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Recall: Heterogeneity in Contact Rates 

 

Schneeberger et al., Scale-Free Networks and Sexually Transmitted Diseases:  
A Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe 
, Sexually Transmitted Diseases, June 2004, Volume 31, Issue 6, pp 380-387 



Associated Log-Log Graph 

 

Schneeberger et al., Scale-Free Networks and Sexually Transmitted Diseases:  
A Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe 
, Sexually Transmitted Diseases, June 2004, Volume 31, Issue 6, pp 380-387 



Heterogeneity in Contact Rates 

 
This may significantly affect the spread of infection in the population! 

Schneeberger et al., Scale-Free Networks and Sexually Transmitted Diseases:  
A Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe 
, Sexually Transmitted Diseases, June 2004, Volume 31, Issue 6, pp 380-387 



Intuitive Plausibility of  
Importance of Heterogeneity 

• Someone with high # of partners is both 
– More likely to be infected by a partners 

– More likely to pass on the infection to another person 

• Via targeted interventions on high contact people, 
may be able to achieve great “bang for the buck” 

• We may see very different infection rates in high 
contact-rate individuals 

 

• How to modify classic equations to account for 
heterogeneity?  How affects infection spread? 

 



Recall: Classic Infection Term 

 

 

 

 

• Xs are susceptibles, Ys are infectives 

• c is contacts per unit time 

• β is chance a given contact between an infective 
and a susceptible will transmit infection 
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Key Step: Disaggregate by Contact Rate 

• We break the population up in to groups 
according to their rate of contacts 

• xi and yi are susceptibles, infectives who 
contact i other people per unit time 

– X is divided into x0, x1, … 

– Y is divided into y0, y1, … 

 

 



First Attempt 

 

 

 

• Here we are capturing the higher levels of risk for 
someone of activity class i as i increases (due to 
higher contact rates) 

• Problem:  
– We are assuming that our i contacts are equally 

spread among other people – in fact, they are skewed 
towards others with a high # of contacts! 

– People with high #s of contacts are more likely to be 
infected 
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This rate of contact used to  
be a single constant (c), but  
now we’ve captured the  
Heterogeneity in rates! This is the total number of 

Infected people 



Revised Formulation 

 

 

 

• xi and yi are susceptibles, infectives who contact i 
other people per unit time 

• The fraction indicates fraction of contacts in the 
population that are with an infective person 

– i times this is the rate of contacts with infectives per 
unit time experienced by a susceptible in class i  

 

 

1

1

j

j j

i i

j

j

jy
y

y i x
D

jN











 
 
  
 
 
 





This is the total number of 
contacts per unit time made 
by infectives!  

This is the total number of 
contacts per unit time made 
by the entire population.  



Force of Infection 
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 will only grow if y grows! 



Reformulated Equation 

 

 

• This is exactly like the normal SIR system, with 
X = 1,c= 

 

• R0 is  
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Reformulating in More Familiar Terms 
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R0 rises proportional to the sum of the mean rate  
of contact and the ratio of the variance in that rate 
to that mean 
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Scale-Free Networks 

 

Albert, Jeong and Barabási, Nature 406, 378-382(27 July 2000) 



Scale-Free Networks 

• A node’s number of connections (a person’s # of 
contacts) is denoted k 

• The chance of having k partners is proportional to k-

.  

• For human sexual networks,  is between 2 and 3.5 

– E.g. if =2, likelihood having 2 partner is proportional to 
¼, of having 3 is proportional to 1/9, etc. 

• NB: It appears that AnyLogic’s algorithm (from 
Barabasi & Albert Science 1999) imposes a  of ~3 

 



Power Law Scaling 

• This frequency distribution is a “power law” that 
exhibits invariance to scale 

• Suppose we “zoom in” in terms of x by a factor of α 
Cf:   p(x)=cx-γ 

        p(αx)=c(αx)-γ=cα-γx-γ =α-γcx-γ =dp(x) 

In other words, the function p(x) “looks the same” at any 
scale – it is just multiplied by a different constant 

• We can get power law scaling from many sources; 
a key source is dimensional structure 

• Power law probability distributions have “long 
tails” compared to e.g. an exponential or normal 
 

 



Recall: Power Law Scaling & Log-Log 
Graphs 

• y=xa 

• log y = a log x 

• If x is negative, have something like 
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The Signature of a Power Law 

• Plotting a power law function on a log-log plot 
will yield a straight line 

• Cf: p(x)=cx-γ=>log p(x)=c-γlog x 

• This relates to the fact that the impact of scaling 
(scaling) is always the identical (divides the 
function by the same quantity) 

– e.g. if γ=2, doubling x always divides p(x) by 4  (no 
matter what x is!) 

– e.g. if γ=3, doubling x always divides p(x) by 8 

 

 

 



Power Law Scaling 

• This frequency distribution is a “power law” that 
exhibits invariance to scale 

• Suppose we change our scale (“zoom out”) in terms of 
number of connections (k) by a factor of α 
Cf:   p(k)=ck-γ 

        p(αk)=c(αk)-γ=cα-γk-γ =α-γck-γ =dp(k) 

In other words, the function p(k) “looks the same” at any 
scale – it “zooming out” on the scale of # of connections by 
factor  just leads it to be multiplied by a different constant 

• We can get power law scaling from many sources; a 
key source is dimensional structure 

• Power law probability distributions have “long tails” 
compared to e.g. an exponential or normal 
 

 



The Signature of a Power Law 
• Plotting a power law function on a log-log plot will 

yield a straight line 

– This reflects fact that p(k)=ck-γ=>log[p(k)]=c-γlog [k] 

– So if our axes are v=log[p(k)] and h=log[k], v=c-γh 

• This relates to the fact that the impact of scaling 
(scaling) is always the identical (divides the function 
by the same quantity) 

– e.g. if γ=2, doubling k always divides p(k) by 4  (no 
matter what k is!) 

•  4 times as many people with n connections as with 2n 
connections – no matter how big n is 

– e.g. if γ=3, doubling k always divides p(k) by 8 

 

 

 



Recall: Heterogeneity in Contact Rates 

 

Schneeberger et al., Scale-Free Networks and Sexually Transmitted Diseases:  
A Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe 
, Sexually Transmitted Diseases, June 2004, Volume 31, Issue 6, pp 380-387 



Associated Log-Log Graph 

 

Schneeberger et al., Scale-Free Networks and Sexually Transmitted Diseases:  
A Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe 
, Sexually Transmitted Diseases, June 2004, Volume 31, Issue 6, pp 380-387 



Deriving the Probability Distribution 
Function For Scale-Free Networks 

 

 

 

• PDF is  
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Mean 

• Mean 

 

 

• Variance 

 

 

 

                Only valid if >3! 
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Variance of Human Scale-Free 
Networks 

• For <3, the variance of the degree distribution for an 
infinitely large population is infinite! (dies off too slow) 

• Recall: 

 

 

 

• Implications 
– For a Poisson network, 2=m and c barely increases 

– For a scale free network with a sufficiently large population, 
R0 will always be >1! 
• The disease will not die out, even if most people have low # 

partners! 
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