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Model Formulation 

• Model formulation elaborates on problem mapping 
to yield a fully specified, quantitative model 

• Key missing ingredients: Specifying unambiguous 
specification for  

• Statechart transitions  

• Flows (in terms of other variables) 

• Observer processes 

• Intermediate variables 

– Parameter values 

 

 



Model Specification Mechanisms 

Stock & Flow Models: 
“Hedgehog Knowledge” 

• Small modeling vocabulary 

• Power lies in combination of 
a few elements 

• Analysis conducted 
predominantly in terms of 
elements of model 
vocabulary 

Agent-Based Modeling: “Fox 
Knowledge” 

• Large  modeling vocabulary 

• Different subsets of 
vocabulary used for 
different models 

• Power in flexibility & 
combination of elements 

• Variety in analysis focus 



ABMs: Larger Model Vocabulary & Needs 

• Events 

• Multiple mechanisms for 
describing dynamics 
– State diagrams 

– Stock and flow 

– Custom update code 

• Inter-Agent communication 
(sending & receiving) 

• Multiple types of transitions 

• Diverse types of agents 

• Spatial & topological 
connectivity & patterning 

 

• Subtyping 

• Mobility & movement 

• Graphical interfaces 

• Data output mechanisms 

• Stochastics complicated 
– Scenario result interpretation 

– Calibration 

– Sensitivity analysis 

• Synchronous & 
asynchronous  distinction, 
concurrency 

 



Process Interaction & Scheduling 

• In addition to specifying the processes in isolation, 
try to describe process interaction e.g.  

– A transmission process is not triggered until a person is 
sexually active 

– All reporting takes place at the very end of the day, and 
is done before resetting reporting counters 

– All agents first note the status of the agents around 
them, and only then perform updates to location 

• Ask yourself on what other processes a given 
process depends 

 

 

 



Concurrency 

• Two or more processes may be operating 
concurrently (“in parallel”) 

– e.g.: Operation of different agents, agents & 
reporting processes, graphical interface & model 



Dependencies: Synchronous vs. 
Asynchronous  

• Suppose process A depends on information 
produced by process B 

– e.g. depends on knowing something produced via B 

• Synchronous processes:  Applied sequentially, so 
that A must wait for B to proceed (e.g. A calls B) 

• Asynchronous processes: No “blocking” (waiting) by 
A for B (e.g. B sends a message to A) 

– In agent-based modeling, most interactions between 
agents are considered asynchronous => inter-agent 
communication is accomplished via asynch. messaging 

 



ODD: 3 Broad Components 

• Overview: model goals & high level scope & 
design 

• Design concepts: Different aspects of design 
being considered 

• Remaining elements 

 



ODD Design Concepts to  
Consciously Consider 

• Origin & character of basic principles underlying model 

• Emergence: To what degree are results pre-programmed vs. 
arising naturally out of a myriad of interactions 

• Adaptation: How does system evolution lead to entity 
behavior change? 

• Sensing:  What information do entities retrieve from world? 

• Objectives: Any goal seeking behavior? How interacts w/state? 

• Learning: How does experience drive change in strategies? 

• Prediction: How do entities anticipate the future? 

• Interaction: How do entities interact directly & indirectly? 

• Stochastics: Character of & motivation for stochastic effects  

• Observation: What information & associated processes are 
required for operational use or for testing & confidence bldg 



Sensing 
• Information sensed from other agents & 

environments is key to adaptation & decisions 

• Need to consider what is sensed 

• May want to capture fact that entity perception is 

– Localized (e.g. risk perception, cf decision making with 
driver’s view of road compared to with perfect 
knowledge of traffic flows across city) 

– Error prone 

– Delayed 

– This can fundamentally alter dynamics:  e.g.  

• Instability: Fragility of “Tit for Tat” to misunderstandings 

• Negative feedback: Sensing to correct driving path 



Emergence 
• To what degree are the results directly captured by 

assumptions? (i.e. to what degree are we 
presupposing what we are trying to demonstrate?) 

• One ABM viewpoint: Until we can robustly generate 
a phenomenon, we don’t really understand it 

• To what degree to results emerge from complex 
interaction of other factors where the behavior of 
interest is never itself described in any way 
– This is ideally what is sought  

• it allows more of a real explanation 
• Permits greater generality (anticipating system behavior under 

unobserved situations) 

– e.g. waves of infection in spatial SIR model 
– In CWD Model: Clustering of prions along  

• the lakeshore margin 
• High traffic cooridors 



Emergent Behavior: Spatial/Geographic 

 



A Multi-Level (Dynamic) Model 



Adaptation 

• How does agent behavior exhibited depend on the  
– Local or global environment 
– Surrounding agents 

• To what degree is agent behavior fixed based on 
predefined rules (just playing out to understand 
collective effect of rules themselves) vs. potential for 
emergence associated with inter-agent or agent-
environment behavioral interaction, which often leads 
to correspondingly richer emergent behavior 
– Note that can still have inter-agent emergence without 

adaptation -- e.g. in an infection spread model.  But the 
presence of adaptation means that the feedbacks and 
emergent phenomena can be that much richer 

 



How Does Behavior Depend on 
Context? 

• We have great flexibility in representing agent rules 

• Some agents may be consciously objective seeking 

• Just reproducing statistical patterns (likelihood changes 
in tobacco use over time) 
– Limited generality under counter-factuals 

• Examples of ways might depend on context 
– Behavior change due to risk perception 

– Moving to a new neighborhood or hunting/gathering ground 

– Remembering insults  and changing strategies (e.g. to defect) 
with respect to a neighbor in a connection matrix 

– By acquiring new memes or information from a neighbor 

 

 



Incorporating Observed Patterns: 3 Ways 
• Building patterns directly into model (likelihood of 

state transitions , mixing matrix per observations) 
– e.g. Fraction of time spent in different states (foraging, 

new lake margin, near grain bins) 

– E.g. fraction of time spends with different groups 

• Building functional dependence of actions on 
external conditions into the model 
– E.g. mixing matrix as a function of a preference matrix 

and current population demographics 

• Calibrating or validating to patterns  
– Making patterns emerge from lower-level “mechanics”/ 

“physics” of model 
• e.g.  Contacts (or contact networks) emerge from myriad close-

proximity spatial interactions between mobile individuals 



Observed Patterns as Emergent 

• Ideally, we seek to make patterns emerge from lower-level 
“mechanics”/ “physics” of model 
– e.g. seasonal herd size emerging naturally from grouping rules in CWD 

model 

• With adaptation, particularly focusing on dependence of 
behavioral patterns of an individual on context 

– How do varying circumstances change agent 
behavior? 



Example of Observed Patterns as 
Emerging from Low-Level Interactions 

• Lower food availability => Higher amount of time spent 
searching for food 

• Higher prevalence of Gonorrhea among acquaintances => 
greater adherence to safer sex practices 

• Higher reports of H1N1 infection or vaccination among social 
contacts => higher chance of getting vaccinated 

• Higher risks from diabetes over age as emerging naturally 
from cumulative damage by glycosylation, etc. 

• Greater smoking-related health complaints & sickness in 
peers with age => Greater likelihood of quitting with age 

• Progression of substance abuse caused by underlying organic 
processes 

• Longer infectious period, greater infection severity (peak 
viremia level), greater transmissibility for individuals with 
impaired immune functioning emerging from immune repr. 

• Higher temperature => greater water seeking 



One Kind of Adaptation:  Objective 
Seeking Behavior 

• Here, an entity’s behavior will depend on trying to 
maximize some satisfaction criteria 
– Examples of measures: Profit, Utility 

– Example application:  Vehicle simulators using where 
driving behavior depends on consideration of perceived 
tradeoffs ($, time, familiarity, etc.) of different routes 

• How does this vary based on agent’s state (e.g. 
access to resources) or environments 

• Bounded rationality: For individuals, strong 
literature suggests that many decisions are based 
instead on heuristics 

 



Learning: Changing Adaptive 
Behavioral Rules Based on Experience 
• ABMs can support arbitrarily rich learning that 

may change adaptive behavior 
– Learning from experience in particular healthcare 

facilities 
– Trust of different parties based on  

• Direct:  Treatment received 
• Indirect: Consistency of observations with claims of other 

party 

• In some cases, this  is performed using genetic 
programming (rules mutate and evolve) 

• As a longitudinal phenomenon -- one that 
involves history -- support of learning & memory  
is a key advantage offered by ABM 



Interaction 
• Interaction among entities 

– Agent-agent 

– Agent-environment 

• Forms 

– Direct:  Agents directly  interact with neighbors (e.g. via 
needle sharing or sexual contact) 

– Indirect:  e.g. Via shared resource (depletion of 
vegetation for browsing by other deer, deposit of 
droplets with shedded pathogen on surface, or air), via 
risk perception 

• How mediated by space & time?  (e.g. transmission 
range of pathogen, seasonal contact dependence?) 

 



Object Diagram 
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UML Sequence Diagram 
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Collectives 
• Groupings are a common multi-scale feature 

– Herd, Family, Class, Office 

• More than the sum of the parts:   
– Can have significant impact on agent perception or 

behavior 

– Agent may relocate to join new collective 

• Common possibilities 
– Purely emergent phenomenon (e.g. herds in CWD 

example model): Not reified as agent 
• Sometimes epiphenomenal – no influence, but instead 

something that can be used for understanding & analysis 

• Sometimes has very material impact on system behavior 

– Reification as agent (e.g. hierarchical SIR model, gang) 
• Collective can then have own processes & state (e.g. history) 



A Multi-Level (Dynamic) Model 



Observer Processes 
• With an agent-based model, it is often key to have 

access to many “views” of the model in operation 

– These can aid in validation (calibration,  confidence 
building) and verification (testing), interpretation,  
results 

• The data collected by such observers is typically 
epiphenomenal – it does not influence the model 

• Often there is a significant amount of mechanism & 
computational effort involved in realizing these 

• Detail complexity: significant investment is often 
further made in visualization interfaces 



ODD: 3 Broad Components 

• Overview: model goals & high level scope & 
design 

• Design concepts: Different aspects of design 
being considered 

• Details (Remaining elements) 

 



ODD: Remaining Elements 
• Initialization 

– Where does initial state come from?  Are seeking to make 
independent of initial state?  To test significance of initial 
state? 

• Input data 
– Time series used for model (I think best put in entitiy 

specification) 

• Submodels: Useful abstractions 
– Helpful todescribe early on with broad abstractions (e.g. 

“partner change”, “go to drink”, “find food”, “stay near 
mother”  
• Full specification of these are delegated to submodels 

– Seeking low coupling, high cohesion 



Sources for Parameter Estimates 

• Surveillance data 

• Controlled trials 

• Outbreak data 

• Clinical reports data 

• Intervention  
outcomes studies 

• Calibration to historic 
data 

• Expert judgement 

• Systematic reviews 

 

 

Anderson & May 



Introduction of Parameter Estimates 

 

Age 

Cumulative Cigarettes Smoked 

Weight 

These parameters must have 
constants specified 
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Calibration 

• Often we don’t have reliable information on some 
parameters 
– Some parameters may not even be observable! 

• Some parameters may implicitly capture a large set 
of factors not explicitly represented in model 

• Often we will calibrate less well known parameters 
to match observed data 
– “Analytic triangulation”:  Often try to match against 

many time series or pieces of data at once 

• Sometimes we learn from this that our model 
structure just can’t produce the patterns! 



Calibration: “Triangulating” from Diverse 
Data Sources 

• Calibration involves “tuning” values of less well 
known parameters to best match observed data 
– Often try to match against many time series or pieces of 

data at once 

– Idea is trying to get the software to answer the question:  
“What must these (less known) parameters be in order 
to explain all these different sources of data I see” 

• Observed data can correspond to complex 
combination of model variables, and exhibit 
“emergence” 

• Frequently we learn from this that our model 
structure just can’t produce the patterns! 

 



Calibration 
• Calibration helps us find a reasonable 

(specifics for)  “dynamic hypothesis” that 
explains the observed data 

– Not necessarily the truth, but probably a 
reasonably good guess – at the least, a consistent 
guess 

• Calibration helps us leverage the large 
amounts of diffuse information we may have 
at our disposal, but which cannot be used to 
directly parameterize the model 

• Calibration helps us falsify models 

 



Single Model Matches Many Data Sources 

 

one of  



The Pieces of the Elephant 
Example Model of Underlying Process&Time Series it Must Match 

 

 

Here, we are totalling up across the population 



Required Information for Calibration 

• Specification of what to match (and how much to 
care about each attempted match) 
– Involves an “error function” ( “penalty function”, “energy 

function”) that specifies “how far off we are” for a given 
run (how good the fit is) 

– Alternative: specify “payoff function” (“objective 
function”) 

• A statement of what parameters to vary, and over 
what range to vary them (the “parameter space”) 

• Characteristics of desired tuning algorithm  
– Single starting point of search? 

 



Envisioning “Parameter Space” 

 

β 

μ 

τ 

For each point in this space, there 

will be a certain “goodness of fit” 

of the model to the collective data 

 



Stochastics in Agent-Based Models 
• Recall that ABMs typically exhibit significant stochastics 

– Event timing within & outside of agents 

– Inter-agent interactions 

• Can have a pronounced impact on system evolution 

• Such stochastics can account for observed patterns that 
are otherwise hard to explain 

• When calibrating an ABM, we wish to avoid attributing 
a good match to a particular set of parameter values 
simply due to chance  

• To reliably assess fit of a given set of parameters, we 
need to repeatedly run model realizations 
– We can take the mean fit of these realizations 

• Often best to match not time series, but summaries 

 
 



Examples of Stochastics (Compared to 
Mean Field Deterministic Model) 
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Units & Dimensions 

• Distance 

– Dimension: Length 

– Units: Meters/Fathoms/Li/Parsecs 

• Frequency (Growth Rate, etc.) 

– Dimension:1/Time 

– Units: 1/Year, 1/sec, etc. 

• Fractions 

– Dimension: “Dimensionless” (“Unit”, 1) 

– Units: 1 

 



Dimensional Analysis 

• DA exploits structure of dimensional quantities to 
facilitate insight into the external world 

• Uses 
– Cross-checking dimensional homogeneity of model 

– Deducing form of conjectured relationship 

    (including showing independence of particular factors) 

– Sanity check on validation of closed-form model analysis 

– Checks on simulation results 

– Derivation of scaling laws 

* Construction of scale models 

– Reducing dimensionality of model calibration, parameter 
estimation 

 

 

 



Uncertainty Analyses 

• Same relative or absolute uncertainty in 
different parameters may have hugely 
different effect on outcomes or decisions 

• Help identify parameters that strongly affect 
– Key model results 

– Choice between policies 

• We place more emphasis in parameter 
estimation into parameters exhibiting high 
sensitivity 

 



Uncertainty Analysis: Initial Value  

• Frequently we don’t know the exact state of 
the system at a certain point in time 

• A very useful type of sensitivity analysis is to 
vary the initial value of model stocks 

• In Vensim, this can be accomplished by  

– Indicating a parameter name within the “initial 
value” area for a stock 

– Varying the parameter value 

 



Robustness Analysis 
• To what degree are model conclusions robust 

under changing model structural and other large 
assumptions? 
– Distinguish cases where  

• Results depends on something essential about the model 
• Results depend on happenstance of simplifying assumptions 

– e.g. spatial neighborhood assumption, size or granularity of 
space, convenient assumptions regarding rules or what is known 

• We want to rule out cases where getting “right 
result for wrong reasons”! 

• Seek to find whether conclusions change radically 
when just a few assumptions are changed? 

• Process is similar to what used for submodel 
testing, but done for entire model 

 
 
 

 



Imposing a Probability Distribution 
Monte Carlo Analysis 

• We feed in probability distributions to reflect our 
uncertainty about one or more parameters 

• The model is run many, many times (realizations) 

– For each realization, the model uses a different draw 
from those probability distribution 

• What emerges is resulting probability 
distribution for model outputs 

 



Example Resulting Distribution 

  

Empirical Fractiles 



Impact on cost of uncertainty regarding mortality and medical costs 
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Static Uncertainty 



Dynamic Uncertainty:  
Stochastic Processes 

 

This is a form of  sensitivity analysis, but because we are capturing  
effects of model  stochastics – rather than our lack of knowledge, we  
don’t term “uncertainty analysis” 



Dynamic Uncertainty:  
Stochastic Processes 

 



Mathematical Analysis of Models 

 
System Linearization (Jacobian) 

Fixed-Point Criteria 

Eigenvalues (e.g. for stability analysis around fixed-point) 
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Example: Simple SITS Model 

S I T
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Per infected contact

infection rate
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New Illness
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Recovery Delay
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R 

 

c 

 

 

per Month 



Associated System of State Equations 
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Scenario Results (Means) 

 



Variability in Results  
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Key Take-Home Messages from this Lecture 
• Models express dynamic hypotheses about 

processes underlying observed behavior 

• Frequently observed behavior is “emergent” – it is 
qualitatively different than the behavior of any one 
piece of the system, or a simple combination of 
behavior of those pieces 

• Models help understanding how diverse pieces of 
system work together  

• ABM focus on agent interactions as the 
fundamental shapers of dynamics 

• Models are specific to purpose 
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