
Building a Hierarchical
Metapopulation Model

Nathaniel Osgood

Using Modeling to Prepare for
Changing Healthcare Needs

Duke-NUS

April 16, 2014

Capturing Multi-Level Hierarchies:
A Frequent Modeling Need

• We frequently have hierarchies of
environments and actors

– Region/Municipalities/Neighborhoods/Individuals

– Region/Municipalities/Schools/Children

• As is widely recognized in multi-level modeling
(e.g. HLM), these hierarchies frequently exert
successive levels of influence

• Frequently these hierarchies are also
associated with their own structural and
dynamic complexities

One Example of Structural and
Dynamic Complexities

• Municipalities may be arranged in transportation
networks (road, rail, air connections)

• People may exhibit primarily contact patterns
within a given municipalities

• People may move between municipalities

AnyLogic Flexibility

• While certain AnyLogic elements are most
commonly associated with part of the project
hierarchy, we can use them in many places, e.g.

– Statecharts can be placed within “Main”

– Populations of other agents can be placed within
“Agents”

• Partly because of this flexibility, we can create
structural hierarchies in AnyLogic that parallel the
hierarchies in the world

Hands on Model Use Ahead

Load Previously Built Model:
MinimalistNetworkABMModel

Suggest Saving as “HierarchicalCityPopulationModel”

One Example

• Main contains a population of Cities

– Arranged in one type of network

• City contains a population of Persons

– Arranged in another type of network

Initial State

Copy “Person” Class
(Right Click on “Person” in “Project” Window and Choose “Copy”)

Click Right on Project Name & Choose “Paste”

Result

Rename “Person1” as “City”

Open “Main”

Click on “population”

Delete “population” (Right click & Choose

“Delete”, or Use “Edit” menu)

Click (once) on “City” and Drag into
“Main” Canvas & Drop

Result

Click on “city” in Main Canvas, set name to
“cities”, use “environment”&set replication to 10

In “Advanced” tab in “Properties” window for
“environment”, make sure that “Network Type” is

“Distance Based”, and “Connection Range” is “250”

Double-click on “City” in “Project” Window

Adding a Municipal Population
Click (once) on “Person” and Drag into “City” Canvas & Drop

Click on “person” in “City” canvas, set name to
“cityPopulation”&set replication to “uniform(10, 200)”.

Result:

In “Environment for other agents” properties of
“Properties” window for “City”, set “Network Type” to
“Scale free” and the “Width” and “Height” both to 75

Run the Model

Change the Relative Size for Cities & People
Double-Click on “City”

Expand “Project” Window Hierarchy on left under “City” to get to “oval”(Under “presentation”

Drag to Enlarge

Recenter on Origin

Model

Now Move the Origin for Placing People to
Upper Left of City

Centered View

Add a Statistic at the City Level

Add a Function the “Person” canvas. Name it
“moveToRandomCity”. Set the “General” tab

properties as follows

Set “Code” Tab for
“moveToRandomCity” as follows

Add a Function to “Person” canvas, named
“moveBetweenSpecifiedCities”. Set “General” tab properties as

follows

Code for New Function

Add an Event to the “Person” canvas.
Name it “desiringIntercityMove”

Run the Model. People Should Now
be Moving Around between the Cities

Extension 0: City-Level Variability

• Different distributions for cities

– LogMeanIncome

– LogStdDevIncome

Extension 1: Adding Name
Labels to Cities

Add “Name” Parameter to City

Establishing a Text Field (Label) for Cities

Set Dynamic “Name” Text Field Property

Establishing Collection (Array) of City Names

Setting the “Name” Parameters of
Successive Cities Upon Creation

Running

Extension 2: Extending
the Model with
Infection Spread

(Note that this does not
build on Extension 1)

Hands on Model Use Ahead

Load Previously Built Model:
“HierarchicalCityPopulationModel”

 Suggest Saving as
“HierarchicalCityPopulationModelWithInfectionSpread”

Model Upon Opening

In “Person”, add a Statechart Entry Point

Add a “Susceptible” State

Add an “Infective” State

Add a “Recovered” State

Neaten Up (as Aesthetics Require)

Add a “Recovery” Flow
Rate is 0.1 (implying mean residence time of 10)

Add “InfectionIncidence” transition

In “Agent” Properties for “Person”, Route
the message to the “infectionStatechart”

Add an “exposureTransition” to Spread Infection
(This sends an “Infection” message every time unit)

Add a Variable called “color”
This is of type “Color”, and should have initial value “Black”

Set Color for “Infective” State to Green

Set Color for “Infective” State to Red

Set Color for “Recovered” State to Gray

Set the Formula for Person’s Oval “Fill
Color” Property to be “color”

Run the Model
The Infection Spreads locally, and a bit between Cities

Add a “meanRecoveryTime”
parameter to “Person”

Set the “Recovery” Rate to the
Reciprocal of “meanRecoveryTime”

Note that need to Request up 2 levels

Note that “meanRecoveryTime” lives in

“Main”. To get a reference to “Main”, we

first have to get a reference to our

enclosing city, and from the city request

a reference to “Main”

Note that Experiments now have a
“meanRecoveryTime” parameter

Request Creation of a New Experiment

Call the new Experiment “RecoveryTime100”

For this Experiment, Assume a
“meanRecoveryTime” of 100

Click on the original Experiment (“Simulation”)
Rename it to “RecoveryTime10”

Create a 3rd Experiment, called “Baseline”

Set “Baseline” to Assume a
“meanRecoveryTime” of 200

Run the Baseline Experiment

Output from the Baseline Experiment

Set the “Stop Time” for the Final Experiment to
“500” (in the “Model Time” tab for the Properties of the experiment”)

Do the same for the “RecoveryTime10”
Experiment

Do the same for the
“RecoveryTime100” Experiment

