarding
Computation

Avoid Side Effects in Assertions

• Because assertions may be completely
removed from the program, it is unsafe to rely
on side effects occuring in them

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Enabling Assertions in AnyLogic

Enabling Assertions in Java

• 2 ways

– Usual: Via java runtime command line

• e.g.

– Less common: via reflection (ClassLoader)

Arnold et al. The Java Programming Language, Fourth Edition. 2006.

Defensive Programming
• Naming conventions

• Formatting

• Separate
– Commands (side effects)

– Queries (pure)

• Avoid manifest constants

• Consolidate condition
checks in methods or
objects (“specification”
pattern)

• Minimize variable lifetime &
span between references

• Check return values, value
legality

• Always handle all cases (even
illegal)

• Always put in { } after if

• Beware empty catch blocks

• Use finally blocks

• Don’t reuse temporary
variables

• Initialize vars, member data as
they are declared or in
constructor

• Use pseudocode programming
process

Other suggestions

• Strive for transparent code
– Use variable name conventions
– Consistent formatting

• Strive for higher abstraction level
– Spot commonality & place into a separate function or

class
– Encapsulate repetitive actions in methods
– Move whole & partial conditionals to methods
– Consider putting body of loop in a method

• Create diverse well-named small functions
• Use enumerations

Bad Smells (Many from McConnell, Code
Complete 2.0)

• Duplicate code
• Long routine
• Deep/long if/loops
• Inconsistent interface

abstraction
• Lots of special cases
• Poor cohesion
• Too many parameters
• Single update yields changes

to many places
• Keep on creating ad-hoc

data structures/classes
• Global variables
• Primitive types

• Need to update multiple
inheritance hierarchies

• Subclasses not really
subtypes

• Related items spread
among multiple classes

• Method deals more with
other classes than its own

• Need to know
implementation of other
class

• Unclear name
• Setup & takedown code

around call

Style & Convention

• Naming Conventions

• Commenting

• Metadata (e.g. Javadocs)

• Indentation

• Module Naming

• Construct placement

• Compiler Pragma & Mechanisms

Naming Conventions
• Naming conventions are a powerful tool

• Benefits

– Reduce risk of errors

– Easier understanding of others’ code

– Easier understanding of code in future

– Lower risk of name clashes

– Easier search for desired item (e.g.
method/variable/class

Java Naming Conventions

• Distinguish Typographic & Grammatical

• Packages
– Short lowercase alphabetics (digits rare)

– Start with organization internet domain name (e.g.
ca.usask)

• Classes/interfaces
– First word of each capitalized (TagHasher)

– Avoid all but most common abbreviations

– Generally nouns/noun phrase

– Interfaces sometimes adjective

Java Naming Conventions 2

• Method & Fields

– Same as classes but first letter lowercase

– Const static fields all uppercase, “_” as separ.

– “Action” methods named with verb

– “is” for booleans

– Query: noun/noun phrase or verb w/”get” prefix

– Converters: “toX”, primitiveValue

• Local variables

– Same as members but can be short, context-dependent

Booleans

• Base name should give clear sense of
condition in question

• Use common convention to indicate boolean

– “f” prefix (e.g. fOpen)

– is prefix (e.g. isOpen)

– “?” suffix (e.g. open? – legal scheme)

• Avoid negation in names (e.g. isNotOpen)

Suggestions

• Use consistent abbreviation conventions

• Provide translation table at top of method to clearly
describe purpose of each variable

• Avoid similar names

• Be careful of similar letters

• Avoid overloading predefined names (even if
syntactically & semantically allowed)

• Avoid throwaway names for “temporary” vars

• Strive for clarity

Use Modifiers

• Use “final” (including for parameters in Java)
to prevent side-effects

– This is exposed through the Anylogic interface

– Examples

• Prevent modification to this in method

• Prevent assignment to parameter

• Declaring variables as static can prevent
needless memory use

Output to the Console

• System.err.println(String)

– System.err.println("Sent cure message to person ["
+ associatedPerson + "]");

• traceln(String)

Use in AnyLogic

Internals of AnyLogic files: XML

