Sensitivity Analysis

Nathaniel Osgood Using Modeling to Prepare for Changing Healthcare Needs Duke-NUS April 16, 2014

Types of Sensitivity Analyses

- Variables involved
 - One-way
 - Multi-way
- Type of component being varied
 - Parameter sensitivity analysis: Parameter values
 - Structural sensitivity analysis: Examine effects of model *structure* on results

- Type of variation
 - Single alternative values
 - Monte Carlo analyses:
 Draws from probability distributions (many types of variations)
- Frequency of variation
 - Static (parameter retains value all through simulation)
 - Ongoing change: Stochastic process
 - Accomplished via Monte-Carlo analyses
 - Key for DES & ABM

Model Uncertainty

- Here, we are frequently examining the impact of changing
 - Our assumptions about "how the system works"
 - Our decision of how to abstract the system behaviour
- Structural sensitivity analyses
 - Vary structure of model & see impact on
 - Results
 - Tradeoffs between choices
 - Frequently recalibrate the model in this process
- Here, we are considering uncertainty about how the current state is mapped to the next state

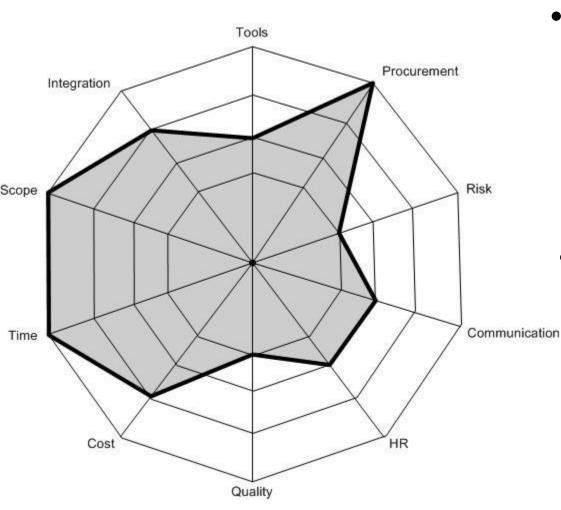
Predictor-Corrector Methods: Dealing with an Incomplete Model

- Some approaches (e.g. Kalman filter, Particle Filter) are motivated by awareness that models are incomplete
- Such approaches try to adjust model state estimates on an ongoing basis,
 - Given uncertainty about model predictions
 - New observations
- Assumption here is that the error in the model is defined by some probability distribution

Static Uncertainty Sensitivity Analyses

- In variation, one can seek to investigate different
 - Assumptions
 - Policies
- Same relative or absolute uncertainty in different parameters may have hugely different effect on outcomes or decisions
- Help identify parameters/initial states that strongly affect
 - Key model results
 - Choice between policies
- We place more emphasis in parameter estimation & interventions into parameters exhibiting high sensitivity

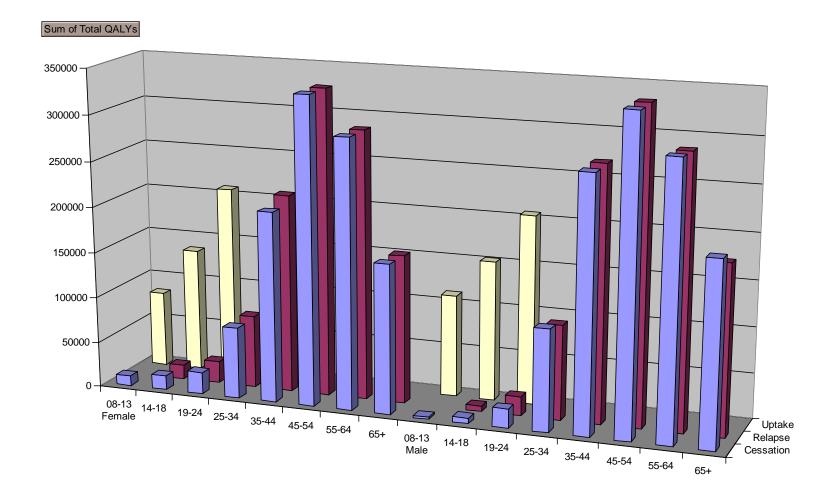
Spider Diagram



- Each axis represents a % change in a particular parameter
 - This proportional change is identical for the different parameters
- The distance assumed by the curve along that axis
 represents the magnitude of response to that change
 - Note that these sensitivities will depend on the state of system!

http://www.niwotridge.com/images/BLOGImages/SpiderDiagram.jpg

Systematic Examination of Policies

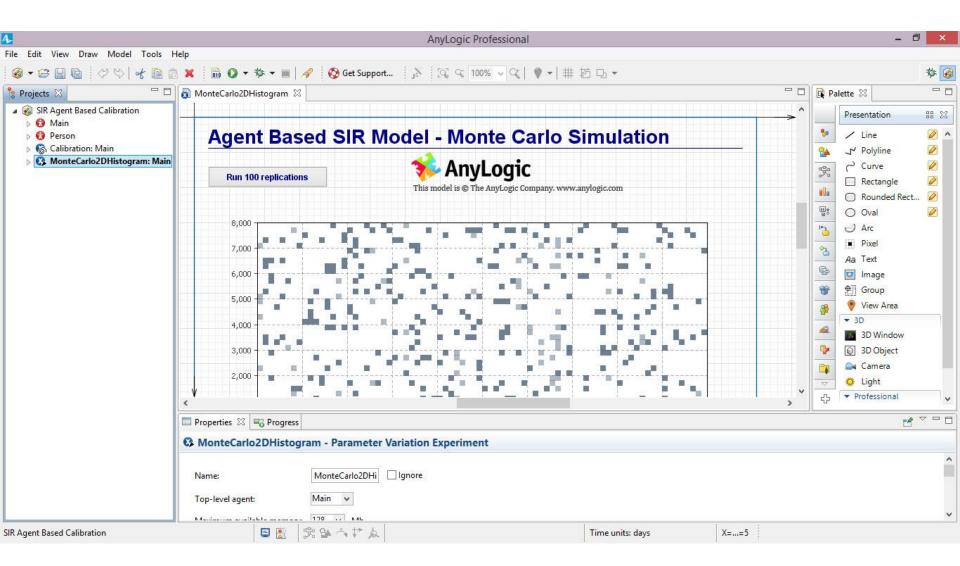


Tengs, Osgood, Lin

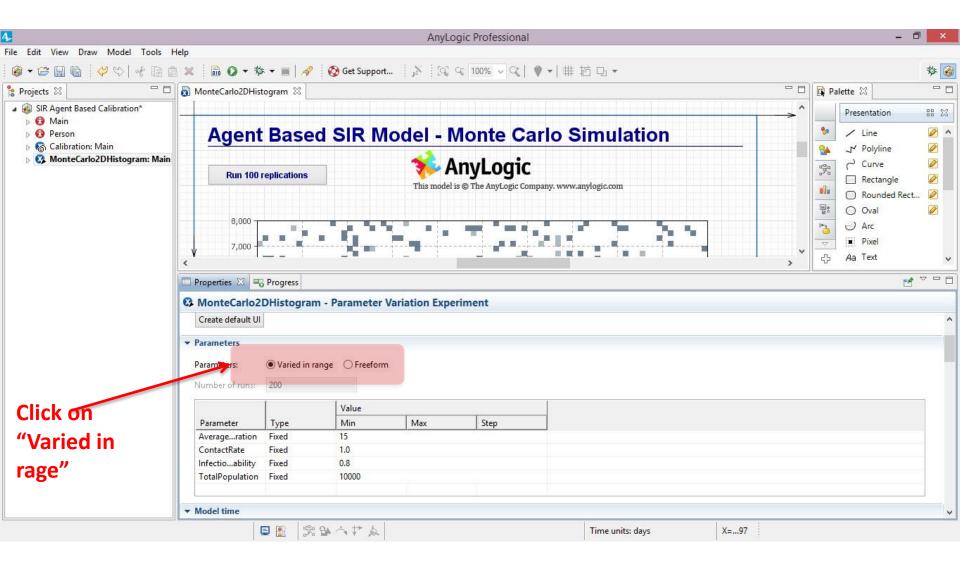
Load Sample Model: SIR Agent Based Calibration

(Via "Example Models" under "Help" Menu) Click on "MonteCarlo2DHistogram" Experiment

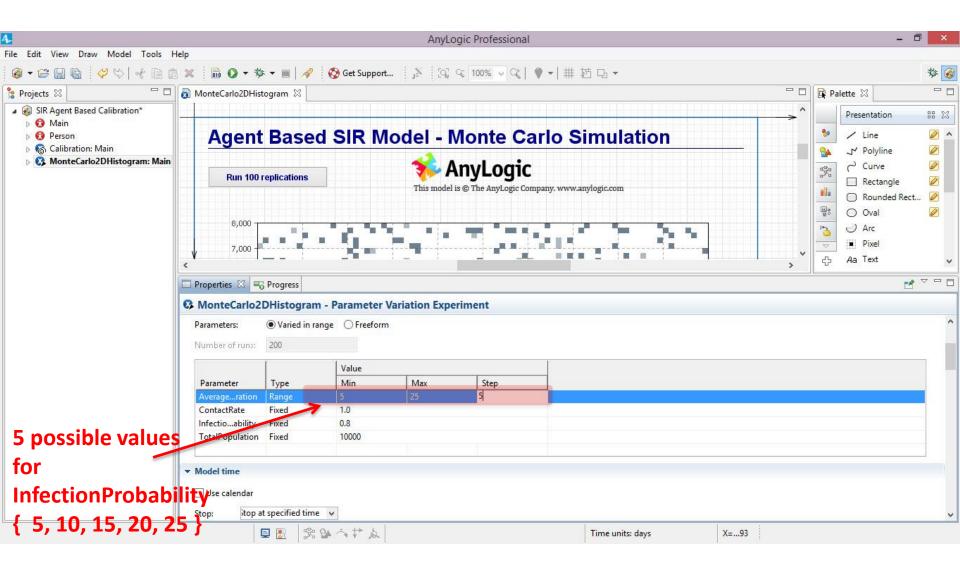
Setting Ranges for Parameter Variation Can Handle 1-Way or (Orthogonal) Multi-Way



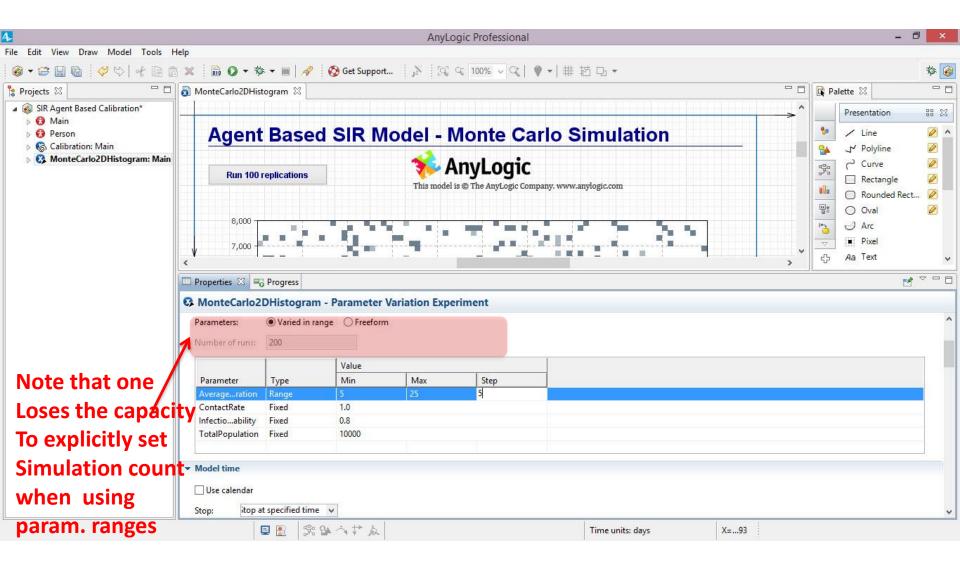
Indicating to Systematically Vary "AverageIllnessDuration"



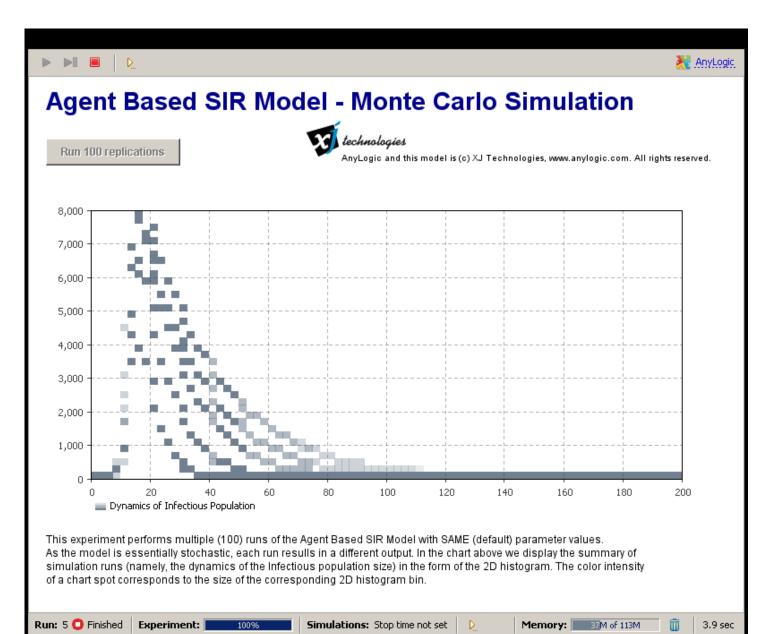
Entering Extremes & Step of the Variation



Note: Simulation Count is Defined Implicitly



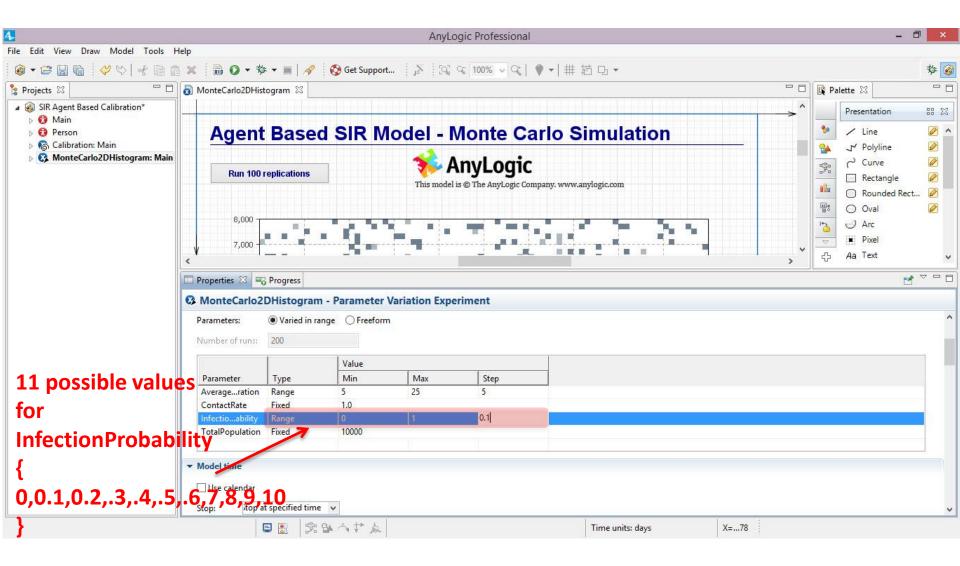
"1 Way" Sensitivity Exploration in AnyLogic



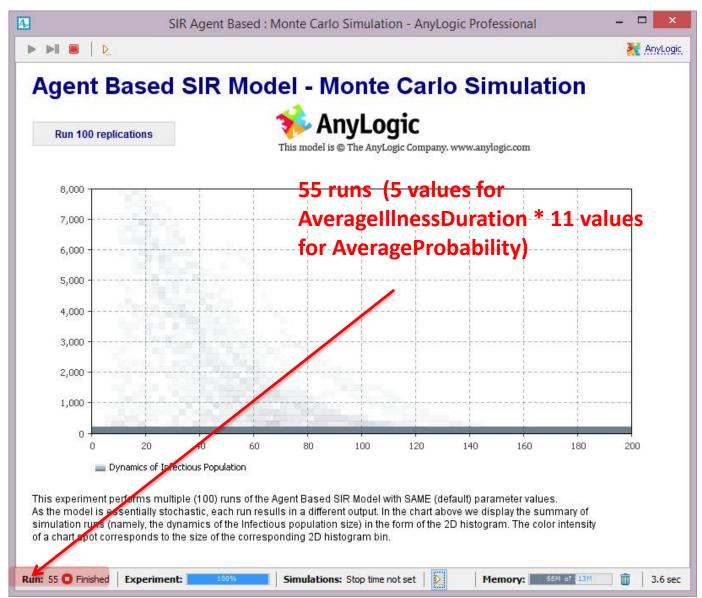
Multi-Way Sensitivity Analyses

- When examining the results of changing multiple variables, need to consider how multiple variables vary together
- If this covariation reflects dependence on some underlying factor, may be able to simulate uncertainty in underlying factor

Set Range for InfectionProbability



Resulting Output



Challenge: Combinatorial Explosion

- If we have *n* distinct parameters, each varying over *c* values, we have *cⁿ* possible combinations of parameter values
- As c and (far more important) n rise, it quickly becomes infeasible to exhaustively examine such combinations
- Alternatives
 - Dimensional analysis
 - Techniques for judiciously selecting combinations count
 - Monte Carlo techniques

Challenge: Combinatorial Explosion

- If we have *n* distinct parameters, each varying over *c* values, we have *cⁿ* possible combinations of parameter values
- As c and (far more important) n rise, it quickly becomes infeasible to exhaustively examine such combinations
- Alternatives
 - Dimensional analysis
 - Techniques for judiciously selecting combinations count
 - Monte Carlo techniques

Dimensional Analysis

- Observation: Often it is not a parameter in isolation that matters, but combinations of parameters
 - Ratio of two parameters (speed of infection spread vs. speed of intervention)
 - Multiplication of two parameters (β c)
- Dimensional analysis techniques exploit the reflection that our choice of units has no impact on how the world operates to recognize that a process must be governed by **dimensionless quantities**
- We can typically reduce the parameter count by
 - Determining dimensions associated w/model quantities
 - Determining a set of dimensionless quantities

Challenge: Combinatorial Explosion

- If we have *n* distinct parameters, each varying over *c* values, we have *cⁿ* possible combinations of parameter values
- As c and (far more important) n rise, it quickly becomes infeasible to exhaustively examine such combinations
- Alternatives
 - Dimensional analysis
 - Techniques for judiciously selecting combinations count
 - Monte Carlo techniques

Judiciously Selecting Set of Parameter Combinations Being Examined: Discrete • Latin hypercubes

- Test each value of each parameter at least once
- i.e. for each possible value of a given parameter p, we are guaranteed to explore at least one parameter vector where parameter p holds that value
- Orthogonal arrays
 - Test each pair of parameter values at least once
 - i.e. for each possible pair of values of given parameters p_1 and p_2 , we are guaranteed to explore at least one parameter vector where parameters p_1 and p_2 hold those values

Latin Squares

- Each value (or equivalence class) of each field occurs exactly once
- This is a "minimal set" that exercises all values (equivalence classes) of each field

http://en.wikipedia.org/wiki/File:Fisher-stainedglass-gonville-caius.jpg#filelinks

- Orthogonal Arrays ("Pair-wise Testing", "All Pairs Testing")
 Key characteristic: Every *pair* of variable values occurs at least once (but not all combinations!)
 NB:contrast with Latin Squares, where every value is tried
- Exploits fact that *compatibility* problems typically are pairwise
 - If problem is not revealed in just by single value or equivalence class, it is likely to by no more than a *pair*
- The count of all combinations of values would typically be vastly larger
 - All Combinations: $\prod_{i=1}^{n} |X_i|$ Rises as least as 2^n
 - Pairwise: $\max(|X_i|) \max_{j,j \neq i} (|X_j|)$ (?)
- => we can do much less work than required for all combinations. but still secure most of value!

Example Case Reduction

S.No	Parameters and Values	100% coverage	reduced to
1	3 ² 2 ² 1 ¹	36	9
2	$10^4 7^4 8^3 6^2 3^2 5^2 4^2 9^1$	14338695168000000	144
3	10 ¹⁵	1000000000000000	199
4	10 ⁵ 5 ⁶ 3 ⁵ 2 ⁵	243000000000	142
5	3 ³ 4 ² 5 ² 6 ² 7 ¹ 8 ² 10 ¹ 9 ¹	15676416000	96

From http://www.testersdesk.com/pairwse_testersdesk.html

Judiciously Selecting Set of Parameter Combinations Being Examined: Continuous

- Grid
- Grid adaptation of
 - Latin Hypercube
 - Orthogonal array
- While not directly sampled by AnyLogic, these can be easily implemented by
 - Creating vectors of the appropriate values to use successively for a given parameter value
 - For a given iteration, finding the appropriate value for a particular parameter by indexing into the vector for that parameter

Challenge: Combinatorial Explosion

- If we have *n* distinct parameters, each varying over *c* values, we have *cⁿ* possible combinations of parameter values
- As c and (far more important) n rise, it quickly becomes infeasible to exhaustively examine such combinations
- Alternatives
 - Dimensional analysis
 - Techniques for judiciously selecting combinations count
 - Monte Carlo techniques

Imposing a Probability Distribution Monte Carlo Analysis

- We feed in probability distributions to reflect our uncertainty about one or more parameters
- The model is run many, many times (realizations)
 - For each realization, the model uses a different draw from those probability distribution
- What emerges is resulting probability distribution for model outputs

Monte Carlo Techniques (Continuous Parameters)

- For a given amount of computational effort, Monte Carlo techniques typically exhibit far more favourable properties as the count of dimensions rises than does downsampling the grid of values
- Effort Scaling Grid: $\theta\left(\prod_{i=1}^{D} d_i\right)$

- Monte Carlo: $\theta(N)$ (N: count of Monte Carlo samples)

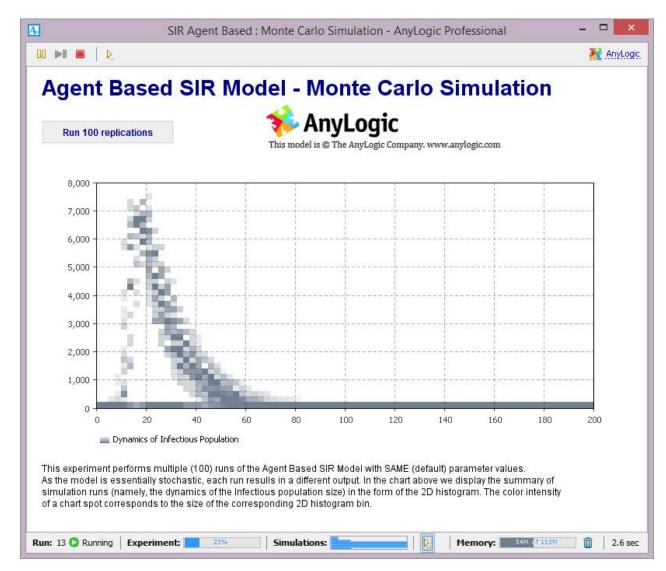
 Error (eg when determining mean) given limited eff. - Coarser grid: $\theta\left(c^{-\frac{2}{D}}\right) = \theta\left(\frac{1}{\frac{2}{c^{D}}}\right)$ Spends much effort in low-probability areas of space

- Monte Carlo: $\theta\left(\frac{1}{\sqrt{N}}\right)$ Naturally concentrates samples in highly probable regions (because sampled)

Monte Carlo Analyses in AnyLogic: Specifying Distributions for Parameters

4		AnyLogic Professional		- 🗇 🗙
File Edit View Draw Model Tools Help				
🎯 - 😂 🔛 🔞 🛛 💛 🖗 🗎 🕷 🖊	🛗 🔘 🔻 🏇 👻 🔳 🛛 🛷 🛛 🚫 Get Support	」》 [2] ♀ 100% ♀ ♀ ⋕ 招!	L .★	参 🚳
🚏 Projects 🖾 📃 🗖 🐻 Mo	🐻 MonteCarlo2DHistogram 🛛			🗆 📴 Palette 🛛 🗖 🗖
Calibration: Main S. MonteCarlo2DHistogram: Main V C Pro M Nar Top Mai Cr Par Nur Par Nur	Run 100 replications	del - Monte Carlo Sin AnyLogic This model is © The AnyLogic Company. www.anylog riation Experiment gnore		
	a t / 4 8 🖳 📓	Ti	me units: days X=01	

Monte Carlo Output After Some Runs



Monte Carlo Output After All Runs



Populating the 2D Dataset

4		AnyLogic Professional			-	d ×
File Edit View Draw Model Tools H	Help					
🔞 • 😂 🖬 🔞 😽 🌣 🔤 🖻	🛛 🗶 📾 🖸 🕶 🏇 🕶 🔳 🛹 🧕 🔕 (Get Support 🛛 🔊 🖓 👒 100% 🗸 🛛 🗣 🕶 🛛 🏥 🕸	j 🗗 🕶			参 🞯
🔓 Projects 🛛 🗖 🗖	🖥 MonteCarlo2DHistogram 🛛 🗖			🙀 Palette 🖾		
▲ SIR Agent Based Calibration* ▶ 3 Main ▶ 3 Person	Amount Decord C	ID Madal - Manta Carla Ci		>^	Presentation	88 88 •
 Person Railbration: Main 	Agent Based SIR Model - Monte Carlo Simulation			Polyline		
MonteCarlo2DHistogram: Main	Run 100 replications	转 AnyLogic			Curve	
		This model is © The AnyLogic Company. www.an	/logic.com		Rounded Rec	
	<			>	다 Oval	
	🗖 Properties 🕱 🖷 Progress					
	MonteCarlo2DHistogram - Pa	rameter Variation Experiment				
	Memory					^
	Java actions Initial experiment setup:					
	Before each experiment run:					
	dataInfectious2D.reset();	2				
	Before simulation run:					
	After simulation run:					
	dataInfectious2D.add(roo	ot.InfectiousDS);				
	After iteration:					
	After experiment:					
			7	4		~
	💷 💽 😒 🗠 🔿	it a	Time units: days X=2	7		

Sensitivity in Initial States

- Frequently we don't know the exact state of the system at a certain point in time
- A very useful type of sensitivity analysis is to vary the initial model state
- In aggregate models, this can be accomplished by
 - Varying the number of people in the stock via a parameter to adjust
- In an agent-based model, state has far larger dimensionality
 - Can modify different numbers of people with characteristic, location of people with characteristic, etc.