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Example Areas Where Challenging to
Make Effective Decisions
* Computer systems operation
* Corporate strategy (e.g. project launching)

* Corporate operations (e.g. ordering policy, based on
Inventory & past orders)

* Municipal planning

* Managing an industrial or power plant
* Road network planning

* Project management




Emergence

* Interaction of very simple components can lead to
surprising “emergent” dynamic patterns in the
behaviour of a given component over time

* The patterns that are seen are quite different than
what would be expected through any single
component of the system

* These often relate to variables in the underlying
system in complex ways [1 It is frequently
hon-obvious how change in one area “ripples

- through” to changes in other areas




Strengths & Weaknesses of
Reductionist Approaches

* Traditional scientific approaches have pursued a
primarily reductionist strategy

* This strategy has offered profound insights into how
mechanisms work in isolation, but limited

understanding how the connections bhetween
mechanisms combine to yield overall behaviour

* Much observed behaviour is emergent — results
from the collective interaction of a set of
- components, rather than any component in isolatio




-+ |dentifying the genes offers limite

For Example...

We understand in detail how a server, router, or network
connection works, but adding one may drastically alter the
performance of the system in unanticipated ways

Profound understanding of physiology & immune function
confers little understanding of how disease spreads

We understand well the travel of cars on a single road, but
we don’t understand how it will change traffic in the
overall road network

We know placing an order works, but are unclear how it

will affect inventories & reordering elsewhere
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cout@TRIGS BiRINSs Challenges

Misperceptions

Policy resistance

Disproportionate impact

These phenomena pose problems for

* [earning from experience: Painful & slow

* Coordinating.: Actors In 1 area of the system often have poor
sense as to how actions of actors In other areas of the
system affect them [J] risk of working at cross purposes

* DPeciding: Unclear tradeoffs between choices
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A Systems Problem

=

‘Larson, The Far Side
like we've just been going in circles.” 1982

(Cl’

ve got it, too, Omar ... a strange feeling




* Arms races

Examples of Systems Effects

Brooks Law: Adding people to a late software
project makes it later

Metcalf’'s Law: The value conferred by a network
goes up with the square of the number of nodes

Building a new road worsens congestion

Vaccinating just one more person drives a
circulating infection out of population

A “vicious cycle” involving trust leads to a
project — or relationship — breakdown

Commercial competition (€-g. 1aying fiey)



Policy Resistance: Health

Development of pathogen drug resistance
Cutting cigarette tar levels reduces cessation

Cutting cigarette nicotine levels leads to compensatory
Smoking

Targeted anti-tobacco interventions lead to equally
targeted coupon programs by tobacco industry

Charging for supplies for diabetics leads to higher overall
COSIS by Increases costs due to reduced
self-management, faster disease progression

ARVs prolong lives of HIV carriers, but lead to resurgent
HIV epidemic due to lower risk perception

Attempts to economize by understaffing ST/ clinics leads
to long treatment wait, greater risk of transmission. by
Infectives & bigger epldemics -
AntibIolic OVEerise. Worsens pathogen resistance.
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Extended Example:
Health Challenges




Choices as Seeking to “ Redirect the
Course of Change”
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Public Health as “ Redirecting the

Course of Change”
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Making Effective Choices Often
Requires Grappling with Great
Complexity

* Structural Complexity

* Dynamic Complexity




COMMUNITY

I LOCALITY
N —
Leisure
>
Transport Activity/
Facilities
Glob I t g
. alzalon Ur banization > E"efgy
mark s e Expenditure
Health I nfections %
OBESE
Development
Worksite Ol
Social Security i‘(’;’i‘\’ﬂf‘ UNDERW
v Food T
intake:
Media & > Nutrient
Media Culture density
programs i
& advertising : .
p_—— Education PITRRE T  er Ly W
H _q o

Food &
Nutrition

Food &
Activity

“Causal Web”

perspective

Slide adapted from D. Finegood  Source: see Kumanyika Ann Rev Pub Health



Map 27

———————— - __ "W Wil 1.8 - 20 Meneriiser 2008

Obesity SysemMap

Wiglghted

ﬁumme \\

SeTe b
—

http://kim. foresight.gov.uk/Obesity/Obesity.htmi Slide adapted from D. Finegood



Dynamic Complexity:
Exponential Growth & Decay
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Dynamic Complexity:

Oscillations (Damped & Otherwise)
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Dynamic Complexity:
Tipping Points
* Sufficiently fast delivery of treatment or high enough

vaccination rates can prevent an infection from
being able to establish itself

* While the components of the system are the same
(most individuals remain susceptible), the
population as a whole is protected

* [ihis “herd immunity;’ atuire of the system) as a whole,
rle)i or/rJ /nr//\//r/uri/ PIECES,




Heterogeneity in Position and
|mportance of Bridging Individuals
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TB Network Substructure
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Associated L og-Log Graph
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Persistence of Endemic Infection
IN Network “Cores’
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Spatial Patterming: Chlamydia
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Chlamydia &
Gonorrhea 1n
Manitoba
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Transmission of Bubonic Plague

In Asia
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Arrival of Bubonic Pla oue 1n Europe
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Emergence Reflects Complexity
of Underlying System

* Interactions
* Delays
* Feedbacks

* Nonlinear: Risk, cost, intervention synergies

HETErOgEREILY.



Agenda

v Motivations for complex systems approaches
* Introduction to dynamic models
* Characteristics of Agent-Based dynamic models

* Tradeoffs associated with Agent-Based models
(Time permitting)




Systems Science:
“Putting the Pieces Together”

* Systems science can help us visualize understand
Implications of connections between model
components

* A key way In which system science aids this is
through the use of simulation models

* These models are simplified representations of a
hypothesized situation that obtains in reality

* The models helpius reason anout the implications of our
Unaeersianalng, | T




Simulation Models

* Simulation models represent hypothesized causal
relationships between diverse factors

* Models provide a provide a way to examine diverse
consequences of changes in one area of the system
to the whole system

* Models help us and system actors to understand

* System vulnerabilities, leverage points
* Ways of fruitfully: changing system: structure




Simulation Models as Dynamic

* Simulation models canll_olé/ \wgl\tlt%ynamic hypotheses

concerning the causal structure underlying observed patterns

* We need to understand causal structure to understand
counterfactuals — how patterns would change if we were to
change X

* All simulation models are computational realizations of a
mathematical process

* There are many dynamic mathematical frameworks for defining
Simulation models

* All of these frameworks characterize processes




Simulation Models as
Dynamic Hypotheses

* Explaining drivers for trends or anticipating
Intervention impact requires understanding
processes underlying observables

* A model represents a hypothesis regarding the
possible causal interaction of diverse factors often
studied in isolation

* Operationally captures a hypothesis for “how. the system
works” at certain level of description

Mog

parameters: petalied assumptions 1or

el |
particular epidemiological CONtexts




Analogy:. Other Simulatorsto Improve
Performance & Lower Risk

* Pilot decision making: Flight simulators

* Climate policy: Climate simulators

* Process & power plants: Plant simulators
* Driver training: Vehicular simulators

* Street design & traffic flow regulation: Traffic
simulators

Construction coordination: Construction pProcess
SIMUIALEYS




Exploration

1C

A Metaphor for Scient




Simulation Models; Some Uses

* Make explicit mental models of causality, for
discussion and collective refinement

* Assist iIn management of complex situations

* Serve as “What if” tool for identifying desirable policies
* Cost-effective/High-leverage/Robust

* Understand trends & help make sense of interaction of diverse
Information, processes

* Prioritizing research/data collection & identifying inconsistencies
* Understanding commonalities between contexts, infection spread

* Evaluate statistical tools & study. designs
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Emergent Behavior
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Emergent Behavior: Spatial/Geographic
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Scenarios for Understanding
How Does X affect System

Total Annual TB Incidencs per 100K




Policy Formulation & Evaluation




Policy Comparison:
Stochastic Processes
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Agenda

v Motivations for complex systems approaches
v Introduction to dynamic models
* Characteristics of Agent-Based dynamic models

* Tradeoffs associated with Agent-Based models
(Time permitting)




Examples of Dynamic
Modeling Approaches

System Dynamics Models °© Agent-Based Models
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Contrasting Model Granularity
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Agent-Based Modeling

* We can capture individuals in many ways

* | view Agent based models (ABM) as a type of
Individual-based modeling that encapsulates a
given individual as a software object with

* Methods
* Properties

* Objects provide a convenient abstraction for
individuals

* Agent-based models currently require writing at
least some code in programming languages

= * We can formulate SD models wii agent-based
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Agent-Based Systems

* Agent-based model characteristics

* One or more populations composed of individual agents

* Each agent is associated with some of the following

— State (continuous or discrete e.g. age, health, smoking status,
networks, beliefs)

— Parameters (e.g. Gender, genetic composition, preference fn.)
— Rulesfor interaction (traditionally specified in general purpose
programming language)
* Embedded in an environment (typically with localized
perception)

EnRvirenRment
Emergent



Organization in ABM

* ABM adopts the organizational style of
object-oriented software engineering by clustering
together the elements of state & behavior for entities

* This facilitates convenient representation of

* Nested relationships (Individuals in nheighborhoods in
municipalities, etc.)

* Networked relationships (e.g. network of individuals, towns,
farms, firms, etc.)




Contrasting Organization in Aggregate
Stock-Fow & ABM

Aggregate Stock & flow models Agent-based modeling
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Elements of Individual State

 Example Discrete
* Ethnicity
* Gender
* Categorical Infection status
* Continuous
* Age
* Elements of body composition
* NMetabolic rate

Past exposurelto envirenmental factors




Example of Continuous Individual State
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Example of Discrete States

Binary Presence in Discrete State
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Interacting Individuals
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Irregular Spatial Embedding
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Emergent Behavior in Regular
Spatial Embedding

Susceptible: 224,273 s Infectious: 3,302 Recovered: 20,198




Aggregate & Spatial Emergence
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Emergent Behavior

* “Whole is greater than the sum of the parts”,
“Surprise behavior”

* Frequently observed in stock and flow models as
Interaction between stocks & flows

* In ABMs, we see this phenomena not only at level
of aggregate stocks & flows, but — most notably -
between agents




Matters of Scale

* It is straightforward to set up ABMs so that we have
multiple (and possibly nested) levels of context
present

* Individual person / neighborhood / school / municipality /
country

* Individual deer / herd / ecoregion / population

* Emergent behavior frequently differs strikingly by
scale

* By their nature, seme:concepts (e.g. “Prevalence”) requ:re at
2ast a certaln scale o1 analysis |




Emergent Aggregate Dynamics

Susceptible: 224,273 s Infectious: 3,302 Recovered: 20,198




Emergent Spatial Dynamics

These “waves’ of infection
by their very nature do not
appear at the individual level,
but instead are a distinctive
gpatial pattern.



A Multi-Level (Dynamic) Model
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Conclusions

Interventions affecting public health are
Interventions in a complex system

This complexity impacts intervention choice
* |dentifying “best” intervention is difficult!

Systems modeling can help assist in the judicious
choice of interventions

Multiple modeling approaches can each offer unique
perspectives onh a system

‘broadly interdisciplinary teams neip make gooa

]
MOOElNg POSSIIE




	Slide 1
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 49
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 81
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 169

