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Common Sources for Parameter Estimates

Surveillance data Material Adapted from

Controlled trials External Source
Outbreak data Redacted from Public PDF
Clinical reports data for Copyright Reasons

Intervention
outcomes studies

Calibration to historic
data

Expert judgement
Meta-analyses



Sensitivity Analyses

 Same relative or absolute uncertainty in
different parameters may have hugely
different effect on outcomes or decisions

* Help identify parameters that strongly affect
— Key model results
— Choice between policies

* We place more emphasis in parameter
estimation into parameters exhibiting high
sensitivity



Dealinﬁ with Data Gradients
d

e Often we don’t have reliable information on some
parameters, but do have other data

— Often have data on emergent behavior of system — doesn’t
relate to any one parameter, but a combination influences

— Some parameters may not be observable, but some closely
related observable data is available

— Sometimes the data doesn’t have the detailed breakdown
needed to specifically address one parameter
* Available data could specify sum of a bunch of flows or stocks

* Available data could specify some function of several quantities in
the model (e.g. prevalence)

 Some parameters may implicitly capture a large set of
factors not explicitly represented in model

* There are two big ways of dealing with this: manually
“backing out”, and automated calibration



Recall: Single Model Matches Many Data Sources
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“Backing Out”

* Sometimes we can manually take several
aggregate pieces of data, and use them to

collectively figure out what more detailed data
might be

* Frequently this process involves imposing some
(sometimes quite strong) assumptions

— Combining data from different epidemiological
contexts (national data used for provincial study)

— Equilibrium assumptions (e.g. assumes stock is in
equilibrium — deriving prevalence from incidence)

— Independence of factors (e.g. two different risk
factors convey independent risks)



Example

Suppose we seek to find out the sex-specific prevalence
of diabetes in some population

Suppose we know from published sources
— The breakdown of the population by sex (c,,, ¢;)
— The population-wide prevalence of diabetes (py)

— The prevalence rate ratio of diabetes in women when
compared to men (rr;)

We can “back out” the sex-specific prevalence from
these aggregate data (p, py)

Here we can do this “backing out” without imposing
assumptions



Backing Out

# male diabetics + # female diabetics = # diabetics
(p|\/|* C|\/|) T (pF* CF) = pT*(CM+CF)
* Further, we know that p. / py, =rre = pg = py *

* Thus

(p|\/|>|< C|\/|) + ((p|\/| * rrF)* CF) = pT*(C|v|+CF)
Pyt (Cy + ™ ¢e) = pr¥(cytce)
* Thus

— Pw = Prrcytce) /(e + e cp)
— P =Py e = F prt(eyter) /(e e )



Disadvantages of “Backing Out”

* Backing out often involves questionable
assumptions (independence, equilibrium, etc.)

 Sometimes a model is complex, with several
related known pieces

— Even thought we may know a lot of pieces of
information, it would be extremely complex (or
involve too many assumptions) to try to back out

several pieces simultaneously



Another Example: Joint & Marginal
Prevalence

Male

Female Prr Pmu Pr

Pr Py

Perhaps we know
*The count of people in each { Sex, Geographic } category

*Each marginal prevalence (pg, Py, Py » PE)

We need at least one more constraint (one possibility: assume pyz / Pyu = Pr/ Py )
We can then derive the prevalence in each { Sex, Geographic } category



Calibration: “Triangulating” from Diverse
Data Sources

* Calibration involves “tuning” values of less well
known parameters to best match observed data

— Often try to match against many time series or pieces of
data at once

— Idea is trying to get the software to answer the question:
“What must these (less known) parameters be in order
to explain all these different sources of data | see”

* Observed data can correspond to complex
combination of model variables, and exhibit
“emergence”

* Frequently we learn from this that our model
structure just can’t produce the patterns!



Calibration

e Calibration helps us find a reasonable
(specifics for) “dynamic hypothesis” that
explains the observed data

— Not necessarily the truth, but probably a
reasonably good guess — at the least, a consistent
guess

e Calibration helps us leverage the large
amounts of diffuse information we may have
at our disposal, but which cannot be used to
directly parameterize the model

* Calibration helps us falsify models



Calibration: A Bit of the How

e Calibration uses a (global) optimization algorithm
to try to adjust unknown parameters so that it
automatically matches an arbitrarily large set of
data

 The data (often in the form of time series)
informs the objective function of the calibration

* The optimization algorithm will run the model
many (thousands or more) times to find the
“best” match for all of the data



Required Information for Calibration
* Specification of what to match (and how much to

care about each attempted match)

— Involves an “error function” ( “penalty function”, “energy
function”) that specifies “how far off we are” for a given
run (how bad the fit is)

— Alternative: specify “payoff function” (“objective
function”)

e A statement of what parameters to vary, and over
what range to vary them (the “parameter space”)

* Characteristics of desired optimization (tuning)
algorithm

— e.g. Single starting point of search?



Envisioning “Parameter Space”

For each pointin this space, there
will be a certain “goodness of fit”
of the model to the collective data




Assessing Model “Goodness of Fit”

* To improve the “goodness of fit” of the model to

observed data, we need to provide some way of
guantifying it!

 Within the model, we

— For each historic data, calculate discrepancy of model

* Figure out absolute value of discrepancy from comparing
— Historic Data

— The model’s calculations

e Convert the above to a fractional value (dividing by historic
data)

— Sum up these discrepancy



Characteristics of a

Desirable Discrepancy Metric

Dimensionless: We wish to be able to add discrepancies
together, regardless of the domain of origin of the data

Weighted: Reflecting different pedigrees of data, we’d like to
be able to weigh some matches more highly than others

Analytic: We should be able to differentiate the function one
or more times

Concave: Two small discrepancies of size a should be
considered more desirable than having one big discrepancy of
size 2a for one, and no discrepancy at all for the other.

Symmetric: Being off by a factor of two should have the same
weight regardless of whether we are 2x or Yax

Non-negative: No discrepancy should cancel out others!
Finite: Finite inputs should yield finite discrepancies



A Good Discrepancy Function
(Assuming non-negative h & m)

Exponent ___——
>]1 = concave with respect to h-m

/ \?

w-/ h—m \Z_W. h—m
\averaW/ h+m

Division = Dimensionless 2 /
(Judging by proportional errW

Only zero if h=m=0.
Denominator is only very small if numerator is as well!




Considerations for Weighting

* Purpose of model: If we “care” more about a
match with respect to some variables, we can more
heavily weight matches for those variables

* Uncertainty in estimate: The more uncertain the
estimate of the quantity, the lower the weight

 Whether data exists: no data => weight should be
Zero



Example (Simplistic) Global
Optimization Algorithm

e Starts at random position, tries to improve match
(minimize error) by
— Adjusting parameters
— Running Model
— Recording error function

e Keeps on improving until reaches “local minimum”
in error of fit

— May add some randomness to knock out of local minima

Many more sophisticated “global optimization” algorithms are
available and can improve the outcome & speed of optimization
(e.g. genetic algorithms, swarm-based methods)



/\

Hands on Model Use Ahead

Load Sample Model:

SIR Agent Based Calibration
(Via “Sample Models” under “Help” Menu)



Recall: Optimization Experiment in AnylLogic
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An Optimization Experiment in AnyLogic
Using Built-in Difference Function
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Finding the Definition

Help - AnyLogic University

Search: [difference dataset dataset | [5] Scope: All topics
Search Results
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public static double difference(DataSet dsl,
DataSet ds2)

Difference function which 13 always not-negative and reflects difference between 2 given data sets in their common
arguments range

Parameters:
dal - data set
dsZ - data set
Returns:
square root of the average of square of difference between linearly interpolated data sets
The integration range is the intersection of argument ranges of data sets

millisecond
public double millisecond()

Beturns a time value equal to one millisecond according to the current time unit setting.

Returns:
a time value equal to one millisecond

second
public double second()
Eeturns a time value equal to one second according to the current time unit setting.

Returns:
a time value equal to one second

minute
public double minute ()

Eeturns a time value equal to one minute according to the current time vnit setting.

DataSet



An Optimization Experiment in AnyLogic
with a custom difference function
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Defining a Payoff Function
Caveat: Here, Non-Analytic, Non-Concave
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Historic Data Captured via Table Function
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Populating a Dataset with Historic Data
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Stochastics in Agent-Based Models

e Recall that ABMs typically exhibit significant
stochastics

— Event timing within & outside of agents
— Inter-agent interactions
* When calibrating an ABM, we wish to avoid

attributing a good match to a particular set of
parameter values simply due to chance

* To reliably assess fit of a given set of parameters,
we need to repeatedly run model realizations

— We can take the mean fit of these realizations



Recall: Important Distinction
(Declining Order of Aggregation)

* Experiment

— Collection of simulations

e Simulation (i.e., Scenario)

— Collection of replications that can yield findings
across set of replications (e.g. mean value)

* Replication (i.e., Realization)

— A Single realization (“run”) of the model, with a
unigue random number seed



Populating the Appropriate Datasets
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Running Calibration in AnyLogic

Calibration of SIR Agent Based Model - AnylLogic Professional
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Optimization Constraints — Tests on

Legitimacy of Parameter
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Optimization Requirements — Tests to
Sense Validity of Emergent Results
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Enabling Multiple Realizations

I

(“Replications”,”Runs”) per Iteration
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Fixed Number of Replications per Iteration

Specifies stopping Condition
once minimum replications have
been run. Indicates that the
el = o) x% confidence intervalaround the — . -=:
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Automatic Throttling of Replications Based on
Confidence Intervals for the Average of the
Differences between Best and Current
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Understanding Replications:
Report Results for Each Replication!
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Initial experiment setup:
dsInfectiousHistoric.fillFrom( InfectiousHistoric ):;
Before each experiment run:
datasetCurrentObjective.reset ()
datasetBestFeasibleCbjective.reset ()
Before simulation run:
After simulation run:
v dsInfectiousCurrent.fillFrom( root.InfectiousDS );
traceln("For this particular simulation, the difference is\t" + difference()):
After iteration:
if( getCurrentIteration() == getBestlIteration() )
dsInfectiousBest.fillFrom( dsInfectiousCurrent ):; v
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During First Several Realizations
(“Replications”, “Runs”), No Results Appear
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The built-in OptQuest optimizer is used to calibrate Historic data, best fitting and current simulation output
an agent hased model of contagious disease diffusion. 10,000
In the model each person has 3 possible states:

Susceptible, Infectious and Recovered (SIR). Inttially 8,000 4
all but few people are susceptible, and few - infectious.
A person can contact another person, and in case one
is susceptible and another - infectious, the first may

get infected with a certain probability. The objective is
to find the parameters of the agents (contact 4,000 -
frequencies and infection probabilties) so that the

output of the simulation model fits best with the 2,000
historical data - the dynamics of infectious population
(disease prevalence). As the model is stochastic, the
calibration is done under uncertainty, and simulation
replications are used. A separate 1st order Monte Carlo
experiment is included to demonstrate the output of

the agent based model.
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Output
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Average of Results for Replications is
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Considerations

Adding constraints helps increase
identifiability (selection of realistic best fit)

Adding parameters to tune leads to larger
space to explore

Adding too many parameters to tune can lead
to underdetermined situation

— Use non-dimensionalization to reduce paraeter
count

All fits are within constraints of model



Dealing with Calibration Problems:

Experiments
* Try to “outsmart” calibration
— Adopt best parameter values from calibration
— Try to adjust parameters to do better than calibration

* If is better, it may be that the parameter space is too large, or
that the range constraints are too tight

* Typically this does not do as well: Opportunity to learn
— Model not respond in the way that anticipated to parameter change
— May just shift the discrepancy from one variable to another

» Assumptions of model structure/values may not permit both
variables to simultaneously match well!

e Set very high weight on thing that want to match,
and see other matches

e Set all other weights to O (see if can possibly match)



Dealing with Calibration Problems:
Additional Experiments

Increase parameter range

Increase # of parameters

Examine impact of changed model structure
Run for larger number of optimization runs
Find other estimates for uncertain parameters



Important Cross-Checks: Uniqueness

* Are the calibration values unique? If so, good; if not,
— Do they give the same underlying interpretation?

— Do the different interpretations lead to parameters that
“trade off” in some structured way?

* Ways of addressing significantly different
Interpretations
— Collect more primary data!

— Impose additional constraints (in terms of time series,
etc.)

— Simplify model
— Find other estimates for uncertain parameters



Important Cross-Checks:
Binding Constants

* Look for calibrated parameter values that are
at the edges of their permissible ranges

— If “best” value is at the edge of the range, it may
be that even better calibrations would have been
possible if continuing in that direction

* To deal with those at the edge
— Relax constraints
— Collect more data on plausible values
— Question model structure



Capturing Parameter
Interdependencies in Calibration

* |f we want parameter B adjusted during calibration to
be at least as big as parameter A

— In vensim, we can’t enforce this constraint using the typical
calibration machinery, because the range limits for
parameters must be constants

— we can accomplish this by calibrating only parameter A, and
a parameter representing the ratio B/A.

* If we want to adjust two or more parameters such that
they still sum to 1 (e.g. fraction of initial population in
each of n or more stocks), we can adjust each of n non-
normalized weights, and then take the corresponding
normalized amount to be frac. falling in that category



Calibrating Initial Conditions

e The initial conditions can be one of the best
values to calibrate

 Sometimes need to divide a fixed population
into several stocks



Calibration & Regression:
Similarities & Differences

* Model calibration is similar to regression in that we
are seeking to find the parameter values allowing

the best match of model & data

— As in non-linear regression, for non-linear simulation
models no “closed form” solution of best parameter
values is possible = optimization is required

* A big difference:
— Regression models: the “functional form” (dependence
of model output on par’ms/indep vars) is given explicitly

— Simulation models: behavior is only implicitly specified
(e.g. via giving differentials); model output is a complex
resultant (even emergent) property of structure



